optimization

Bindings for core::optimization namespace

class pyrosetta.rosetta.core.optimization.ArmijoLineMinimization

Bases: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm

Armijo(self: pyrosetta.rosetta.core.optimization.ArmijoLineMinimization, init_step: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → float

C++: core::optimization::ArmijoLineMinimization::Armijo(double, class core::optimization::func_1d &) –> double

__call__(self: pyrosetta.rosetta.core.optimization.ArmijoLineMinimization, curr_pos: pyrosetta.rosetta.utility.vector1_double, curr_dir: pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::ArmijoLineMinimization::operator()(class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> double

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(self: pyrosetta.rosetta.core.optimization.ArmijoLineMinimization, score_fxn: pyrosetta.rosetta.core.optimization.Multifunc, nonmonotone: bool, dim: int) → None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

cubic_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::cubic_interpolation(double, double, double, double, double, double) –> double

fetch_stored_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::LineMinimizationAlgorithm::fetch_stored_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void

nonmonotone(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool

C++: core::optimization::LineMinimizationAlgorithm::nonmonotone() –> bool

provide_stored_derivatives(self: pyrosetta.rosetta.core.optimization.ArmijoLineMinimization) → bool

C++: core::optimization::ArmijoLineMinimization::provide_stored_derivatives() –> bool

quadratic_deriv_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::quadratic_deriv_interpolation(double, double, double, double, double, double) –> double

quadratic_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::quadratic_interpolation(double, double, double, double, double) –> double

secant_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, deriv1: float, point2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::secant_interpolation(double, double, double, double) –> double

silent(*args, **kwargs)

Overloaded function.

  1. silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> bool

C++: core::optimization::LineMinimizationAlgorithm::silent() –> bool

  1. silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, s_in: bool) -> None

C++: core::optimization::LineMinimizationAlgorithm::silent(bool) –> void

store_current_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::LineMinimizationAlgorithm::store_current_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void

class pyrosetta.rosetta.core.optimization.AtomTreeMinimizer

Bases: pybind11_builtins.pybind11_object

High-level atom tree minimizer class

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer) -> None
  2. __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer, arg0: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

assign(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer, : pyrosetta.rosetta.core.optimization.AtomTreeMinimizer) → pyrosetta.rosetta.core.optimization.AtomTreeMinimizer

C++: core::optimization::AtomTreeMinimizer::operator=(const class core::optimization::AtomTreeMinimizer &) –> class core::optimization::AtomTreeMinimizer &

check_setup(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer, pose: pyrosetta.rosetta.core.pose.Pose, move_map: pyrosetta.rosetta.core.kinematics.MoveMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, options: core::optimization::MinimizerOptions) → None

Do consistency checks for minimizer setup.

C++: core::optimization::AtomTreeMinimizer::check_setup(const class core::pose::Pose &, const class core::kinematics::MoveMap &, const class core::scoring::ScoreFunction &, const class core::optimization::MinimizerOptions &) const –> void

deriv_check_result(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer) → core::optimization::NumericalDerivCheckResult
After minimization has concluded, the user may access the deriv-check result,
assuming that they have run the AtomTreeMinimizer with deriv_check = true;

C++: core::optimization::AtomTreeMinimizer::deriv_check_result() const –> class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>

run(self: pyrosetta.rosetta.core.optimization.AtomTreeMinimizer, pose: pyrosetta.rosetta.core.pose.Pose, move_map: pyrosetta.rosetta.core.kinematics.MoveMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, options: core::optimization::MinimizerOptions) → float
run minimization and return the final score at minimization’s conclusion.
Virtual allowing derived classes to mascarade as AtomTreeMinimizers. Non-const so that it can modify its deriv_check_result_ object.

