metrics¶
Bindings for core::scoring::epr_deer::metrics namespace
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERChiSqMethod¶
Bases:
DEERDistanceDistribution
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERChiSqMethod, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERChiSqMethod) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERChiSqMethod ¶
C++: core::scoring::epr_deer::metrics::DEERChiSqMethod::operator=(const class core::scoring::epr_deer::metrics::DEERChiSqMethod &) –> class core::scoring::epr_deer::metrics::DEERChiSqMethod &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bb(*args, **kwargs)¶
Overloaded function.
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use confidence bands
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb(const bool &) –> void
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether backbone expansion is being used
Whether backbone expansion is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb() const –> bool
- best_fit(*args, **kwargs)¶
Overloaded function.
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the line of best fit
Best fit of DEER distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the best fit of the distance distribution
The best fit of the distance distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- bounds(*args, **kwargs)¶
Overloaded function.
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether confidence bands will be used when calculating score
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds(const bool &) –> void
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether confidence bands are being used
Whether confidence bands are being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds() const –> bool
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- get_prs(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, bin: int) pyrosetta.rosetta.utility.vector1_double ¶
Get range of possible P(r) values for experimental distribution
Value of r
Vector of P(r) for Bayesian scoring with confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::get_prs(const unsigned long &) const –> class utility::vector1<double, class std::allocator<double> >
- get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERChiSqMethod, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) float ¶
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
C++: core::scoring::epr_deer::metrics::DEERChiSqMethod::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- integral(*args, **kwargs)¶
Overloaded function.
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the integral
Whether to compute the integral
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral(const bool &) –> void
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of the integral is being used
Whether calculation of the integral is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral() const –> bool
- lower_bound(*args, **kwargs)¶
Overloaded function.
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the lower bound/confidence band for the distance distribution
Lower bound or confidence band. Note: Can be negative!
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the lower bound/confidence band for the distribution
The lower bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- reverse(*args, **kwargs)¶
Overloaded function.
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the reverse metric
Whether to compute the reverse metric
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse(const bool &) –> void
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether the reverse metric is being used
Whether the reverse metric is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse() const –> bool
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- singleval(*args, **kwargs)¶
Overloaded function.
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use a single distance
Whether to use a single distance
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval(const bool &) –> void
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of a single distance is being used
Whether calculation of a single distance is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval() const –> bool
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- upper_bound(*args, **kwargs)¶
Overloaded function.
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the upper bound/confidence band for the distance distribution
Lower bound or confidence band.
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the upper bound/confidence band for the distribution
The upper bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData¶
Bases:
pybind11_object
Base class
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData ¶
C++: core::scoring::epr_deer::metrics::DEERData::operator=(const class core::scoring::epr_deer::metrics::DEERData &) –> class core::scoring::epr_deer::metrics::DEERData &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- get_score(*args, **kwargs)¶
Overloaded function.
get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, set_score: bool) -> float
Function to evaluate score given a distribution
Simulated DEER distribution
Boolean to save score or not
Freshly computed score
C++: core::scoring::epr_deer::metrics::DEERData::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const bool &) –> double
get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> float
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
C++: core::scoring::epr_deer::metrics::DEERData::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData¶
Bases:
DEERData
Derived class that stores DEER decay data
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData ¶
C++: core::scoring::epr_deer::metrics::DEERDecayData::operator=(const class core::scoring::epr_deer::metrics::DEERDecayData &) –> class core::scoring::epr_deer::metrics::DEERDecayData &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bckg(*args, **kwargs)¶
Overloaded function.
bckg(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData) -> str
Returns background type
Intermolecular coupling background type
C++: core::scoring::epr_deer::metrics::DEERDecayData::bckg() const –> std::string
bckg(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, val: str) -> None
Sets background type
Type of intermolecular coupling background
C++: core::scoring::epr_deer::metrics::DEERDecayData::bckg(const std::string &) –> void
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- factory(*args, **kwargs)¶
Overloaded function.
factory(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData) -> pyrosetta.rosetta.core.scoring.epr_deer.Simulated4PDEERTraceFactory
Returns DEER trace factory object
Factory object
C++: core::scoring::epr_deer::metrics::DEERDecayData::factory() –> class core::scoring::epr_deer::Simulated4PDEERTraceFactory &
factory(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, val: pyrosetta.rosetta.core.scoring.epr_deer.Simulated4PDEERTraceFactory) -> None
Sets DEER trace factory object
Factory object
C++: core::scoring::epr_deer::metrics::DEERDecayData::factory(const class core::scoring::epr_deer::Simulated4PDEERTraceFactory &) –> void
- fit_stdev(*args, **kwargs)¶
Overloaded function.
