| Home | Trees | Indices | Help |
|---|
|
|
|
|||
|
CompareKDPoints numeric/kdtree/KDPoint.hh:110 |
|||
| CompareKDPointsAP | |||
| CompareKDPointsCAP | |||
|
HyperRectangle numeric/kdtree/HyperRectangle.hh:26 |
|||
| HyperRectangleAP | |||
| HyperRectangleCAP | |||
|
KDNode numeric/kdtree/KDNode.hh:31 |
|||
| KDNodeAP | |||
| KDNodeCAP | |||
|
KDPoint numeric/kdtree/KDPoint.hh:26 |
|||
| KDPointAP | |||
| KDPointCAP | |||
|
KDPointList Class for keeping track of the closest N KDPoint objects by distance. |
|||
| KDPointListAP | |||
| KDPointListCAP | |||
|
KDPoint_MinDist numeric/kdtree/KDPointList.hh:26 |
|||
| KDPoint_MinDistAP | |||
| KDPoint_MinDistCAP | |||
|
KDTree numeric/kdtree/KDTree.hh:32 |
|||
| KDTreeAP | |||
| KDTreeCAP | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
__package__ = None
|
|||
|
|||
construct_kd_tree( (object)points, (int)depth, (KDTree)tree) -> KDNode :
Function for constructing a KDTree. Returns a KDNodeOP that
represents the root of the tree. Points need to be sorted as the
tree is being constructed, so the reference to the points is non-const.
C++ signature :
boost::shared_ptr<numeric::kdtree::KDNode> construct_kd_tree(utility::vector1<boost::shared_ptr<numeric::kdtree::KDPoint>, std::allocator<boost::shared_ptr<numeric::kdtree::KDPoint> > > {lvalue},unsigned long,numeric::kdtree::KDTree {lvalue})
|
get_percentile_bounds( (vec1_vec1_Real)points) -> HyperRectangle :
numeric/kdtree/util.hh:85
C++ signature :
boost::shared_ptr<numeric::kdtree::HyperRectangle> get_percentile_bounds(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > > {lvalue})
|
hr_intersects_hs( (HyperRectangle)hr, (vector1_Real)pt, (float)r) -> bool :
returns true if the given hyper-rectangle intersects with the given
hypersphere.
C++ signature :
bool hr_intersects_hs(numeric::kdtree::HyperRectangle,utility::vector1<double, std::allocator<double> >,double)
|
is_legal_greater_than( (KDNode)current, (int)split_axis, (float)split_value) -> bool :
numeric/kdtree/util.hh:125
C++ signature :
bool is_legal_greater_than(boost::shared_ptr<numeric::kdtree::KDNode>,unsigned long,double)
|
is_legal_kdtree_below_node( (KDNode)current) -> bool :
numeric/kdtree/util.hh:129
C++ signature :
bool is_legal_kdtree_below_node(boost::shared_ptr<numeric::kdtree::KDNode>)
|
is_legal_less_than( (KDNode)current, (int)split_axis, (float)split_value) -> bool :
numeric/kdtree/util.hh:119
C++ signature :
bool is_legal_less_than(boost::shared_ptr<numeric::kdtree::KDNode>,unsigned long,double)
|
make_points( (vec1_vec1_Real)points, (object)data) -> object :
Makes a vector1 of KDPoints, associating the nth entry in data
with the nth entry in points.
C++ signature :
utility::vector1<boost::shared_ptr<numeric::kdtree::KDPoint>, std::allocator<boost::shared_ptr<numeric::kdtree::KDPoint> > > make_points(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >,utility::vector1<boost::shared_ptr<utility::pointer::ReferenceCount>, std::allocator<boost::shared_ptr<utility::pointer::ReferenceCount> > >)
make_points( (vec1_vec1_Real)points) -> object :
Makes a vector of KDPoints.
C++ signature :
utility::vector1<boost::shared_ptr<numeric::kdtree::KDPoint>, std::allocator<boost::shared_ptr<numeric::kdtree::KDPoint> > > make_points(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >)
|
nearest_neighbor( (KDNode)current, (vector1_Real)pt, (HyperRectangle)bounds, (float)max_dist_sq, (KDNode)nearest, (float)dist_sq) -> None :
returns the nearest neighbor to the given point.
Parameters are (in order):
- current: the base of the tree
- pt: the point that is being searched against the tree
- bounds: hyper-rectangle in k-space that bounds all points in the tree
- max_dist_sq: maximum squared distance that we care about.