C++: core::optimization::AtomTreeMinimizer::run(class core::pose::Pose &, const class core::kinematics::MoveMap &, const class core::scoring::ScoreFunction &, const class core::optimization::MinimizerOptions &) –> double

class pyrosetta.rosetta.core.optimization.AtomTreeMultifunc

Bases: pyrosetta.rosetta.core.optimization.Multifunc

Atom tree multifunction class

__call__(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::AtomTreeMultifunc::operator()(const class utility::vector1<double, class std::allocator<double> > &) const –> double

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: core::optimization::MinimizerMap, arg2: pyrosetta.rosetta.core.scoring.ScoreFunction) -> None

doc

  1. __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: core::optimization::MinimizerMap, arg2: pyrosetta.rosetta.core.scoring.ScoreFunction, arg3: bool) -> None

doc

  1. __init__(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, pose_in: pyrosetta.rosetta.core.pose.Pose, min_map_in: core::optimization::MinimizerMap, scorefxn_in: pyrosetta.rosetta.core.scoring.ScoreFunction, deriv_check_in: bool, deriv_check_verbose_in: bool) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

abort_min(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double) → bool
Christophe added the following to allow premature end of minimization
If you want to abort the minimizer under specific circonstances overload this function and return true if you want to stop, false if you want to continue. FOR THE MOMENT, ONLY IN DFPMIN!

C++: core::optimization::Multifunc::abort_min(const class utility::vector1<double, class std::allocator<double> > &) const –> bool

dfunc(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::AtomTreeMultifunc::dfunc(const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) const –> void

dump(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, vars2: pyrosetta.rosetta.utility.vector1_double) → None

Error state reached – derivative does not match gradient

C++: core::optimization::AtomTreeMultifunc::dump(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) const –> void

set_deriv_check_result(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, deriv_check_result: core::optimization::NumericalDerivCheckResult) → None

C++: core::optimization::AtomTreeMultifunc::set_deriv_check_result(class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>) –> void

class pyrosetta.rosetta.core.optimization.BrentLineMinimization

Bases: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm

BRENT(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, AX: float, BX: float, CX: float, FA: float, FB: float, FC: float, TOL: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → float

C++: core::optimization::BrentLineMinimization::BRENT(const double, const double, const double, double &, double &, const double, const double, class core::optimization::func_1d &) –> double

MNBRAK(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, AX: float, BX: float, CX: float, FA: float, FB: float, FC: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → None

C++: core::optimization::BrentLineMinimization::MNBRAK(double &, double &, double &, double &, double &, double &, class core::optimization::func_1d &) const –> void

__call__(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, curr_pos: pyrosetta.rosetta.utility.vector1_double, curr_dir: pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::BrentLineMinimization::operator()(class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> double

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, score_fxn: pyrosetta.rosetta.core.optimization.Multifunc, dim: int) → None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

cubic_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::cubic_interpolation(double, double, double, double, double, double) –> double

fetch_stored_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::LineMinimizationAlgorithm::fetch_stored_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void

nonmonotone(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool

C++: core::optimization::LineMinimizationAlgorithm::nonmonotone() –> bool

provide_stored_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool

C++: core::optimization::LineMinimizationAlgorithm::provide_stored_derivatives() –> bool

quadratic_deriv_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::quadratic_deriv_interpolation(double, double, double, double, double, double) –> double

quadratic_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::quadratic_interpolation(double, double, double, double, double) –> double

secant_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, deriv1: float, point2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::secant_interpolation(double, double, double, double) –> double

set_deriv_cutoff(self: pyrosetta.rosetta.core.optimization.BrentLineMinimization, val: float) → None

C++: core::optimization::BrentLineMinimization::set_deriv_cutoff(const double &) –> void

silent(*args, **kwargs)

Overloaded function.

  1. silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> bool

C++: core::optimization::LineMinimizationAlgorithm::silent() –> bool

  1. silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, s_in: bool) -> None

C++: core::optimization::LineMinimizationAlgorithm::silent(bool) –> void

store_current_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::LineMinimizationAlgorithm::store_current_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void

class pyrosetta.rosetta.core.optimization.CartesianMinimizer

Bases: pybind11_builtins.pybind11_object

High-level atom tree minimizer class

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(self: pyrosetta.rosetta.core.optimization.CartesianMinimizer) → None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

assign(self: pyrosetta.rosetta.core.optimization.CartesianMinimizer, : pyrosetta.rosetta.core.optimization.CartesianMinimizer) → pyrosetta.rosetta.core.optimization.CartesianMinimizer

