Home | Trees | Indices | Help |
---|
|
|
|||
CompareKDPoints numeric/kdtree/KDPoint.hh:110 |
|||
CompareKDPointsAP | |||
CompareKDPointsCAP | |||
HyperRectangle numeric/kdtree/HyperRectangle.hh:26 |
|||
HyperRectangleAP | |||
HyperRectangleCAP | |||
KDNode numeric/kdtree/KDNode.hh:31 |
|||
KDNodeAP | |||
KDNodeCAP | |||
KDPoint numeric/kdtree/KDPoint.hh:26 |
|||
KDPointAP | |||
KDPointCAP | |||
KDPointList Class for keeping track of the closest N KDPoint objects by distance. |
|||
KDPointListAP | |||
KDPointListCAP | |||
KDPoint_MinDist numeric/kdtree/KDPointList.hh:26 |
|||
KDPoint_MinDistAP | |||
KDPoint_MinDistCAP | |||
KDTree numeric/kdtree/KDTree.hh:32 |
|||
KDTreeAP | |||
KDTreeCAP |
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
__package__ = None
|
|
construct_kd_tree( (object)points, (int)depth, (KDTree)tree) -> KDNode : Function for constructing a KDTree. Returns a KDNodeOP that represents the root of the tree. Points need to be sorted as the tree is being constructed, so the reference to the points is non-const. C++ signature : boost::shared_ptr<numeric::kdtree::KDNode> construct_kd_tree(utility::vector1<boost::shared_ptr<numeric::kdtree::KDPoint>, std::allocator<boost::shared_ptr<numeric::kdtree::KDPoint> > > {lvalue},unsigned long,numeric::kdtree::KDTree {lvalue}) |
get_percentile_bounds( (vec1_vec1_Real)points) -> HyperRectangle : numeric/kdtree/util.hh:85 C++ signature : boost::shared_ptr<numeric::kdtree::HyperRectangle> get_percentile_bounds(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > > {lvalue}) |
hr_intersects_hs( (HyperRectangle)hr, (vector1_Real)pt, (float)r) -> bool : returns true if the given hyper-rectangle intersects with the given hypersphere. C++ signature : bool hr_intersects_hs(numeric::kdtree::HyperRectangle,utility::vector1<double, std::allocator<double> >,double) |
is_legal_greater_than( (KDNode)current, (int)split_axis, (float)split_value) -> bool : numeric/kdtree/util.hh:125 C++ signature : bool is_legal_greater_than(boost::shared_ptr<numeric::kdtree::KDNode>,unsigned long,double) |
is_legal_kdtree_below_node( (KDNode)current) -> bool : numeric/kdtree/util.hh:129 C++ signature : bool is_legal_kdtree_below_node(boost::shared_ptr<numeric::kdtree::KDNode>) |
is_legal_less_than( (KDNode)current, (int)split_axis, (float)split_value) -> bool : numeric/kdtree/util.hh:119 C++ signature : bool is_legal_less_than(boost::shared_ptr<numeric::kdtree::KDNode>,unsigned long,double) |
make_points( (vec1_vec1_Real)points, (object)data) -> object : Makes a vector1 of KDPoints, associating the nth entry in data with the nth entry in points. C++ signature : utility::vector1<boost::shared_ptr<numeric::kdtree::KDPoint>, std::allocator<boost::shared_ptr<numeric::kdtree::KDPoint> > > make_points(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >,utility::vector1<boost::shared_ptr<utility::pointer::ReferenceCount>, std::allocator<boost::shared_ptr<utility::pointer::ReferenceCount> > >) make_points( (vec1_vec1_Real)points) -> object : Makes a vector of KDPoints. C++ signature : utility::vector1<boost::shared_ptr<numeric::kdtree::KDPoint>, std::allocator<boost::shared_ptr<numeric::kdtree::KDPoint> > > make_points(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >) |
nearest_neighbor( (KDNode)current, (vector1_Real)pt, (HyperRectangle)bounds, (float)max_dist_sq, (KDNode)nearest, (float)dist_sq) -> None : returns the nearest neighbor to the given point. Parameters are (in order): - current: the base of the tree - pt: the point that is being searched against the tree - bounds: hyper-rectangle in k-space that bounds all points in the tree - max_dist_sq: maximum squared distance that we care about. - nearest neighbor (returned by reference) - squared distance to the nearest neighbor C++ signature : void nearest_neighbor(boost::shared_ptr<numeric::kdtree::KDNode> {lvalue},utility::vector1<double, std::allocator<double> >,numeric::kdtree::HyperRectangle {lvalue},double,boost::shared_ptr<numeric::kdtree::KDNode> {lvalue},double {lvalue}) nearest_neighbor( (KDTree)tree, (vector1_Real)pt, (KDNode)nearest, (float)dist_sq) -> None : Searches the KDtree for the nearest neigbor to a given input point, returns nearest neighbor and distance-squared to nearest neigbor by reference. C++ signature : void nearest_neighbor(numeric::kdtree::KDTree {lvalue},utility::vector1<double, std::allocator<double> >,boost::shared_ptr<numeric::kdtree::KDNode> {lvalue},double {lvalue}) |
