optimization¶
Bindings for core::optimization namespace
-
class
pyrosetta.rosetta.core.optimization.
ArmijoLineMinimization
¶ Bases:
pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm
-
Armijo
(self: pyrosetta.rosetta.core.optimization.ArmijoLineMinimization, init_step: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → float¶ C++: core::optimization::ArmijoLineMinimization::Armijo(double, class core::optimization::func_1d &) –> double
-
__call__
(self: pyrosetta.rosetta.core.optimization.ArmijoLineMinimization, curr_pos: pyrosetta.rosetta.utility.vector1_double, curr_dir: pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::ArmijoLineMinimization::operator()(class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> double
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(self: pyrosetta.rosetta.core.optimization.ArmijoLineMinimization, score_fxn: pyrosetta.rosetta.core.optimization.Multifunc, nonmonotone: bool, dim: int) → None¶
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
cubic_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::cubic_interpolation(double, double, double, double, double, double) –> double
-
fetch_stored_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::LineMinimizationAlgorithm::fetch_stored_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void
-
nonmonotone
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool¶ C++: core::optimization::LineMinimizationAlgorithm::nonmonotone() –> bool
-
provide_stored_derivatives
(self: pyrosetta.rosetta.core.optimization.ArmijoLineMinimization) → bool¶ C++: core::optimization::ArmijoLineMinimization::provide_stored_derivatives() –> bool
-
quadratic_deriv_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::quadratic_deriv_interpolation(double, double, double, double, double, double) –> double
-
quadratic_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::quadratic_interpolation(double, double, double, double, double) –> double
-
secant_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, deriv1: float, point2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::secant_interpolation(double, double, double, double) –> double
-
silent
(*args, **kwargs)¶ Overloaded function.
- silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
C++: core::optimization::LineMinimizationAlgorithm::silent() –> bool
- silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, s_in: bool) -> None
C++: core::optimization::LineMinimizationAlgorithm::silent(bool) –> void
-
store_current_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::LineMinimizationAlgorithm::store_current_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void
-
-
class
pyrosetta.rosetta.core.optimization.
AtomTreeMinimizer
¶ Bases:
pybind11_builtins.pybind11_object
High-level atom tree minimizer class
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer) -> None
- __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer, arg0: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
assign
(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer, : pyrosetta.rosetta.core.optimization.AtomTreeMinimizer) → pyrosetta.rosetta.core.optimization.AtomTreeMinimizer¶ C++: core::optimization::AtomTreeMinimizer::operator=(const class core::optimization::AtomTreeMinimizer &) –> class core::optimization::AtomTreeMinimizer &
-
check_setup
(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer, pose: pyrosetta.rosetta.core.pose.Pose, move_map: pyrosetta.rosetta.core.kinematics.MoveMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, options: core::optimization::MinimizerOptions) → None¶ Do consistency checks for minimizer setup.
C++: core::optimization::AtomTreeMinimizer::check_setup(const class core::pose::Pose &, const class core::kinematics::MoveMap &, const class core::scoring::ScoreFunction &, const class core::optimization::MinimizerOptions &) const –> void
-
deriv_check_result
(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer) → core::optimization::NumericalDerivCheckResult¶ - After minimization has concluded, the user may access the deriv-check result,
- assuming that they have run the AtomTreeMinimizer with deriv_check = true;
C++: core::optimization::AtomTreeMinimizer::deriv_check_result() const –> class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>
-
run
(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer, pose: pyrosetta.rosetta.core.pose.Pose, move_map: pyrosetta.rosetta.core.kinematics.MoveMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, options: core::optimization::MinimizerOptions) → float¶ - run minimization and return the final score at minimization’s conclusion.
- Virtual allowing derived classes to mascarade as AtomTreeMinimizers. Non-const so that it can modify its deriv_check_result_ object.
C++: core::optimization::AtomTreeMinimizer::run(class core::pose::Pose &, const class core::kinematics::MoveMap &, const class core::scoring::ScoreFunction &, const class core::optimization::MinimizerOptions &) –> double
-
-
class
pyrosetta.rosetta.core.optimization.