fit_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData) -> bool
Returns whether standard deviation is a fitting parameter
Boolean
C++: core::scoring::epr_deer::metrics::DEERDecayData::fit_stdev() const –> const bool &
fit_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, val: bool) -> None
Sets if standard deviation is varied as a parameter
Boolean
C++: core::scoring::epr_deer::metrics::DEERDecayData::fit_stdev(const bool &) –> void
- get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) float ¶
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
- A DEER trace is calculated from the simulated histogram.
For details, please read del Alamo Biophysical Journal 2020. The score is the average sum-of-squares residuals between the two. Note that there is a slight noise-dependence to this; noisier data will always return higher scores.
C++: core::scoring::epr_deer::metrics::DEERDecayData::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- init_factory(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, trace: pyrosetta.rosetta.utility.vector1_double, time_pts: pyrosetta.rosetta.utility.vector1_double) None ¶
Initialize DEER factory object
Experimental DEER trace
Time points corresponding to DEER trace
C++: core::scoring::epr_deer::metrics::DEERDecayData::init_factory(const class utility::vector1<double, class std::allocator<double> > &, const class utility::vector1<double, class std::allocator<double> > &) –> void
- max_dist(*args, **kwargs)¶
Overloaded function.
max_dist(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData) -> int
Returns maximum distance for kernel calculation
Maximum distance for kernel calculation
C++: core::scoring::epr_deer::metrics::DEERDecayData::max_dist() const –> unsigned long
max_dist(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, val: int) -> None
Sets maximum distance for kernel calculation
Maximum distance to set
C++: core::scoring::epr_deer::metrics::DEERDecayData::max_dist(const unsigned long &) –> void
- noise(*args, **kwargs)¶
Overloaded function.
noise(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData) -> float
Returns the noise from the imaginary component
Noise level
C++: core::scoring::epr_deer::metrics::DEERDecayData::noise() const –> const double &
noise(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, val: float) -> None
Sets the noise from the imaginary component
Noise level
C++: core::scoring::epr_deer::metrics::DEERDecayData::noise(const double &) –> void
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- sum_of_squares(*args, **kwargs)¶
Overloaded function.
sum_of_squares(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, sim_trace: pyrosetta.rosetta.utility.vector1_double) -> float
sum_of_squares(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDecayData, sim_trace: pyrosetta.rosetta.utility.vector1_double, normalize: bool) -> float
Calculate sum of squares of simulated DEER trace
Simulated DEER trace
Reference DEER trace; experimental by default
Normalize by number of time points; recommended
Sum of squared residuals
C++: core::scoring::epr_deer::metrics::DEERDecayData::sum_of_squares(const class utility::vector1<double, class std::allocator<double> > &, const bool &) const –> double
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds¶
Bases:
DEERData
Derived class for storing the data as a bounded function.
- Contains the upper and lower bounds, as well as steepness.
If the average simulated distance falls within these bounds the score is zero If the average falls outside, it is evaluated via the steepness For example: ( ( lb - d ) / s ) ^2 OR ( ( d - ub ) / s ) ^2 lb: Lower bound ub: Upper bound d: Avg distance s: Steepness
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds ¶
C++: core::scoring::epr_deer::metrics::DEERDistanceBounds::operator=(const class core::scoring::epr_deer::metrics::DEERDistanceBounds &) –> class core::scoring::epr_deer::metrics::DEERDistanceBounds &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- bounds(*args, **kwargs)¶
Overloaded function.
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds) -> Tuple[float, float]
Returns the lower and upper distance bounds
Pair of lower and upper bounds
C++: core::scoring::epr_deer::metrics::DEERDistanceBounds::bounds() const –> struct std::pair<double, double>
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds, lo: float, hi: float) -> None
Sets the lower and upper bounds
Lower bound
Upper bound
C++: core::scoring::epr_deer::metrics::DEERDistanceBounds::bounds(const double &, const double &) –> void
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) float ¶
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
C++: core::scoring::epr_deer::metrics::DEERDistanceBounds::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- step(*args, **kwargs)¶
Overloaded function.
step(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds) -> float
Returns the step / steepness of the scoring function
Steepness value
C++: core::scoring::epr_deer::metrics::DEERDistanceBounds::step() const –> const double &
step(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceBounds, step: float) -> None
Sets the step / steepness
Step
C++: core::scoring::epr_deer::metrics::DEERDistanceBounds::step(const double &) –> void
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution¶
Bases:
DEERData
Derived class that stores the entire distance distribution Score is evaluated using the cross-entropy of the simulated from the experimental
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution ¶
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::operator=(const class core::scoring::epr_deer::metrics::DEERDistanceDistribution &) –> class core::scoring::epr_deer::metrics::DEERDistanceDistribution &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bb(*args, **kwargs)¶
Overloaded function.