C++: core::optimization::CartesianMinimizer::operator=(const class core::optimization::CartesianMinimizer &) –> class core::optimization::CartesianMinimizer &

deriv_check_result(self: pyrosetta.rosetta.core.optimization.CartesianMinimizer) → core::optimization::NumericalDerivCheckResult
After minimization has concluded, the user may access the deriv-check result,
assuming that they have run the CartesianMinimizer with deriv_check = true;

C++: core::optimization::CartesianMinimizer::deriv_check_result() const –> class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>

run(self: pyrosetta.rosetta.core.optimization.CartesianMinimizer, pose: pyrosetta.rosetta.core.pose.Pose, move_map: pyrosetta.rosetta.core.kinematics.MoveMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, options: core::optimization::MinimizerOptions) → float
run minimization and return the final score at minimization’s conclusion.
Virtual allowing derived classes to mascarade as CartesianMinimizers. Non-const so that it can modify its deriv_check_result_ object.

C++: core::optimization::CartesianMinimizer::run(class core::pose::Pose &, const class core::kinematics::MoveMap &, const class core::scoring::ScoreFunction &, const class core::optimization::MinimizerOptions &) –> double

class pyrosetta.rosetta.core.optimization.CartesianMultifunc

Bases: pyrosetta.rosetta.core.optimization.Multifunc

Atom tree multifunction class

__call__(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, vars: pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::CartesianMultifunc::operator()(const class utility::vector1<double, class std::allocator<double> > &) const –> double

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, arg2: pyrosetta.rosetta.core.scoring.ScoreFunction) -> None

doc

  1. __init__(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, arg2: pyrosetta.rosetta.core.scoring.ScoreFunction, arg3: bool) -> None

doc

  1. __init__(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, pose_in: pyrosetta.rosetta.core.pose.Pose, min_map_in: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, scorefxn_in: pyrosetta.rosetta.core.scoring.ScoreFunction, deriv_check_in: bool, deriv_check_verbose_in: bool) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

abort_min(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double) → bool
Christophe added the following to allow premature end of minimization
If you want to abort the minimizer under specific circonstances overload this function and return true if you want to stop, false if you want to continue. FOR THE MOMENT, ONLY IN DFPMIN!

C++: core::optimization::Multifunc::abort_min(const class utility::vector1<double, class std::allocator<double> > &) const –> bool

dfunc(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::CartesianMultifunc::dfunc(const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) const –> void

dump(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, vars2: pyrosetta.rosetta.utility.vector1_double) → None

Error state reached – derivative does not match gradient

C++: core::optimization::CartesianMultifunc::dump(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) const –> void

set_deriv_check_result(self: pyrosetta.rosetta.core.optimization.CartesianMultifunc, deriv_check_result: core::optimization::NumericalDerivCheckResult) → None

C++: core::optimization::CartesianMultifunc::set_deriv_check_result(class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>) –> void

class pyrosetta.rosetta.core.optimization.ConvergenceTest

Bases: pybind11_builtins.pybind11_object

Rough outline of how to structure this:

Make a base ‘minimizer’ class

Sub-class into univariate and multivariate minimizers -> actually, could we treat linmin as an instance of multivariate

minimization, with a single pass of steepest descent

The trick is how to mix and match convergence criteria, descent direction generation, and line minimization schemes

convergence criteria could be a function or a functor. Descent direction algorithms probably need to be functors, since they have different storage needs.

__call__(self: pyrosetta.rosetta.core.optimization.ConvergenceTest, Fnew: float, Fold: float) → bool

C++: core::optimization::ConvergenceTest::operator()(double, double) –> bool

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.ConvergenceTest) -> None
  2. __init__(self: pyrosetta.rosetta.core.optimization.ConvergenceTest, arg0: pyrosetta.rosetta.core.optimization.ConvergenceTest) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

assign(self: pyrosetta.rosetta.core.optimization.ConvergenceTest, : pyrosetta.rosetta.core.optimization.ConvergenceTest) → pyrosetta.rosetta.core.optimization.ConvergenceTest