AtomTreeMultifunc
¶ Bases:
pyrosetta.rosetta.core.optimization.Multifunc
Atom tree multifunction class
-
__call__
(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::AtomTreeMultifunc::operator()(const class utility::vector1<double, class std::allocator<double> > &) const –> double
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: core::optimization::MinimizerMap, arg2: pyrosetta.rosetta.core.scoring.ScoreFunction) -> None
doc
- __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: core::optimization::MinimizerMap, arg2: pyrosetta.rosetta.core.scoring.ScoreFunction, arg3: bool) -> None
doc
- __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, pose_in: pyrosetta.rosetta.core.pose.Pose, min_map_in: core::optimization::MinimizerMap, scorefxn_in: pyrosetta.rosetta.core.scoring.ScoreFunction, deriv_check_in: bool, deriv_check_verbose_in: bool) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
abort_min
(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double) → bool¶ - Christophe added the following to allow premature end of minimization
- If you want to abort the minimizer under specific circonstances overload this function and return true if you want to stop, false if you want to continue. FOR THE MOMENT, ONLY IN DFPMIN!
C++: core::optimization::Multifunc::abort_min(const class utility::vector1<double, class std::allocator<double> > &) const –> bool
-
dfunc
(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::AtomTreeMultifunc::dfunc(const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) const –> void
-
dump
(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, vars2: pyrosetta.rosetta.utility.vector1_double) → None¶ Error state reached – derivative does not match gradient
C++: core::optimization::AtomTreeMultifunc::dump(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) const –> void
-
set_deriv_check_result
(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, deriv_check_result: core::optimization::NumericalDerivCheckResult) → None¶ C++: core::optimization::AtomTreeMultifunc::set_deriv_check_result(class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>) –> void
-
-
class
pyrosetta.rosetta.core.optimization.
BrentLineMinimization
¶ Bases:
pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm
-
BRENT
(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, AX: float, BX: float, CX: float, FA: float, FB: float, FC: float, TOL: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → float¶ C++: core::optimization::BrentLineMinimization::BRENT(const double, const double, const double, double &, double &, const double, const double, class core::optimization::func_1d &) –> double
-
MNBRAK
(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, AX: float, BX: float, CX: float, FA: float, FB: float, FC: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → None¶ C++: core::optimization::BrentLineMinimization::MNBRAK(double &, double &, double &, double &, double &, double &, class core::optimization::func_1d &) const –> void
-
__call__
(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, curr_pos: pyrosetta.rosetta.utility.vector1_double, curr_dir: pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::BrentLineMinimization::operator()(class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> double
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, score_fxn: pyrosetta.rosetta.core.optimization.Multifunc, dim: int) → None¶
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
cubic_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::cubic_interpolation(double, double, double, double, double, double) –> double
-
fetch_stored_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::LineMinimizationAlgorithm::fetch_stored_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void
-
nonmonotone
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool¶ C++: core::optimization::LineMinimizationAlgorithm::nonmonotone() –> bool
-
provide_stored_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool¶ C++: core::optimization::LineMinimizationAlgorithm::provide_stored_derivatives() –> bool
-
quadratic_deriv_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::quadratic_deriv_interpolation(double, double, double, double, double, double) –> double
-
quadratic_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::quadratic_interpolation(double, double, double, double, double) –> double
-
secant_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, deriv1: float, point2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::secant_interpolation(double, double, double, double) –> double
-
set_deriv_cutoff
(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, val: float) → None¶ C++: core::optimization::BrentLineMinimization::set_deriv_cutoff(const double &) –> void
-
silent
(*args, **kwargs)¶ Overloaded function.
- silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
C++: core::optimization::LineMinimizationAlgorithm::silent() –> bool
- silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, s_in: bool) -> None
C++: core::optimization::LineMinimizationAlgorithm::silent(bool) –> void
-
store_current_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::LineMinimizationAlgorithm::store_current_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void
-
-
class
pyrosetta.rosetta.core.optimization.