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use confidence bands
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb(const bool &) –> void
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether backbone expansion is being used
Whether backbone expansion is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb() const –> bool
- best_fit(*args, **kwargs)¶
Overloaded function.
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the line of best fit
Best fit of DEER distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the best fit of the distance distribution
The best fit of the distance distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- bounds(*args, **kwargs)¶
Overloaded function.
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether confidence bands will be used when calculating score
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds(const bool &) –> void
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether confidence bands are being used
Whether confidence bands are being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds() const –> bool
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- get_prs(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, bin: int) pyrosetta.rosetta.utility.vector1_double ¶
Get range of possible P(r) values for experimental distribution
Value of r
Vector of P(r) for Bayesian scoring with confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::get_prs(const unsigned long &) const –> class utility::vector1<double, class std::allocator<double> >
- get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) float ¶
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
- Cross-entropy corresponds to the negative log-likelihood that the
experimental distribution could have given rise to the simulated. This allows boltzmann weighting and/or Bayesian statistical inference from score Note that although confidence bands can be received as input, they are not currently used for this purpose. If you know an information-theoretic approach to using them, please contact me. I would live to incorporate that information here.
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- integral(*args, **kwargs)¶
Overloaded function.
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the integral
Whether to compute the integral
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral(const bool &) –> void
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of the integral is being used
Whether calculation of the integral is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral() const –> bool
- lower_bound(*args, **kwargs)¶
Overloaded function.
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the lower bound/confidence band for the distance distribution
Lower bound or confidence band. Note: Can be negative!
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the lower bound/confidence band for the distribution
The lower bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- reverse(*args, **kwargs)¶
Overloaded function.
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the reverse metric
Whether to compute the reverse metric
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse(const bool &) –> void
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether the reverse metric is being used
Whether the reverse metric is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse() const –> bool
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- singleval(*args, **kwargs)¶
Overloaded function.
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use a single distance
Whether to use a single distance
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval(const bool &) –> void
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of a single distance is being used
Whether calculation of a single distance is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval() const –> bool
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- upper_bound(*args, **kwargs)¶
Overloaded function.
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the upper bound/confidence band for the distance distribution
Lower bound or confidence band.
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the upper bound/confidence band for the distribution
The upper bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJSMethod¶
Bases:
DEERDistanceDistribution
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJSMethod, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJSMethod) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJSMethod ¶
C++: core::scoring::epr_deer::metrics::DEERJSMethod::operator=(const class core::scoring::epr_deer::metrics::DEERJSMethod &) –> class core::scoring::epr_deer::metrics::DEERJSMethod &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bb(*args, **kwargs)¶
Overloaded function.
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use confidence bands
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb(const bool &) –> void
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether backbone expansion is being used
Whether backbone expansion is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb() const –> bool
- best_fit(*args, **kwargs)¶
Overloaded function.
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the line of best fit
Best fit of DEER distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the best fit of the distance distribution
The best fit of the distance distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- bounds(*args, **kwargs)¶
Overloaded function.
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether confidence bands will be used when calculating score
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds(const bool &) –> void
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether confidence bands are being used
Whether confidence bands are being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds() const –> bool
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- get_prs(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, bin: int) pyrosetta.rosetta.utility.vector1_double ¶
Get range of possible P(r) values for experimental distribution
Value of r
Vector of P(r) for Bayesian scoring with confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::get_prs(const unsigned long &) const –> class utility::vector1<double, class std::allocator<double> >
- get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJSMethod, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) float ¶
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
C++: core::scoring::epr_deer::metrics::DEERJSMethod::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- integral(*args, **kwargs)¶
Overloaded function.
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the integral
Whether to compute the integral
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral(const bool &) –> void
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of the integral is being used
Whether calculation of the integral is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral() const –> bool
- lower_bound(*args, **kwargs)¶
Overloaded function.