C++: core::optimization::ConvergenceTest::operator=(const class core::optimization::ConvergenceTest &) –> class core::optimization::ConvergenceTest &

class pyrosetta.rosetta.core.optimization.EItem

Bases: pybind11_builtins.pybind11_object

Inner class for Genetic Algorithm, hold one population with some additional info

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.EItem) -> None
  2. __init__(self: pyrosetta.rosetta.core.optimization.EItem, vn: pyrosetta.rosetta.utility.vector1_double) -> None
  3. __init__(self: pyrosetta.rosetta.core.optimization.EItem, arg0: pyrosetta.rosetta.core.optimization.EItem) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

sort_R_function(e1: pyrosetta.rosetta.core.optimization.EItem, e2: pyrosetta.rosetta.core.optimization.EItem) → bool

C++: core::optimization::EItem::sort_R_function(const class core::optimization::EItem &, const class core::optimization::EItem &) –> bool

class pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm

Bases: pybind11_builtins.pybind11_object

__call__(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, : pyrosetta.rosetta.utility.vector1_double, : pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::LineMinimizationAlgorithm::operator()(class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> double

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, score_fxn: pyrosetta.rosetta.core.optimization.Multifunc, dimension: int) -> None
  2. __init__(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, arg0: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

cubic_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::cubic_interpolation(double, double, double, double, double, double) –> double

fetch_stored_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::LineMinimizationAlgorithm::fetch_stored_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void

nonmonotone(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool

C++: core::optimization::LineMinimizationAlgorithm::nonmonotone() –> bool

provide_stored_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool

C++: core::optimization::LineMinimizationAlgorithm::provide_stored_derivatives() –> bool

quadratic_deriv_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::quadratic_deriv_interpolation(double, double, double, double, double, double) –> double

quadratic_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::quadratic_interpolation(double, double, double, double, double) –> double

secant_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, deriv1: float, point2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::secant_interpolation(double, double, double, double) –> double

silent(*args, **kwargs)

Overloaded function.

  1. silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> bool

C++: core::optimization::LineMinimizationAlgorithm::silent() –> bool

  1. silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, s_in: bool) -> None

C++: core::optimization::LineMinimizationAlgorithm::silent(bool) –> void

store_current_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::LineMinimizationAlgorithm::store_current_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void

class pyrosetta.rosetta.core.optimization.Minimizer

Bases: pybind11_builtins.pybind11_object

Simple low-level minimizer class

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.Minimizer, func_in: pyrosetta.rosetta.core.optimization.Multifunc, options_in: pyrosetta.rosetta.core.optimization.MinimizerOptions) -> None
  2. __init__(self: pyrosetta.rosetta.core.optimization.Minimizer, arg0: pyrosetta.rosetta.core.optimization.Minimizer) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

run(self: pyrosetta.rosetta.core.optimization.Minimizer, phipsi_inout: pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::Minimizer::run(class utility::vector1<double, class std::allocator<double> > &) –> double

class pyrosetta.rosetta.core.optimization.Multifunc

Bases: pybind11_builtins.pybind11_object

Multifunction interface class

__call__(self: pyrosetta.rosetta.core.optimization.Multifunc, phipsi: pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::Multifunc::operator()(const class utility::vector1<double, class std::allocator<double> > &) const –> double

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__

Initialize self. See help(type(self)) for accurate signature.

__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

abort_min(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double) → bool
Christophe added the following to allow premature end of minimization
If you want to abort the minimizer under specific circonstances overload this function and return true if you want to stop, false if you want to continue. FOR THE MOMENT, ONLY IN DFPMIN!

C++: core::optimization::Multifunc::abort_min(const class utility::vector1<double, class std::allocator<double> > &) const –> bool

dfunc(self: pyrosetta.rosetta.core.optimization.Multifunc, phipsi: pyrosetta.rosetta.utility.vector1_double, dE_dphipsi: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::Multifunc::dfunc(const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) const –> void

dump(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double, : pyrosetta.rosetta.utility.vector1_double) → None
Error state reached – derivative does not match gradient
Derived classes have the oportunity to now output and or analyze the two vars assignments vars, vars+delta where the derivatives are incorrect.

C++: core::optimization::Multifunc::dump(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) const –> void

class pyrosetta.rosetta.core.optimization.Particle

Bases: pybind11_builtins.pybind11_object

Simple data container for PSO algorithm.