CartesianMinimizer
¶ Bases:
pybind11_builtins.pybind11_object
High-level atom tree minimizer class
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(self: pyrosetta.rosetta.core.optimization.CartesianMinimizer) → None¶
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
assign
(self: pyrosetta.rosetta.core.optimization.CartesianMinimizer, : pyrosetta.rosetta.core.optimization.CartesianMinimizer) → pyrosetta.rosetta.core.optimization.CartesianMinimizer¶ C++: core::optimization::CartesianMinimizer::operator=(const class core::optimization::CartesianMinimizer &) –> class core::optimization::CartesianMinimizer &
-
deriv_check_result
(self: pyrosetta.rosetta.core.optimization.CartesianMinimizer) → core::optimization::NumericalDerivCheckResult¶ - After minimization has concluded, the user may access the deriv-check result,
- assuming that they have run the CartesianMinimizer with deriv_check = true;
C++: core::optimization::CartesianMinimizer::deriv_check_result() const –> class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>
-
run
(self: pyrosetta.rosetta.core.optimization.CartesianMinimizer, pose: pyrosetta.rosetta.core.pose.Pose, move_map: pyrosetta.rosetta.core.kinematics.MoveMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, options: core::optimization::MinimizerOptions) → float¶ - run minimization and return the final score at minimization’s conclusion.
- Virtual allowing derived classes to mascarade as CartesianMinimizers. Non-const so that it can modify its deriv_check_result_ object.
C++: core::optimization::CartesianMinimizer::run(class core::pose::Pose &, const class core::kinematics::MoveMap &, const class core::scoring::ScoreFunction &, const class core::optimization::MinimizerOptions &) –> double
-
-
class
pyrosetta.rosetta.core.optimization.
CartesianMultifunc
¶ Bases:
pyrosetta.rosetta.core.optimization.Multifunc
Atom tree multifunction class
-
__call__
(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, vars: pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::CartesianMultifunc::operator()(const class utility::vector1<double, class std::allocator<double> > &) const –> double
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, arg2: pyrosetta.rosetta.core.scoring.ScoreFunction) -> None
doc
- __init__(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, arg2: pyrosetta.rosetta.core.scoring.ScoreFunction, arg3: bool) -> None
doc
- __init__(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, pose_in: pyrosetta.rosetta.core.pose.Pose, min_map_in: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, scorefxn_in: pyrosetta.rosetta.core.scoring.ScoreFunction, deriv_check_in: bool, deriv_check_verbose_in: bool) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
abort_min
(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double) → bool¶ - Christophe added the following to allow premature end of minimization
- If you want to abort the minimizer under specific circonstances overload this function and return true if you want to stop, false if you want to continue. FOR THE MOMENT, ONLY IN DFPMIN!
C++: core::optimization::Multifunc::abort_min(const class utility::vector1<double, class std::allocator<double> > &) const –> bool
-
dfunc
(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::CartesianMultifunc::dfunc(const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) const –> void
-
dump
(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, vars2: pyrosetta.rosetta.utility.vector1_double) → None¶ Error state reached – derivative does not match gradient
C++: core::optimization::CartesianMultifunc::dump(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) const –> void
-
set_deriv_check_result
(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, deriv_check_result: core::optimization::NumericalDerivCheckResult) → None¶ C++: core::optimization::CartesianMultifunc::set_deriv_check_result(class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>) –> void
-
-
class
pyrosetta.rosetta.core.optimization.
ConvergenceTest
¶ Bases:
pybind11_builtins.pybind11_object
Rough outline of how to structure this:
Make a base ‘minimizer’ class
Sub-class into univariate and multivariate minimizers -> actually, could we treat linmin as an instance of multivariate
minimization, with a single pass of steepest descentThe trick is how to mix and match convergence criteria, descent direction generation, and line minimization schemes
convergence criteria could be a function or a functor. Descent direction algorithms probably need to be functors, since they have different storage needs.
-
__call__
(self: pyrosetta.rosetta.core.optimization.ConvergenceTest, Fnew: float, Fold: float) → bool¶ C++: core::optimization::ConvergenceTest::operator()(double, double) –> bool
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.ConvergenceTest) -> None
- __init__(self: pyrosetta.rosetta.core.optimization.ConvergenceTest, arg0: pyrosetta.rosetta.core.optimization.ConvergenceTest) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
assign
(self: pyrosetta.rosetta.core.optimization.ConvergenceTest, : pyrosetta.rosetta.core.optimization.ConvergenceTest) → pyrosetta.rosetta.core.optimization.ConvergenceTest¶ C++: core::optimization::ConvergenceTest::operator=(const class core::optimization::ConvergenceTest &) –> class core::optimization::ConvergenceTest &
-
-
class
pyrosetta.rosetta.core.optimization.
