Package rosetta :: Package numeric :: Module _numeric_
[hide private]
[frames] | no frames]

Module _numeric_

Classes [hide private]
  AgglomerativeHierarchicalClusterer
numeric/agglomerative_hierarchical_clustering.hh:58
  AgglomerativeHierarchicalClustererAP
  AgglomerativeHierarchicalClustererCAP
  AverageLinkClusterer
numeric/agglomerative_hierarchical_clustering.hh:77
  AverageLinkClustererAP
  AverageLinkClustererCAP
  Calculator
numeric/Calculator.hh:32
  CalculatorAP
  CalculatorCAP
  ClusterOptions
numeric/agglomerative_hierarchical_clustering.hh:23
  ClusterOptionsAP
  ClusterOptionsCAP
  ClusteringTreeNode
numeric/ClusteringTreeNode.hh:31
  ClusteringTreeNodeAP
  ClusteringTreeNodeCAP
  CompleteLinkClusterer
numeric/agglomerative_hierarchical_clustering.hh:85
  CompleteLinkClustererAP
  CompleteLinkClustererCAP
  EulerAngles_Real
Euler angles 3-D orientation representation @remarks The three euler angles (in radians) that describing a rotation operation of a Z axis rotation by the angle phi (position 1), followed by an X axis rotation by the angle theta (position 3), followed by another Z axis rotation by the angle psi (position 2).
  EulerAngles_RealAP
  EulerAngles_RealCAP
  EulerAngles_double
Euler angles 3-D orientation representation @remarks The three euler angles (in radians) that describing a rotation operation of a Z axis rotation by the angle phi (position 1), followed by an X axis rotation by the angle theta (position 3), followed by another Z axis rotation by the angle psi (position 2).
  EulerAngles_doubleAP
  EulerAngles_doubleCAP
  EulerAngles_float
Euler angles 3-D orientation representation @remarks The three euler angles (in radians) that describing a rotation operation of a Z axis rotation by the angle phi (position 1), followed by an X axis rotation by the angle theta (position 3), followed by another Z axis rotation by the angle psi (position 2).
  EulerAngles_floatAP
  EulerAngles_floatCAP
  HomogeneousTransform_Double
numeric/HomogeneousTransform.hh:645
  HomogeneousTransform_DoubleAP
  HomogeneousTransform_DoubleCAP
  HomogeneousTransform_T_double_T
numeric/HomogeneousTransform.hh:35
  HomogeneousTransform_T_double_TAP
  HomogeneousTransform_T_double_TCAP
  IOTraits_T_double_T
Numerics input/output type traits double specialization
  IOTraits_T_double_TAP
  IOTraits_T_double_TCAP
  IOTraits_T_float_T
Numerics input/output type traits float Specialization
  IOTraits_T_float_TAP
  IOTraits_T_float_TCAP
  IOTraits_T_int_T
Numerics input/output type traits int specialization
  IOTraits_T_int_TAP
  IOTraits_T_int_TCAP
  IOTraits_T_long_double_T
Numerics input/output type traits long double specialization
  IOTraits_T_long_double_TAP
  IOTraits_T_long_double_TCAP
  IOTraits_T_long_int_T
: Numerics input/output type traits long int specialization
  IOTraits_T_long_int_TAP
  IOTraits_T_long_int_TCAP
  IOTraits_T_long_unsigned_int_T
Numerics input/output type traits unsigned long int specialization
  IOTraits_T_long_unsigned_int_TAP
  IOTraits_T_long_unsigned_int_TCAP
  IOTraits_T_short_int_T
Numerics input/output type traits short int specialization