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.Particle, size: int) -> None
  2. __init__(self: pyrosetta.rosetta.core.optimization.Particle, p_in: pyrosetta.rosetta.utility.vector1_double) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__(self: pyrosetta.rosetta.core.optimization.Particle) → str
__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

assign(self: pyrosetta.rosetta.core.optimization.Particle, : pyrosetta.rosetta.core.optimization.Particle) → pyrosetta.rosetta.core.optimization.Particle

C++: core::optimization::Particle::operator=(const class core::optimization::Particle &) –> class core::optimization::Particle &

ensure_size(self: pyrosetta.rosetta.core.optimization.Particle, minsize: int) → None

Make sure that all arrays are large enough – prevents index-out-of-bound errors.

C++: core::optimization::Particle::ensure_size(unsigned long) –> void

fitness_pbest(self: pyrosetta.rosetta.core.optimization.Particle) → float

C++: core::optimization::Particle::fitness_pbest() const –> double

pbest(self: pyrosetta.rosetta.core.optimization.Particle) → pyrosetta.rosetta.utility.vector1_double

This is why data should be private: you get to ensure it’s valid when you read it.

C++: core::optimization::Particle::pbest() const –> const class utility::vector1<double, class std::allocator<double> > &

score(self: pyrosetta.rosetta.core.optimization.Particle, f: pyrosetta.rosetta.core.optimization.Multifunc) → float

C++: core::optimization::Particle::score(class core::optimization::Multifunc &) –> double

set_score(self: pyrosetta.rosetta.core.optimization.Particle, new_score: float) → float

C++: core::optimization::Particle::set_score(double &) –> double

class pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer

Bases: pybind11_builtins.pybind11_object

Particle Swarm Optimization engine.

Algorithm details based heavily on

Chen, Liu, Huang, Hwang, Ho (2006). “SODOCK: Swarm Optimization for Highly Flexible Protein-Ligand Docking” J Comput Chem 28: 612-623, 2007
Also on
http://en.wikipedia.org/wiki/Particle_swarm_optimization http://www.swarmintelligence.org/

One can imagine writing another version that distributed the work via MPI…

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer, p_min: pyrosetta.rosetta.utility.vector1_double, p_max: pyrosetta.rosetta.utility.vector1_double) -> None
  2. __init__(self: pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer, arg0: pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

assign(self: pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer, : pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer) → pyrosetta.rosetta.core.optimization.ParticleSwarmMinimizer

C++: core::optimization::ParticleSwarmMinimizer::operator=(const class core::optimization::ParticleSwarmMinimizer &) –> class core::optimization::ParticleSwarmMinimizer &

class pyrosetta.rosetta.core.optimization.SingleResidueMultifunc

Bases: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc

A streamlined AtomTreeMultifunc designed specifically for RTMIN.

Evaluates only the energies between the specified residue and the rest of the Pose, assuming the nbr_atoms do not move (as in rotamer trials and repacking). Could probably be sped up further with a customized dfunc(). DFPMIN seems to spend most of its time in func() rather than dfunc(), so there’s not as much to gain there anyway.

__call__(self: pyrosetta.rosetta.core.optimization.SingleResidueMultifunc, vars: pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::SingleResidueMultifunc::operator()(const class utility::vector1<double, class std::allocator<double> > &) const –> double

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: pyrosetta.rosetta.core.optimization.SingleResidueMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: int, arg2: pyrosetta.rosetta.core.optimization.MinimizerMap, arg3: pyrosetta.rosetta.core.scoring.ScoreFunction, arg4: utility::graph::Graph) -> None

doc

  1. __init__(self: pyrosetta.rosetta.core.optimization.SingleResidueMultifunc, arg0: pyrosetta.rosetta.core.pose.Pose, arg1: int, arg2: pyrosetta.rosetta.core.optimization.MinimizerMap, arg3: pyrosetta.rosetta.core.scoring.ScoreFunction, arg4: utility::graph::Graph, arg5: bool) -> None

doc

  1. __init__(self: pyrosetta.rosetta.core.optimization.SingleResidueMultifunc, pose_in: pyrosetta.rosetta.core.pose.Pose, rsd_id_in: int, min_map_in: pyrosetta.rosetta.core.optimization.MinimizerMap, scorefxn_in: pyrosetta.rosetta.core.scoring.ScoreFunction, packer_neighbor_graph_in: utility::graph::Graph, deriv_check_in: bool, deriv_check_verbose_in: bool) -> None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

abort_min(self: pyrosetta.rosetta.core.optimization.Multifunc, : pyrosetta.rosetta.utility.vector1_double) → bool
Christophe added the following to allow premature end of minimization
If you want to abort the minimizer under specific circonstances overload this function and return true if you want to stop, false if you want to continue. FOR THE MOMENT, ONLY IN DFPMIN!