EItem
¶ Bases:
pybind11_builtins.pybind11_object
Inner class for Genetic Algorithm, hold one population with some additional info
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.EItem) -> None
- __init__(self: pyrosetta.rosetta.core.optimization.EItem, vn: pyrosetta.rosetta.utility.vector1_double) -> None
- __init__(self: pyrosetta.rosetta.core.optimization.EItem, arg0: pyrosetta.rosetta.core.optimization.EItem) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
sort_R_function
(e1: pyrosetta.rosetta.core.optimization.EItem, e2: pyrosetta.rosetta.core.optimization.EItem) → bool¶ C++: core::optimization::EItem::sort_R_function(const class core::optimization::EItem &, const class core::optimization::EItem &) –> bool
-
-
class
pyrosetta.rosetta.core.optimization.
LineMinimizationAlgorithm
¶ Bases:
pybind11_builtins.pybind11_object
-
__call__
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, : pyrosetta.rosetta.utility.vector1_double, : pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::LineMinimizationAlgorithm::operator()(class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> double
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, score_fxn: pyrosetta.rosetta.core.optimization.Multifunc, dimension: int) -> None
- __init__(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, arg0: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
cubic_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::cubic_interpolation(double, double, double, double, double, double) –> double
-
fetch_stored_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::LineMinimizationAlgorithm::fetch_stored_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void
-
nonmonotone
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool¶ C++: core::optimization::LineMinimizationAlgorithm::nonmonotone() –> bool
-
provide_stored_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool¶ C++: core::optimization::LineMinimizationAlgorithm::provide_stored_derivatives() –> bool
-
quadratic_deriv_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::quadratic_deriv_interpolation(double, double, double, double, double, double) –> double
-
quadratic_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::quadratic_interpolation(double, double, double, double, double) –> double
-
secant_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, deriv1: float, point2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::secant_interpolation(double, double, double, double) –> double
-
silent
(*args, **kwargs)¶ Overloaded function.
- silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
C++: core::optimization::LineMinimizationAlgorithm::silent() –> bool
- silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, s_in: bool) -> None
C++: core::optimization::LineMinimizationAlgorithm::silent(bool) –> void
-
store_current_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::LineMinimizationAlgorithm::store_current_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void
-
-
class
pyrosetta.rosetta.core.optimization.
Minimizer
¶ Bases:
pybind11_builtins.pybind11_object
Simple low-level minimizer class
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.Minimizer, func_in: pyrosetta.rosetta.core.optimization.Multifunc, options_in: pyrosetta.rosetta.core.optimization.MinimizerOptions) -> None
- __init__(self: pyrosetta.rosetta.core.optimization.Minimizer, arg0: pyrosetta.rosetta.core.optimization.Minimizer) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
run
(self: pyrosetta.rosetta.core.optimization.Minimizer, phipsi_inout: pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::Minimizer::run(class utility::vector1<double, class std::allocator<double> > &) –> double
-
-
class
pyrosetta.rosetta.core.optimization.
Multifunc
¶ Bases:
pybind11_builtins.pybind11_object
Multifunction interface class
-
__call__
(self: pyrosetta.rosetta.core.optimization.Multifunc, phipsi: pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::Multifunc::operator()(const class utility::vector1<double, class std::allocator<double> > &) const –> double
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
¶ Initialize self. See help(type(self)) for accurate signature.
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
abort_min
(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double) → bool¶ - Christophe added the following to allow premature end of minimization
- If you want to abort the minimizer under specific circonstances overload this function and return true if you want to stop, false if you want to continue. FOR THE MOMENT, ONLY IN DFPMIN!
C++: core::optimization::Multifunc::abort_min(const class utility::vector1<double, class std::allocator<double> > &) const –> bool
-
dfunc
(self: pyrosetta.rosetta.core.optimization.Multifunc, phipsi: pyrosetta.rosetta.utility.vector1_double, dE_dphipsi: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::Multifunc::dfunc(const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) const –> void
-
dump
(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double, : pyrosetta.rosetta.utility.vector1_double) → None¶ - Error state reached – derivative does not match gradient
- Derived classes have the oportunity to now output and or analyze the two vars assignments vars, vars+delta where the derivatives are incorrect.
C++: core::optimization::Multifunc::dump(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) const –> void
-
-
class
pyrosetta.rosetta.core.optimization.
