chemical_shift

Bindings for core::scoring::rna::chemical_shift namespace

class pyrosetta.rosetta.core.scoring.rna.chemical_shift.ChemicalShiftData

Bases: pybind11_builtins.pybind11_object

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.ChemicalShiftData, in_seq_num: int, in_res_aa: pyrosetta.rosetta.core.chemical.AA, in_atom_name: str, in_realatomdata_index: int, in_exp_shift: float, in_ref_shift: float, in_data_line: str, in_accuracy_weight: float) -> None
  2. __init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.ChemicalShiftData, arg0: pyrosetta.rosetta.core.scoring.rna.chemical_shift.ChemicalShiftData) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

assign(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.ChemicalShiftData, : pyrosetta.rosetta.core.scoring.rna.chemical_shift.ChemicalShiftData) → pyrosetta.rosetta.core.scoring.rna.chemical_shift.ChemicalShiftData

C++: core::scoring::rna::chemical_shift::ChemicalShiftData::operator=(const class core::scoring::rna::chemical_shift::ChemicalShiftData &) –> class core::scoring::rna::chemical_shift::ChemicalShiftData &

class pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_parameters

Bases: pybind11_builtins.pybind11_object

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_parameters) -> None
  2. __init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_parameters, arg0: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_parameters) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

get_RNA_CS_residue_parameters(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_parameters, res_aa: pyrosetta.rosetta.core.chemical.AA) → pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters

C++: core::scoring::rna::chemical_shift::RNA_CS_parameters::get_RNA_CS_residue_parameters(const enum core::chemical::AA) const –> const class core::scoring::rna::chemical_shift::RNA_CS_residue_parameters &

class pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters

Bases: pybind11_builtins.pybind11_object

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, res_aa: pyrosetta.rosetta.core.chemical.AA) -> None
  2. __init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, arg0: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

aa(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → pyrosetta.rosetta.core.chemical.AA

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::aa() const –> enum core::chemical::AA

atom_data(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, atom: int, item: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem) → float

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::atom_data(const unsigned long, const enum core::scoring::rna::chemical_shift::atomitem) const –> double

base_name(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → str

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::base_name() const –> const std::string

get_atomname(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, count: int) → str

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::get_atomname(const unsigned long) const –> const std::string

get_atomnames_size(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → int

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::get_atomnames_size() const –> unsigned long

magentic_anisotropy_q_coeff(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → float

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::magentic_anisotropy_q_coeff() const –> double

magentic_anisotropy_r_coeff(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → float

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::magentic_anisotropy_r_coeff() const –> double

num_rings(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → int

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::num_rings() const –> unsigned long

ring_current_coeff(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → float

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::ring_current_coeff() const –> double

ring_height(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, ring_ID: int) → float

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::ring_height(const unsigned long) const –> double

ring_intensity(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, ring_ID: int) → float

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::ring_intensity(const unsigned long) const –> double

ring_radius(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, ring_ID: int) → float

C++: core::scoring::rna::chemical_shift::RNA_CS_residue_parameters::ring_radius(const unsigned long) const –> double

class pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy

Bases: pyrosetta.rosetta.core.scoring.methods.WholeStructureEnergy

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy) -> None
  2. __init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy, arg0: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

assign(self: pyrosetta.rosetta.core.scoring.methods.WholeStructureEnergy, : pyrosetta.rosetta.core.scoring.methods.WholeStructureEnergy) → pyrosetta.rosetta.core.scoring.methods.WholeStructureEnergy

C++: core::scoring::methods::WholeStructureEnergy::operator=(const class core::scoring::methods::WholeStructureEnergy &) –> class core::scoring::methods::WholeStructureEnergy &

atomic_interaction_cutoff(self: pyrosetta.rosetta.core.scoring.methods.WholeStructureEnergy) → float

how far apart must two heavy atoms be to have a zero interaction energy?

If hydrogen atoms interact at the same range as heavy atoms, then this distance should build-in a 2 * max-bound-h-distance-cutoff buffer. There is an improper mixing here between run-time aquired chemical knowledge (max-bound-h-distance-cutoff) and compile time aquired scoring knowledge (max atom cutoff); this could be resolved by adding a boolean uses_hydrogen_interaction_distance() to the SRTBEnergy class along with a method of the ChemicalManager max_bound_h_distance_cutoff().

This method allows the WholeStructureEnergy class to define which edges should be included in the EnergyGraph so that during the finalize() method the Energy class can iterate across the EnergyGraph. This iteration occurrs in the SecondaryStructureEnergy class, where the edges must span 12 angstroms between the centroids. Arguably, the SecondaryStructureEnergy class could use the TwelveANeighborGraph (a context graph) and not require that the EnergyGraph span such long distances.