nearest_neighbors( (KDNode)current, (vector1_Real)pt, (HyperRectangle)bounds, (float)max_dist_sq, (KDPointList)neighbors) -> None : Recursive function definition for search for a list of the N nearest neighbors, where N is defined as a member variable of the KDPointList object. C++ signature : void nearest_neighbors(boost::shared_ptr<numeric::kdtree::KDNode> {lvalue},utility::vector1<double, std::allocator<double> >,numeric::kdtree::HyperRectangle {lvalue},double,numeric::kdtree::KDPointList {lvalue}) nearest_neighbors( (KDTree)tree, (vector1_Real)pt, (int)wanted, (float)max_dist_allowed) -> KDPointList : numeric/kdtree/nearest_neighbors.hh:48 C++ signature : numeric::kdtree::KDPointList nearest_neighbors(numeric::kdtree::KDTree {lvalue},utility::vector1<double, std::allocator<double> >,unsigned long,double) nearest_neighbors( (KDTree)tree, (vector1_Real)pt, (int)wanted) -> KDPointList : Returns a KDPointList of the N nearest neighbors from the KDTree to the given input point. C++ signature : numeric::kdtree::KDPointList nearest_neighbors(numeric::kdtree::KDTree {lvalue},utility::vector1<double, std::allocator<double> >,unsigned long) |
print_point( (OStream)out, (vector1_Real)point) -> None : numeric/kdtree/util.hh:81 C++ signature : void print_point(std::ostream {lvalue},utility::vector1<double, std::allocator<double> >) |
print_points( (OStream)out, (vec1_vec1_Real)points) -> None : numeric/kdtree/util.hh:76 C++ signature : void print_points(std::ostream {lvalue},utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >) |
print_tree( (OStream)out, (KDNode)current, (int)current_depth [, (int)width=3]) -> None : numeric/kdtree/util.hh:113 C++ signature : void print_tree(std::ostream {lvalue},boost::shared_ptr<numeric::kdtree::KDNode>,unsigned long [,unsigned long=3]) |
sq_vec_distance( (vector1_Real)vec1, (vector1_Real)vec2) -> float : distance metrics for real-valued points Returns the square of the Euclidean distance between the two points vec1 and vec2. C++ signature : double sq_vec_distance(utility::vector1<double, std::allocator<double> >,utility::vector1<double, std::allocator<double> >) |
transform_percentile( (vec1_vec1_Real)points, (HyperRectangle)bounds) -> None : numeric/kdtree/util.hh:61 C++ signature : void transform_percentile(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > > {lvalue},boost::shared_ptr<numeric::kdtree::HyperRectangle>) transform_percentile( (vec1_vec1_Real)points) -> None : distance metrics for real-valued points Transforms the list of points given into percentiles using a linear mapping from the input space to percentile-space for each variable. For each variable X in row R, replaces X with the quantity ( X - min(R) ) / ( max(R) - min(R) ). Runs in O(N) time. C++ signature : void transform_percentile(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > > {lvalue}) |
transform_percentile_single_pt( (vector1_Real)point, (HyperRectangle)bounds) -> None : numeric/kdtree/util.hh:66 C++ signature : void transform_percentile_single_pt(utility::vector1<double, std::allocator<double> > {lvalue},boost::shared_ptr<numeric::kdtree::HyperRectangle>) |
vec_distance( (vector1_Real)vec1, (vector1_Real)vec2) -> float : Returns the Euclidean distance between the two points vec1 and vec2. C++ signature : double vec_distance(utility::vector1<double, std::allocator<double> >,utility::vector1<double, std::allocator<double> >) |
Home | Trees | Indices | Help |
---|
Generated by Epydoc 3.0.1 on Sat Jun 6 00:10:52 2015 | http://epydoc.sourceforge.net |