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the lower bound/confidence band for the distance distribution
Lower bound or confidence band. Note: Can be negative!
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the lower bound/confidence band for the distribution
The lower bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- reverse(*args, **kwargs)¶
Overloaded function.
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the reverse metric
Whether to compute the reverse metric
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse(const bool &) –> void
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether the reverse metric is being used
Whether the reverse metric is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse() const –> bool
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- singleval(*args, **kwargs)¶
Overloaded function.
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use a single distance
Whether to use a single distance
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval(const bool &) –> void
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of a single distance is being used
Whether calculation of a single distance is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval() const –> bool
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- upper_bound(*args, **kwargs)¶
Overloaded function.
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the upper bound/confidence band for the distance distribution
Lower bound or confidence band.
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the upper bound/confidence band for the distribution
The upper bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJaccardMethod¶
Bases:
DEERDistanceDistribution
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJaccardMethod, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJaccardMethod) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJaccardMethod ¶
C++: core::scoring::epr_deer::metrics::DEERJaccardMethod::operator=(const class core::scoring::epr_deer::metrics::DEERJaccardMethod &) –> class core::scoring::epr_deer::metrics::DEERJaccardMethod &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bb(*args, **kwargs)¶
Overloaded function.
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use confidence bands
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb(const bool &) –> void
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether backbone expansion is being used
Whether backbone expansion is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb() const –> bool
- best_fit(*args, **kwargs)¶
Overloaded function.
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the line of best fit
Best fit of DEER distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the best fit of the distance distribution
The best fit of the distance distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- bounds(*args, **kwargs)¶
Overloaded function.
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether confidence bands will be used when calculating score
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds(const bool &) –> void
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether confidence bands are being used
Whether confidence bands are being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds() const –> bool
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- get_prs(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, bin: int) pyrosetta.rosetta.utility.vector1_double ¶
Get range of possible P(r) values for experimental distribution
Value of r
Vector of P(r) for Bayesian scoring with confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::get_prs(const unsigned long &) const –> class utility::vector1<double, class std::allocator<double> >
- get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERJaccardMethod, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) float ¶
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
C++: core::scoring::epr_deer::metrics::DEERJaccardMethod::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- integral(*args, **kwargs)¶
Overloaded function.
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the integral
Whether to compute the integral
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral(const bool &) –> void
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of the integral is being used
Whether calculation of the integral is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral() const –> bool
- lower_bound(*args, **kwargs)¶
Overloaded function.
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the lower bound/confidence band for the distance distribution
Lower bound or confidence band. Note: Can be negative!
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the lower bound/confidence band for the distribution
The lower bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- reverse(*args, **kwargs)¶
Overloaded function.
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the reverse metric
Whether to compute the reverse metric
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse(const bool &) –> void
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether the reverse metric is being used
Whether the reverse metric is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse() const –> bool
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- singleval(*args, **kwargs)¶
Overloaded function.
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use a single distance
Whether to use a single distance
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval(const bool &) –> void
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of a single distance is being used
Whether calculation of a single distance is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval() const –> bool
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- upper_bound(*args, **kwargs)¶
Overloaded function.
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the upper bound/confidence band for the distance distribution
Lower bound or confidence band.
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the upper bound/confidence band for the distribution
The upper bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERMiscMethod¶
Bases:
DEERDistanceDistribution
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERMiscMethod, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERMiscMethod) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERMiscMethod ¶
C++: core::scoring::epr_deer::metrics::DEERMiscMethod::operator=(const class core::scoring::epr_deer::metrics::DEERMiscMethod &) –> class core::scoring::epr_deer::metrics::DEERMiscMethod &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bb(*args, **kwargs)¶
Overloaded function.
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use confidence bands
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb(const bool &) –> void
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether backbone expansion is being used
Whether backbone expansion is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb() const –> bool
- best_fit(*args, **kwargs)¶
Overloaded function.
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the line of best fit
Best fit of DEER distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the best fit of the distance distribution
The best fit of the distance distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- bounds(*args, **kwargs)¶
Overloaded function.