C++: core::optimization::Multifunc::abort_min(const class utility::vector1<double, class std::allocator<double> > &) const –> bool

dfunc(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::AtomTreeMultifunc::dfunc(const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) const –> void

dump(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, vars: pyrosetta.rosetta.utility.vector1_double, vars2: pyrosetta.rosetta.utility.vector1_double) → None

Error state reached – derivative does not match gradient

C++: core::optimization::AtomTreeMultifunc::dump(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) const –> void

set_deriv_check_result(self: pyrosetta.rosetta.core.optimization.AtomTreeMultifunc, deriv_check_result: core::optimization::NumericalDerivCheckResult) → None

C++: core::optimization::AtomTreeMultifunc::set_deriv_check_result(class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>) –> void

class pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization

Bases: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm

StrongWolfe(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization, init_step: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → float

C++: core::optimization::StrongWolfeLineMinimization::StrongWolfe(double, class core::optimization::func_1d &) –> double

__call__(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization, curr_pos: pyrosetta.rosetta.utility.vector1_double, curr_dir: pyrosetta.rosetta.utility.vector1_double) → float

C++: core::optimization::StrongWolfeLineMinimization::operator()(class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> double

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization, score_fxn: pyrosetta.rosetta.core.optimization.Multifunc, nonmonotone: bool, dim: int) → None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

cubic_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::cubic_interpolation(double, double, double, double, double, double) –> double

fetch_stored_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::LineMinimizationAlgorithm::fetch_stored_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void

nonmonotone(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) → bool

C++: core::optimization::LineMinimizationAlgorithm::nonmonotone() –> bool

provide_stored_derivatives(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization) → bool

C++: core::optimization::StrongWolfeLineMinimization::provide_stored_derivatives() –> bool

quadratic_deriv_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::quadratic_deriv_interpolation(double, double, double, double, double, double) –> double

quadratic_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, func1: float, deriv1: float, point2: float, func2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::quadratic_interpolation(double, double, double, double, double) –> double

secant_interpolation(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, point1: float, deriv1: float, point2: float, deriv2: float) → float

C++: core::optimization::LineMinimizationAlgorithm::secant_interpolation(double, double, double, double) –> double

silent(*args, **kwargs)

Overloaded function.

  1. silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm) -> bool

C++: core::optimization::LineMinimizationAlgorithm::silent() –> bool

  1. silent(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, s_in: bool) -> None

C++: core::optimization::LineMinimizationAlgorithm::silent(bool) –> void

store_current_derivatives(self: pyrosetta.rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::LineMinimizationAlgorithm::store_current_derivatives(class utility::vector1<double, class std::allocator<double> > &) –> void

zoom(self: pyrosetta.rosetta.core.optimization.StrongWolfeLineMinimization, alpha_low: float, func_low: float, deriv_low: float, alpha_high: float, func_high: float, deriv_high: float, func_zero: float, deriv_zero: float, func_return: float, func_eval: pyrosetta.rosetta.core.optimization.func_1d) → float

C++: core::optimization::StrongWolfeLineMinimization::zoom(double, double, double, double, double, double, double, double, double &, class core::optimization::func_1d &) –> double

pyrosetta.rosetta.core.optimization.atom_tree_dfunc(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.MinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::atom_tree_dfunc(class core::pose::Pose &, class core::optimization::MinimizerMap &, const class core::scoring::ScoreFunction &, const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> void

pyrosetta.rosetta.core.optimization.atom_tree_get_atompairE_deriv(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.MinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction) → None