Particle
¶ Bases:
pybind11_builtins.pybind11_object
Simple data container for PSO algorithm.
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.Particle, size: int) -> None
- __init__(self: pyrosetta.rosetta.core.optimization.Particle, p_in: pyrosetta.rosetta.utility.vector1_double) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
(self: pyrosetta.rosetta.core.optimization.Particle) → str¶
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
assign
(self: pyrosetta.rosetta.core.optimization.Particle, : pyrosetta.rosetta.core.optimization.Particle) → pyrosetta.rosetta.core.optimization.Particle¶ C++: core::optimization::Particle::operator=(const class core::optimization::Particle &) –> class core::optimization::Particle &
-
ensure_size
(self: pyrosetta.rosetta.core.optimization.Particle, minsize: int) → None¶ Make sure that all arrays are large enough – prevents index-out-of-bound errors.
C++: core::optimization::Particle::ensure_size(unsigned long) –> void
-
fitness_pbest
(self: pyrosetta.rosetta.core.optimization.Particle) → float¶ C++: core::optimization::Particle::fitness_pbest() const –> double
-
pbest
(self: pyrosetta.rosetta.core.optimization.Particle) → pyrosetta.rosetta.utility.vector1_double¶ This is why data should be private: you get to ensure it’s valid when you read it.
C++: core::optimization::Particle::pbest() const –> const class utility::vector1<double, class std::allocator<double> > &
-
score
(self: pyrosetta.rosetta.core.optimization.Particle, f: pyrosetta.rosetta.core.optimization.Multifunc) → float¶ C++: core::optimization::Particle::score(class core::optimization::Multifunc &) –> double
-
set_score
(self: pyrosetta.rosetta.core.optimization.Particle, new_score: float) → float¶ C++: core::optimization::Particle::set_score(double &) –> double
-
-
class
pyrosetta.rosetta.core.optimization.
ParticleSwarmMinimizer
¶ Bases:
pybind11_builtins.pybind11_object
Particle Swarm Optimization engine.
Algorithm details based heavily on
Chen, Liu, Huang, Hwang, Ho (2006). “SODOCK: Swarm Optimization for Highly Flexible Protein-Ligand Docking” J Comput Chem 28: 612-623, 2007One can imagine writing another version that distributed the work via MPI…
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer, p_min: pyrosetta.rosetta.utility.vector1_double, p_max: pyrosetta.rosetta.utility.vector1_double) -> None
- __init__(self: pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer, arg0: pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
assign
(self: pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer, : pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer) → pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer¶ C++: core::optimization::ParticleSwarmMinimizer::operator=(const class core::optimization::ParticleSwarmMinimizer &) –> class core::optimization::ParticleSwarmMinimizer &
-
-
class
pyrosetta.rosetta.core.optimization.
SingleResidueMultifunc
¶ Bases:
pyrosetta.rosetta.core.optimization.AtomTreeMultifunc
A streamlined AtomTreeMultifunc designed specifically for RTMIN.
Evaluates only the energies between the specified residue and the rest of the Pose, assuming the nbr_atoms do not move (as in rotamer trials and repacking). Could probably be sped up further with a customized dfunc(). DFPMIN seems to spend most of its time in func() rather than dfunc(), so there’s not as much to gain there anyway.
-
__call__
(self: pyrosetta.rosetta.core.optimization.SingleResidueMultifunc, vars: pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::SingleResidueMultifunc::operator()(const class utility::vector1<double, class std::allocator<double> > &) const –> double
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(*args, **kwargs)¶ Overloaded function.
- __init__(self: pyrosetta.rosetta.core.optimization.SingleResidueMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: int, arg2: pyrosetta.rosetta.core.optimization.MinimizerMap, arg3: pyrosetta.rosetta.core.scoring.ScoreFunction, arg4: utility::graph::Graph) -> None
doc
- __init__(self: pyrosetta.rosetta.core.optimization.SingleResidueMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: int, arg2: pyrosetta.rosetta.core.optimization.MinimizerMap, arg3: pyrosetta.rosetta.core.scoring.ScoreFunction, arg4: utility::graph::Graph, arg5: bool) -> None
doc
- __init__(self: pyrosetta.rosetta.core.optimization.SingleResidueMultifunc, pose_in: pyrosetta.rosetta.core.pose.Pose, rsd_id_in: int, min_map_in: pyrosetta.rosetta.core.optimization.MinimizerMap, scorefxn_in: pyrosetta.rosetta.core.scoring.ScoreFunction, packer_neighbor_graph_in: utility::graph::Graph, deriv_check_in: bool, deriv_check_verbose_in: bool) -> None
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
abort_min
(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double) → bool¶ - Christophe added the following to allow premature end of minimization
- If you want to abort the minimizer under specific circonstances overload this function and return true if you want to stop, false if you want to continue. FOR THE MOMENT, ONLY IN DFPMIN!