- nearest neighbor (returned by reference)
- squared distance to the nearest neighbor
C++ signature :
void nearest_neighbor(boost::shared_ptr<numeric::kdtree::KDNode> {lvalue},utility::vector1<double, std::allocator<double> >,numeric::kdtree::HyperRectangle {lvalue},double,boost::shared_ptr<numeric::kdtree::KDNode> {lvalue},double {lvalue})
nearest_neighbor( (KDTree)tree, (vector1_Real)pt, (KDNode)nearest, (float)dist_sq) -> None :
Searches the KDtree for the nearest neigbor to a given input point,
returns nearest neighbor and distance-squared to nearest neigbor by
reference.
C++ signature :
void nearest_neighbor(numeric::kdtree::KDTree {lvalue},utility::vector1<double, std::allocator<double> >,boost::shared_ptr<numeric::kdtree::KDNode> {lvalue},double {lvalue})
|
nearest_neighbors( (KDNode)current, (vector1_Real)pt, (HyperRectangle)bounds, (float)max_dist_sq, (KDPointList)neighbors) -> None :
Recursive function definition for search for a list of the N nearest
neighbors, where N is defined as a member variable of the KDPointList
object.
C++ signature :
void nearest_neighbors(boost::shared_ptr<numeric::kdtree::KDNode> {lvalue},utility::vector1<double, std::allocator<double> >,numeric::kdtree::HyperRectangle {lvalue},double,numeric::kdtree::KDPointList {lvalue})
nearest_neighbors( (KDTree)tree, (vector1_Real)pt, (int)wanted, (float)max_dist_allowed) -> KDPointList :
numeric/kdtree/nearest_neighbors.hh:48
C++ signature :
numeric::kdtree::KDPointList nearest_neighbors(numeric::kdtree::KDTree {lvalue},utility::vector1<double, std::allocator<double> >,unsigned long,double)
nearest_neighbors( (KDTree)tree, (vector1_Real)pt, (int)wanted) -> KDPointList :
Returns a KDPointList of the N nearest neighbors from the KDTree to
the given input point.
C++ signature :
numeric::kdtree::KDPointList nearest_neighbors(numeric::kdtree::KDTree {lvalue},utility::vector1<double, std::allocator<double> >,unsigned long)
|
print_point( (OStream)out, (vector1_Real)point) -> None :
numeric/kdtree/util.hh:81
C++ signature :
void print_point(std::ostream {lvalue},utility::vector1<double, std::allocator<double> >)
|
print_points( (OStream)out, (vec1_vec1_Real)points) -> None :
numeric/kdtree/util.hh:76
C++ signature :
void print_points(std::ostream {lvalue},utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >)
|
print_tree( (OStream)out, (KDNode)current, (int)current_depth [, (int)width=3]) -> None :
numeric/kdtree/util.hh:113
C++ signature :
void print_tree(std::ostream {lvalue},boost::shared_ptr<numeric::kdtree::KDNode>,unsigned long [,unsigned long=3])
|
sq_vec_distance( (vector1_Real)vec1, (vector1_Real)vec2) -> float :
distance metrics for real-valued points
Returns the square of the Euclidean distance between the two points
vec1 and vec2.
C++ signature :
double sq_vec_distance(utility::vector1<double, std::allocator<double> >,utility::vector1<double, std::allocator<double> >)
|
transform_percentile( (vec1_vec1_Real)points, (HyperRectangle)bounds) -> None :
numeric/kdtree/util.hh:61
C++ signature :
void transform_percentile(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > > {lvalue},boost::shared_ptr<numeric::kdtree::HyperRectangle>)
transform_percentile( (vec1_vec1_Real)points) -> None :
distance metrics for real-valued points
Transforms the list of points given into percentiles using
a linear mapping from the input space to percentile-space for each
variable.
For each variable X in row R, replaces X with the quantity
( X - min(R) ) / ( max(R) - min(R) ). Runs in O(N) time.
C++ signature :
void transform_percentile(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > > {lvalue})
|
transform_percentile_single_pt( (vector1_Real)point, (HyperRectangle)bounds) -> None :
numeric/kdtree/util.hh:66
C++ signature :
void transform_percentile_single_pt(utility::vector1<double, std::allocator<double> > {lvalue},boost::shared_ptr<numeric::kdtree::HyperRectangle>)
|
vec_distance( (vector1_Real)vec1, (vector1_Real)vec2) -> float :
Returns the Euclidean distance between the two points vec1 and vec2.
C++ signature :
double vec_distance(utility::vector1<double, std::allocator<double> >,utility::vector1<double, std::allocator<double> >)
|
| Home | Trees | Indices | Help |
|---|
| Generated by Epydoc 3.0.1 on Sat Jun 6 00:10:52 2015 | http://epydoc.sourceforge.net |