C++: core::scoring::methods::WholeStructureEnergy::atomic_interaction_cutoff() const –> double

clone(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy) → pyrosetta.rosetta.core.scoring.methods.EnergyMethod

clone

C++: core::scoring::rna::chemical_shift::RNA_ChemicalShiftEnergy::clone() const –> class std::shared_ptr<class core::scoring::methods::EnergyMethod>

defines_high_order_terms(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, : pyrosetta.rosetta.core.pose.Pose) → bool
Should this EnergyMethod have score and derivative evaluation
evaluated both in the context of the whole Pose and in the context of residue or residue-pairs? This covers scoring terms like env-smooth wherein the CBeta’s get derivatives for increasing the neighbor counts for surrounding residues, and terms like constraints, which are definable on arbitrary number of residues (e.g. more than 2); both of these terms could be used in RTMin, and both should use the residue and residue-pair evaluation scheme with the MinimizationGraph for the majority of the work they do. (Now, high-order constraints (3-body or above) will not be properly evaluated within RTMin.). The default implementation returns “false”.

C++: core::scoring::methods::EnergyMethod::defines_high_order_terms(const class core::pose::Pose &) const –> bool

eval_atom_derivative(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy, atom_id: pyrosetta.rosetta.core.id.AtomID, pose: pyrosetta.rosetta.core.pose.Pose, domain_map: ObjexxFCL::FArray1D<int>, : pyrosetta.rosetta.core.scoring.ScoreFunction, weights: pyrosetta.rosetta.core.scoring.EMapVector, F1: pyrosetta.rosetta.numeric.xyzVector_double_t, F2: pyrosetta.rosetta.numeric.xyzVector_double_t) → None

C++: core::scoring::rna::chemical_shift::RNA_ChemicalShiftEnergy::eval_atom_derivative(const class core::id::AtomID &, const class core::pose::Pose &, const class ObjexxFCL::FArray1D<int> &, const class core::scoring::ScoreFunction &, const class core::scoring::EMapVector &, class numeric::xyzVector<double> &, class numeric::xyzVector<double> &) const –> void

finalize_after_derivatives(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, : pyrosetta.rosetta.core.pose.Pose, : pyrosetta.rosetta.core.scoring.ScoreFunction) → None

called at the end of derivatives evaluation

C++: core::scoring::methods::EnergyMethod::finalize_after_derivatives(class core::pose::Pose &, const class core::scoring::ScoreFunction &) const –> void

finalize_total_energy(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy, pose: pyrosetta.rosetta.core.pose.Pose, : pyrosetta.rosetta.core.scoring.ScoreFunction, totals: pyrosetta.rosetta.core.scoring.EMapVector) → None

C++: core::scoring::rna::chemical_shift::RNA_ChemicalShiftEnergy::finalize_total_energy(class core::pose::Pose &, const class core::scoring::ScoreFunction &, class core::scoring::EMapVector &) const –> void

indicate_required_context_graphs(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy, : pyrosetta.rosetta.utility.vector1_bool) → None

C++: core::scoring::rna::chemical_shift::RNA_ChemicalShiftEnergy::indicate_required_context_graphs(class utility::vector1<bool, class std::allocator<bool> > &) const –> void

method_type(self: pyrosetta.rosetta.core.scoring.methods.WholeStructureEnergy) → pyrosetta.rosetta.core.scoring.methods.EnergyMethodType

C++: core::scoring::methods::WholeStructureEnergy::method_type() const –> enum core::scoring::methods::EnergyMethodType

minimize_in_whole_structure_context(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, : pyrosetta.rosetta.core.pose.Pose) → bool
Should this EnergyMethod have score and derivative evaluation
evaluated only in the context of the whole Pose, or can it be included in a decomposed manner for a residue or a set of residue-pairs that are not part of the Pose that’s serving as their context? The default method implemented in the base class returns true in order to grandfather in EnergyMethods that have not had their derivatives changed to take advantage of the new derivative-evaluation machinery. Methods that return “true” will not have their residue-energy(-ext) / residue-pair-energy(-ext) methods invoked by the ScoreFunction during its traversal of the MinimizationGraph, and instead will be asked to perform all their work during finalize_total_energies(). Similarly, they will be expected to perform all their work during eval_atom_deriv() instead of during the ScoreFunction’s traversal of the MinimizationGraph for derivative evaluation. IMPORTANT: Methods that return “true” cannot be included in RTMin.

C++: core::scoring::methods::EnergyMethod::minimize_in_whole_structure_context(const class core::pose::Pose &) const –> bool

prepare_rotamers_for_packing(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, : pyrosetta.rosetta.core.pose.Pose, : pyrosetta.rosetta.core.conformation.RotamerSetBase) → None
If an energy method needs to cache data in a packing::RotamerSet object before
rotamer energies are calculated, it does so during this function. The packer must ensure this function is called. The default behavior is to do nothing.