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether confidence bands will be used when calculating score
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds(const bool &) –> void
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether confidence bands are being used
Whether confidence bands are being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds() const –> bool
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- get_prs(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, bin: int) pyrosetta.rosetta.utility.vector1_double ¶
Get range of possible P(r) values for experimental distribution
Value of r
Vector of P(r) for Bayesian scoring with confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::get_prs(const unsigned long &) const –> class utility::vector1<double, class std::allocator<double> >
- get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERMiscMethod, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) float ¶
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
C++: core::scoring::epr_deer::metrics::DEERMiscMethod::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- integral(*args, **kwargs)¶
Overloaded function.
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the integral
Whether to compute the integral
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral(const bool &) –> void
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of the integral is being used
Whether calculation of the integral is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral() const –> bool
- lower_bound(*args, **kwargs)¶
Overloaded function.
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the lower bound/confidence band for the distance distribution
Lower bound or confidence band. Note: Can be negative!
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the lower bound/confidence band for the distribution
The lower bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- mode(*args, **kwargs)¶
Overloaded function.
mode(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERMiscMethod, val: str) -> None
Set mode being used to score
Mode with which to score
C++: core::scoring::epr_deer::metrics::DEERMiscMethod::mode(const std::string &) –> void
mode(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERMiscMethod) -> str
Return the mode being used to score
Mode being used to score
C++: core::scoring::epr_deer::metrics::DEERMiscMethod::mode() const –> std::string
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- reverse(*args, **kwargs)¶
Overloaded function.
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the reverse metric
Whether to compute the reverse metric
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse(const bool &) –> void
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether the reverse metric is being used
Whether the reverse metric is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse() const –> bool
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- singleval(*args, **kwargs)¶
Overloaded function.
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use a single distance
Whether to use a single distance
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval(const bool &) –> void
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of a single distance is being used
Whether calculation of a single distance is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval() const –> bool
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- upper_bound(*args, **kwargs)¶
Overloaded function.
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the upper bound/confidence band for the distance distribution
Lower bound or confidence band.
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the upper bound/confidence band for the distribution
The upper bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- class pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEEROverlapMethod¶
Bases:
DEERDistanceDistribution
- append_dist_id(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, dist_id: int, dist: float) None ¶
Append distance ID to custom distance map
Unique distance ID used in distance map
Distance value in angstroms
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::append_dist_id(unsigned long, double) –> void
- assign(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEEROverlapMethod, : pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEEROverlapMethod) pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEEROverlapMethod ¶
C++: core::scoring::epr_deer::metrics::DEEROverlapMethod::operator=(const class core::scoring::epr_deer::metrics::DEEROverlapMethod &) –> class core::scoring::epr_deer::metrics::DEEROverlapMethod &
- avg_stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, histogram: pyrosetta.rosetta.std.map_unsigned_long_double) pyrosetta.rosetta.utility.vector1_double ¶
Computes average distance of distribution for local functions
Distance distribution
Vector with two items: Average and Standard Deviation
C++: core::scoring::epr_deer::metrics::DEERData::avg_stdev(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> class utility::vector1<double, class std::allocator<double> >
- bb(*args, **kwargs)¶
Overloaded function.
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use confidence bands
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb(const bool &) –> void
bb(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether backbone expansion is being used
Whether backbone expansion is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bb() const –> bool
- best_fit(*args, **kwargs)¶
Overloaded function.
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the line of best fit
Best fit of DEER distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
best_fit(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the best fit of the distance distribution
The best fit of the distance distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::best_fit() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- bins_per_a(*args, **kwargs)¶
Overloaded function.
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> int
Returns bins per angstrom for distribution (default: 2)
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a() const –> const unsigned long &
bins_per_a(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: int) -> None
Set the number of bins per angstrom for the data set.
Bins per angstrom
C++: core::scoring::epr_deer::metrics::DEERData::bins_per_a(const unsigned long &) –> void
- bounds(*args, **kwargs)¶
Overloaded function.
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether confidence bands will be used when calculating score
Whether to use confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds(const bool &) –> void
bounds(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether confidence bands are being used
Whether confidence bands are being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::bounds() const –> bool
- convolute(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, distr: pyrosetta.rosetta.std.map_unsigned_long_double, std: float) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Convolute a distribution with a Gaussian of a specific width
DEER Distribution
Width of Gaussian (mean=0)
New distribution
C++: core::scoring::epr_deer::metrics::DEERData::convolute(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const double &) const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- dist_map(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) pyrosetta.rosetta.std.map_unsigned_long_double ¶
Returns the map of distance values used for custom distributions
Map of values (indeces to distances in Angstroms)
Only works when bins_per_a set to zero!