C++: core::optimization::Multifunc::abort_min(const class utility::vector1<double, class std::allocator<double> > &) const –> bool
-
dfunc
(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::AtomTreeMultifunc::dfunc(const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) const –> void
-
dump
(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, vars2: pyrosetta.rosetta.utility.vector1_double) → None¶ Error state reached – derivative does not match gradient
C++: core::optimization::AtomTreeMultifunc::dump(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) const –> void
-
set_deriv_check_result
(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, deriv_check_result: core::optimization::NumericalDerivCheckResult) → None¶ C++: core::optimization::AtomTreeMultifunc::set_deriv_check_result(class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>) –> void
-
-
class
pyrosetta.rosetta.core.optimization.
StrongWolfeLineMinimization
¶ Bases:
pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm
-
StrongWolfe
(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization, init_step: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → float¶ C++: core::optimization::StrongWolfeLineMinimization::StrongWolfe(double, class core::optimization::func_1d &) –> double
-
__call__
(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization, curr_pos: pyrosetta.rosetta.utility.vector1_double, curr_dir: pyrosetta.rosetta.utility.vector1_double) → float¶ C++: core::optimization::StrongWolfeLineMinimization::operator()(class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> double
-
__delattr__
¶ Implement delattr(self, name).
-
__dir__
() → list¶ default dir() implementation
-
__eq__
¶ Return self==value.
-
__format__
()¶ default object formatter
-
__ge__
¶ Return self>=value.
-
__getattribute__
¶ Return getattr(self, name).
-
__gt__
¶ Return self>value.
-
__hash__
¶ Return hash(self).
-
__init__
(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization, score_fxn: pyrosetta.rosetta.core.optimization.Multifunc, nonmonotone: bool, dim: int) → None¶
-
__init_subclass__
()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__
¶ Return self<=value.
-
__lt__
¶ Return self<value.
-
__ne__
¶ Return self!=value.
-
__new__
()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__
()¶ helper for pickle
-
__reduce_ex__
()¶ helper for pickle
-
__repr__
¶ Return repr(self).
-
__setattr__
¶ Implement setattr(self, name, value).
-
__sizeof__
() → int¶ size of object in memory, in bytes
-
__str__
¶ Return str(self).
-
__subclasshook__
()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
cubic_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::cubic_interpolation(double, double, double, double, double, double) –> double
-
fetch_stored_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::LineMinimizationAlgorithm::fetch_stored_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void
-
nonmonotone
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool¶ C++: core::optimization::LineMinimizationAlgorithm::nonmonotone() –> bool
-
provide_stored_derivatives
(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization) → bool¶ C++: core::optimization::StrongWolfeLineMinimization::provide_stored_derivatives() –> bool
-
quadratic_deriv_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::quadratic_deriv_interpolation(double, double, double, double, double, double) –> double
-
quadratic_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::quadratic_interpolation(double, double, double, double, double) –> double
-
secant_interpolation
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, deriv1: float, point2: float, deriv2: float) → float¶ C++: core::optimization::LineMinimizationAlgorithm::secant_interpolation(double, double, double, double) –> double
-
silent
(*args, **kwargs)¶ Overloaded function.
- silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
C++: core::optimization::LineMinimizationAlgorithm::silent() –> bool
- silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, s_in: bool) -> None
C++: core::optimization::LineMinimizationAlgorithm::silent(bool) –> void
-
store_current_derivatives
(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::LineMinimizationAlgorithm::store_current_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void
-
zoom
(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization, alpha_low: float, func_low: float, deriv_low: float, alpha_high: float, func_high: float, deriv_high: float, func_zero: float, deriv_zero: float, func_return: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → float¶ C++: core::optimization::StrongWolfeLineMinimization::zoom(double, double, double, double, double, double, double, double, double &, class core::optimization::func_1d &) –> double
-
-
pyrosetta.rosetta.core.optimization.
atom_tree_dfunc
(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.MinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::atom_tree_dfunc(class core::pose::Pose &, class core::optimization::MinimizerMap &, const class core::scoring::ScoreFunction &, const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> void
-
pyrosetta.rosetta.core.optimization.
atom_tree_get_atompairE_deriv
(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.MinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction) → None¶ C++: core::optimization::atom_tree_get_atompairE_deriv(class core::pose::Pose &, class core::optimization::MinimizerMap &, const class core::scoring::ScoreFunction &) –> void
-
pyrosetta.rosetta.core.optimization.
cart_numerical_derivative_check
(min_map: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, func: pyrosetta.rosetta.core.optimization.CartesianMultifunc, start_vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double, deriv_check_result: pyrosetta.rosetta.core.optimization.NumericalDerivCheckResult, verbose: bool) → None¶ C++: core::optimization::cart_numerical_derivative_check(const class core::optimization::CartesianMinimizerMap &, const class core::optimization::CartesianMultifunc &, const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &, class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>, const bool) –> void
-
pyrosetta.rosetta.core.optimization.
cartesian_collect_atompairE_deriv
(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, dE_dvars: pyrosetta.rosetta.utility.vector1_double, scale: float) → None¶ C++: core::optimization::cartesian_collect_atompairE_deriv(class core::pose::Pose &, class core::optimization::CartesianMinimizerMap &, const class core::scoring::ScoreFunction &, class utility::vector1<double, class std::allocator<double> > &, double) –> void
-
pyrosetta.rosetta.core.optimization.
cartesian_collect_torsional_deriv
(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, dE_dvars: pyrosetta.rosetta.utility.vector1_double, scale: float) → None¶ C++: core::optimization::cartesian_collect_torsional_deriv(class core::pose::Pose &, class core::optimization::CartesianMinimizerMap &, const class core::scoring::ScoreFunction &, class utility::vector1<double, class std::allocator<double> > &, double) –> void
-
pyrosetta.rosetta.core.optimization.
cartesian_dfunc
(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None¶ C++: core::optimization::cartesian_dfunc(class core::pose::Pose &, class core::optimization::CartesianMinimizerMap &, const class core::scoring::ScoreFunction &, const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> void
-
pyrosetta.rosetta.core.optimization.
numerical_derivative_check
(min_map: pyrosetta.rosetta.core.optimization.MinimizerMap, func: pyrosetta.rosetta.core.optimization.Multifunc, start_vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double, deriv_check_result: pyrosetta.rosetta.core.optimization.NumericalDerivCheckResult, verbose: bool) → None¶ C++: core::optimization::numerical_derivative_check(const class core::optimization::MinimizerMap &, const class core::optimization::Multifunc &, const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &, class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>, const bool) –> void
-
pyrosetta.rosetta.core.optimization.
simple_numeric_deriv_check
(*args, **kwargs)¶ Overloaded function.
- simple_numeric_deriv_check(func: pyrosetta.rosetta.core.optimization.Multifunc, start_vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double, send_to_stdout: bool, verbose: bool) -> pyrosetta.rosetta.core.optimization.SimpleDerivCheckResult
- simple_numeric_deriv_check(func: pyrosetta.rosetta.core.optimization.Multifunc, start_vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double, send_to_stdout: bool, verbose: bool, nsteps: int) -> pyrosetta.rosetta.core.optimization.SimpleDerivCheckResult
Numeric deriv check for Multifuncs other than the AtomTreeMultifunc.
C++: core::optimization::simple_numeric_deriv_check(const class core::optimization::Multifunc &, const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &, bool, bool, unsigned long) –> class core::optimization::SimpleDerivCheckResult
-
pyrosetta.rosetta.core.optimization.
torsional_derivative_from_cartesian_derivatives
(atom: pyrosetta.rosetta.core.kinematics.tree.Atom, dof_node: pyrosetta.rosetta.core.optimization.DOF_Node, dof_deriv: float, torsion_scale_factor: float) → float¶ C++: core::optimization::torsional_derivative_from_cartesian_derivatives(const class core::kinematics::tree::Atom &, const class core::optimization::DOF_Node &, double, double) –> double