C++: core::scoring::methods::EnergyMethod::prepare_rotamers_for_packing(const class core::pose::Pose &, class core::conformation::RotamerSetBase &) const –> void

requires_a_setup_for_scoring_for_residue_opportunity_during_regular_scoring(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, pose: pyrosetta.rosetta.core.pose.Pose) → bool
Does this EnergyMethod require the opportunity to examine the residue before (regular) scoring begins? Not
all energy methods would. The ScoreFunction will not ask energy methods to examine residues that are uninterested in doing so. The default implmentation of this function returns false

C++: core::scoring::methods::EnergyMethod::requires_a_setup_for_scoring_for_residue_opportunity_during_regular_scoring(const class core::pose::Pose &) const –> bool

score_types(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod) → pyrosetta.rosetta.utility.vector1_core_scoring_ScoreType

Returns the score types that this energy method computes.

C++: core::scoring::methods::EnergyMethod::score_types() const –> const class utility::vector1<enum core::scoring::ScoreType, class std::allocator<enum core::scoring::ScoreType> > &

setup_for_derivatives(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy, : pyrosetta.rosetta.core.pose.Pose, : pyrosetta.rosetta.core.scoring.ScoreFunction) → None

C++: core::scoring::rna::chemical_shift::RNA_ChemicalShiftEnergy::setup_for_derivatives(class core::pose::Pose &, const class core::scoring::ScoreFunction &) const –> void

setup_for_minimizing(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, : pyrosetta.rosetta.core.pose.Pose, : pyrosetta.rosetta.core.scoring.ScoreFunction, : pyrosetta.rosetta.core.kinematics.MinimizerMapBase) → None
Called at the beginning of atom tree minimization, this method
allows the derived class the opportunity to initialize pertinent data that will be used during minimization. During minimzation, the chemical structure of the pose is constant, so assumptions on the number of atoms per residue and their identities are safe so long as the pose’s Energies object’s “use_nblist()” method returns true.

C++: core::scoring::methods::EnergyMethod::setup_for_minimizing(class core::pose::Pose &, const class core::scoring::ScoreFunction &, const class core::kinematics::MinimizerMapBase &) const –> void

setup_for_packing(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, : pyrosetta.rosetta.core.pose.Pose, : pyrosetta.rosetta.utility.vector1_bool, : pyrosetta.rosetta.utility.vector1_bool) → None
if an energy method needs to cache data in the Energies object,
before packing begins, then it does so during this function. The packer must ensure this function is called. The default behavior is to do nothing.

C++: core::scoring::methods::EnergyMethod::setup_for_packing(class core::pose::Pose &, const class utility::vector1<bool, class std::allocator<bool> > &, const class utility::vector1<bool, class std::allocator<bool> > &) const –> void

setup_for_scoring(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_ChemicalShiftEnergy, : pyrosetta.rosetta.core.pose.Pose, : pyrosetta.rosetta.core.scoring.ScoreFunction) → None

C++: core::scoring::rna::chemical_shift::RNA_ChemicalShiftEnergy::setup_for_scoring(class core::pose::Pose &, const class core::scoring::ScoreFunction &) const –> void

setup_for_scoring_for_residue(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, rsd: pyrosetta.rosetta.core.conformation.Residue, pose: pyrosetta.rosetta.core.pose.Pose, sfxn: pyrosetta.rosetta.core.scoring.ScoreFunction, residue_data_cache: pyrosetta.rosetta.basic.datacache.BasicDataCache) → None
Do any setup work before scoring, caching any slow-to-compute data that will be used during
energy evaluation inside of the input Residue object’s data cache. (The Residue on the whole is given as a constant reference, but non-constant access to its data cache is granted.)

C++: core::scoring::methods::EnergyMethod::setup_for_scoring_for_residue(const class core::conformation::Residue &, const class core::pose::Pose &, const class core::scoring::ScoreFunction &, class basic::datacache::BasicDataCache &) const –> void

show_additional_info(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, : pyrosetta.rosetta.std.ostream, : pyrosetta.rosetta.core.pose.Pose, : bool) → None

show additional information of the energy method

C++: core::scoring::methods::EnergyMethod::show_additional_info(class std::basic_ostream<char> &, class core::pose::Pose &, bool) const –> void

update_residue_for_packing(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod, : pyrosetta.rosetta.core.pose.Pose, resid: int) → None
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
an energy method needs to cache data in the pose that corresponds to its current state, then the method must update that data when this function is called. The packer must ensure this function gets called. The default behavior is to do nothing.

C++: core::scoring::methods::EnergyMethod::update_residue_for_packing(class core::pose::Pose &, unsigned long) const –> void

version(self: pyrosetta.rosetta.core.scoring.methods.EnergyMethod) → int

Return the version of the energy method

C++: core::scoring::methods::EnergyMethod::version() const –> unsigned long

class pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem

Bases: pybind11_builtins.pybind11_object

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__(*args, **kwargs)

Overloaded function.