C++: core::scoring::epr_deer::metrics::DEERData::dist_map() const –> class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > >
- get_prs(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, bin: int) pyrosetta.rosetta.utility.vector1_double ¶
Get range of possible P(r) values for experimental distribution
Value of r
Vector of P(r) for Bayesian scoring with confidence bands
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::get_prs(const unsigned long &) const –> class utility::vector1<double, class std::allocator<double> >
- get_score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEEROverlapMethod, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) float ¶
Virtual function to evaluate score given a distribution
Simulated DEER distribution
Freshly computed score
C++: core::scoring::epr_deer::metrics::DEEROverlapMethod::get_score(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> double
- integral(*args, **kwargs)¶
Overloaded function.
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the integral
Whether to compute the integral
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral(const bool &) –> void
integral(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of the integral is being used
Whether calculation of the integral is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::integral() const –> bool
- lower_bound(*args, **kwargs)¶
Overloaded function.
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the lower bound/confidence band for the distance distribution
Lower bound or confidence band. Note: Can be negative!
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
lower_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the lower bound/confidence band for the distribution
The lower bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::lower_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &
- print_histogram(*args, **kwargs)¶
Overloaded function.
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
print_histogram(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, sim_histr: pyrosetta.rosetta.std.map_unsigned_long_double, pose_name: str) -> None
Print the simulated distance distribution.
Simulated distance distribution
Name of the pose
C++: core::scoring::epr_deer::metrics::DEERData::print_histogram(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &, const std::string &) const –> void
- residues(*args, **kwargs)¶
Overloaded function.
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t
Returns the residues involved in this data set.
Vector of residues (ID and spin label type)
- Residues are saved with two parameters: the residue ID, and
the label type. Label type is set to “DEFAULT” by default. Other options include DEFAULT_FAST and CUSTOM
C++: core::scoring::epr_deer::metrics::DEERData::residues() const –> const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &
residues(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: pyrosetta.rosetta.utility.vector1_std_pair_unsigned_long_std_string_t) -> None
Sets residue for data set
Vector of residues (index and spin label type)
C++: core::scoring::epr_deer::metrics::DEERData::residues(const class utility::vector1<struct std::pair<unsigned long, std::string >, class std::allocator<struct std::pair<unsigned long, std::string > > > &) –> void
- reverse(*args, **kwargs)¶
Overloaded function.
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to compute the reverse metric
Whether to compute the reverse metric
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse(const bool &) –> void
reverse(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether the reverse metric is being used
Whether the reverse metric is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::reverse() const –> bool
- score(*args, **kwargs)¶
Overloaded function.
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the last computed score
Score (0.0 if never set)
C++: core::scoring::epr_deer::metrics::DEERData::score() const –> double
score(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the score of the data set
Score to save
C++: core::scoring::epr_deer::metrics::DEERData::score(const double &) –> void
- singleval(*args, **kwargs)¶
Overloaded function.
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: bool) -> None
Set whether to use a single distance
Whether to use a single distance
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval(const bool &) –> void
singleval(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> bool
Returns whether calculation of a single distance is being used
Whether calculation of a single distance is being used
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::singleval() const –> bool
- stdev(*args, **kwargs)¶
Overloaded function.
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData) -> float
Returns the standard deviation of the distributions to generate
deviation (in angstroms)
Function has a failsafe to avoid returning a nonzero value
C++: core::scoring::epr_deer::metrics::DEERData::stdev() const –> double
stdev(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERData, val: float) -> None
Set the standard deviation of the distributions to generate
Set the standard deviation to this value
C++: core::scoring::epr_deer::metrics::DEERData::stdev(const double &) –> void
- upper_bound(*args, **kwargs)¶
Overloaded function.
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution, val: pyrosetta.rosetta.std.map_unsigned_long_double) -> None
Sets the upper bound/confidence band for the distance distribution
Lower bound or confidence band.
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound(const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &) –> void
upper_bound(self: pyrosetta.rosetta.core.scoring.epr_deer.metrics.DEERDistanceDistribution) -> pyrosetta.rosetta.std.map_unsigned_long_double
Returns the upper bound/confidence band for the distribution
The upper bound/confidence band for the distribution
C++: core::scoring::epr_deer::metrics::DEERDistanceDistribution::upper_bound() const –> const class std::map<unsigned long, double, struct std::less<unsigned long>, class std::allocator<struct std::pair<const unsigned long, double> > > &