C++: core::optimization::atom_tree_get_atompairE_deriv(class core::pose::Pose &, class core::optimization::MinimizerMap &, const class core::scoring::ScoreFunction &) –> void

pyrosetta.rosetta.core.optimization.cart_numerical_derivative_check(min_map: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, func: pyrosetta.rosetta.core.optimization.CartesianMultifunc, start_vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double, deriv_check_result: pyrosetta.rosetta.core.optimization.NumericalDerivCheckResult, verbose: bool) → None

C++: core::optimization::cart_numerical_derivative_check(const class core::optimization::CartesianMinimizerMap &, const class core::optimization::CartesianMultifunc &, const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &, class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>, const bool) –> void

pyrosetta.rosetta.core.optimization.cartesian_collect_atompairE_deriv(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, dE_dvars: pyrosetta.rosetta.utility.vector1_double, scale: float) → None

C++: core::optimization::cartesian_collect_atompairE_deriv(class core::pose::Pose &, class core::optimization::CartesianMinimizerMap &, const class core::scoring::ScoreFunction &, class utility::vector1<double, class std::allocator<double> > &, double) –> void

pyrosetta.rosetta.core.optimization.cartesian_collect_torsional_deriv(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, dE_dvars: pyrosetta.rosetta.utility.vector1_double, scale: float) → None

C++: core::optimization::cartesian_collect_torsional_deriv(class core::pose::Pose &, class core::optimization::CartesianMinimizerMap &, const class core::scoring::ScoreFunction &, class utility::vector1<double, class std::allocator<double> > &, double) –> void

pyrosetta.rosetta.core.optimization.cartesian_dfunc(pose: pyrosetta.rosetta.core.pose.Pose, min_map: pyrosetta.rosetta.core.optimization.CartesianMinimizerMap, scorefxn: pyrosetta.rosetta.core.scoring.ScoreFunction, vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double) → None

C++: core::optimization::cartesian_dfunc(class core::pose::Pose &, class core::optimization::CartesianMinimizerMap &, const class core::scoring::ScoreFunction &, const class utility::vector1<double, class std::allocator<double> > &, class utility::vector1<double, class std::allocator<double> > &) –> void

pyrosetta.rosetta.core.optimization.numerical_derivative_check(min_map: pyrosetta.rosetta.core.optimization.MinimizerMap, func: pyrosetta.rosetta.core.optimization.Multifunc, start_vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double, deriv_check_result: pyrosetta.rosetta.core.optimization.NumericalDerivCheckResult, verbose: bool) → None

C++: core::optimization::numerical_derivative_check(const class core::optimization::MinimizerMap &, const class core::optimization::Multifunc &, const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &, class std::shared_ptr<class core::optimization::NumericalDerivCheckResult>, const bool) –> void

pyrosetta.rosetta.core.optimization.simple_numeric_deriv_check(*args, **kwargs)

Overloaded function.

  1. simple_numeric_deriv_check(func: pyrosetta.rosetta.core.optimization.Multifunc, start_vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double, send_to_stdout: bool, verbose: bool) -> pyrosetta.rosetta.core.optimization.SimpleDerivCheckResult
  2. simple_numeric_deriv_check(func: pyrosetta.rosetta.core.optimization.Multifunc, start_vars: pyrosetta.rosetta.utility.vector1_double, dE_dvars: pyrosetta.rosetta.utility.vector1_double, send_to_stdout: bool, verbose: bool, nsteps: int) -> pyrosetta.rosetta.core.optimization.SimpleDerivCheckResult

Numeric deriv check for Multifuncs other than the AtomTreeMultifunc.

C++: core::optimization::simple_numeric_deriv_check(const class core::optimization::Multifunc &, const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &, bool, bool, unsigned long) –> class core::optimization::SimpleDerivCheckResult

pyrosetta.rosetta.core.optimization.torsional_derivative_from_cartesian_derivatives(atom: pyrosetta.rosetta.core.kinematics.tree.Atom, dof_node: pyrosetta.rosetta.core.optimization.DOF_Node, dof_deriv: float, torsion_scale_factor: float) → float

C++: core::optimization::torsional_derivative_from_cartesian_derivatives(const class core::kinematics::tree::Atom &, const class core::optimization::DOF_Node &, double, double) –> double