  1. __eq__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem, arg0: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem) -> bool
  2. __eq__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem, arg0: int) -> bool
__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__getstate__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem) → tuple
__gt__

Return self>value.

__hash__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem) → int
__init__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem, arg0: int) → None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__int__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem) → int
__le__

Return self<=value.

__lt__

Return self<value.

__ne__(*args, **kwargs)

Overloaded function.

  1. __ne__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem, arg0: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem) -> bool
  2. __ne__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem, arg0: int) -> bool
__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem) → str
__setattr__

Implement setattr(self, name, value).

__setstate__(self: pyrosetta.rosetta.core.scoring.rna.chemical_shift.atomitem, arg0: tuple) → None
__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

pyrosetta.rosetta.core.scoring.rna.chemical_shift.dround(var: float) → int

C++: core::scoring::rna::chemical_shift::dround(double) –> unsigned long

pyrosetta.rosetta.core.scoring.rna.chemical_shift.get_delta_magnetic_anisotropy_deriv(CS_data_atom_xyz: pyrosetta.rosetta.numeric.xyzVector_double_t, source_atom_xyz: pyrosetta.rosetta.numeric.xyzVector_double_t, base_coordinate_matrix: pyrosetta.rosetta.numeric.xyzMatrix_double_t, source_rsd_CS_params: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, realatomdata_index: int) → pyrosetta.rosetta.numeric.xyzVector_double_t

C++: core::scoring::rna::chemical_shift::get_delta_magnetic_anisotropy_deriv(const class numeric::xyzVector<double> &, const class numeric::xyzVector<double> &, const class numeric::xyzMatrix<double> &, const class core::scoring::rna::chemical_shift::RNA_CS_residue_parameters &, const unsigned long) –> class numeric::xyzVector<double>

pyrosetta.rosetta.core.scoring.rna.chemical_shift.get_ring_current_deriv(CS_data_atom_xyz: pyrosetta.rosetta.numeric.xyzVector_double_t, source_rsd: pyrosetta.rosetta.core.conformation.Residue, source_ring_ID: int, source_rsd_CS_params: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → pyrosetta.rosetta.numeric.xyzVector_double_t

C++: core::scoring::rna::chemical_shift::get_ring_current_deriv(const class numeric::xyzVector<double> &, const class core::conformation::Residue &, const unsigned long, const class core::scoring::rna::chemical_shift::RNA_CS_residue_parameters &) –> class numeric::xyzVector<double>

pyrosetta.rosetta.core.scoring.rna.chemical_shift.get_rna_base_coordinate_system_from_CS_params(rsd: pyrosetta.rosetta.core.conformation.Residue, rna_cs_rsd_params: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → pyrosetta.rosetta.numeric.xyzMatrix_double_t

C++: core::scoring::rna::chemical_shift::get_rna_base_coordinate_system_from_CS_params(const class core::conformation::Residue &, const class core::scoring::rna::chemical_shift::RNA_CS_residue_parameters &) –> const class numeric::xyzMatrix<double>

pyrosetta.rosetta.core.scoring.rna.chemical_shift.magnetic_anisotropy_effect(atom_xyz: pyrosetta.rosetta.numeric.xyzVector_double_t, source_rsd: pyrosetta.rosetta.core.conformation.Residue, source_rsd_CS_params: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → float

C++: core::scoring::rna::chemical_shift::magnetic_anisotropy_effect(const class numeric::xyzVector<double> &, const class core::conformation::Residue &, const class core::scoring::rna::chemical_shift::RNA_CS_residue_parameters &) –> double

pyrosetta.rosetta.core.scoring.rna.chemical_shift.ring_current_effect(atom_xyz: pyrosetta.rosetta.numeric.xyzVector_double_t, source_rsd: pyrosetta.rosetta.core.conformation.Residue, rna_cs_rsd_params: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters) → float

C++: core::scoring::rna::chemical_shift::ring_current_effect(const class numeric::xyzVector<double> &, const class core::conformation::Residue &, const class core::scoring::rna::chemical_shift::RNA_CS_residue_parameters &) –> double

pyrosetta.rosetta.core.scoring.rna.chemical_shift.ring_pos(rsd: pyrosetta.rosetta.core.conformation.Residue, rna_cs_rsd_params: pyrosetta.rosetta.core.scoring.rna.chemical_shift.RNA_CS_residue_parameters, ring_ID: int) → pyrosetta.rosetta.numeric.xyzVector_double_t

C++: core::scoring::rna::chemical_shift::ring_pos(const class core::conformation::Residue &, const class core::scoring::rna::chemical_shift::RNA_CS_residue_parameters &, const unsigned long) –> class numeric::xyzVector<double>