  IOTraits_T_short_int_TAP
  IOTraits_T_short_int_TCAP
  IOTraits_T_short_unsigned_int_T
: Numerics input/output type traits unsigned short int specialization
  IOTraits_T_short_unsigned_int_TAP
  IOTraits_T_short_unsigned_int_TCAP
  IOTraits_T_unsigned_int_T
: Numerics input/output type traits unsigned int specialization
  IOTraits_T_unsigned_int_TAP
  IOTraits_T_unsigned_int_TCAP
  IntervalSet_Double
numeric/IntervalSet.hh:280
  IntervalSet_DoubleAP
  IntervalSet_DoubleCAP
  IntervalSet_T_double_T
numeric/IntervalSet.hh:31
  IntervalSet_T_double_TAP
  IntervalSet_T_double_TCAP
  MultiDimensionalHistogram
a class for accumulating a histogram of one or more numeric variables
  MultiDimensionalHistogramAP
  MultiDimensionalHistogramCAP
  NumericTraits_T_double_T
NumericTraits: Numeric type traits double specialization
  NumericTraits_T_double_TAP
  NumericTraits_T_double_TCAP
  NumericTraits_T_float_T
NumericTraits: Numeric type traits float specialization
  NumericTraits_T_float_TAP
  NumericTraits_T_float_TCAP
  NumericTraits_T_long_double_T
NumericTraits: Numeric type traits long double specialization
  NumericTraits_T_long_double_TAP
  NumericTraits_T_long_double_TCAP
  Polynomial_1d
numeric/polynomial.hh:33
  Polynomial_1dAP
  Polynomial_1dCAP
  Py_xyzTransform_double
numeric/xyzTransform.hh:600
  Py_xyzTransform_doubleAP
  Py_xyzTransform_doubleCAP
  Quaternion_Real
  Quaternion_double
  Quaternion_float
  RocCurve
numeric/roc_curve.hh:58
  RocCurveAP
  RocCurveCAP
  RocPoint
numeric/roc_curve.hh:31
  RocPointAP
  RocPointCAP
  RocStatus
numeric/roc_curve.fwd.hh:21
  SingleLinkClusterer
numeric/agglomerative_hierarchical_clustering.hh:69
  SingleLinkClustererAP
  SingleLinkClustererCAP
  UniformRotationSampler
numeric/UniformRotationSampler.hh:124
  UniformRotationSamplerAP
  UniformRotationSamplerCAP
  XformHash32
numeric/xyzTransform.hh:498
  XformHash32AP
  XformHash32CAP
  XformHash64
numeric/xyzTransform.hh:504
  XformHash64AP
  XformHash64CAP
  Xforms
numeric/xyzTransform.hh:512
  XformsAP
  XformsCAP
  __CPP_AgglomerativeHierarchicalClusterer__
  __CPP_AverageLinkClusterer__
  __CPP_CompleteLinkClusterer__
  __CPP_SingleLinkClusterer__
  urs_Quat
numeric/UniformRotationSampler.hh:67
  urs_QuatAP
  urs_QuatCAP
  vector1_numeric_geometry_hashing_Ball
  xyzMatrix_Real
  xyzMatrix_SSize
  xyzMatrix_Size
  xyzMatrix_T_float_T
numeric/xyzMatrix.fwd.hh:29
  xyzMatrix_T_float_TAP
  xyzMatrix_T_float_TCAP
  xyzMatrix_double
  xyzMatrix_float
  xyzTransform_T_double_T
numeric/xyzTransform.fwd.hh:29
  xyzTransform_T_double_TAP
  xyzTransform_T_double_TCAP
  xyzTransform_T_float_T
numeric/xyzTransform.fwd.hh:29
  xyzTransform_T_float_TAP
  xyzTransform_T_float_TCAP
  xyzTriple_Real
  xyzTriple_SSize
  xyzTriple_Size
  xyzTriple_double
  xyzTriple_float
  xyzVector_Real
  xyzVector_SSize
  xyzVector_Size
  xyzVector_double
  xyzVector_float
Functions [hide private]
 
angle_degrees(...)
angle_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Angle between two vectors in radians Given two vectors (p1->p2 & p3->p4), calculate the angle between them Angle returned is on [ 0, pi ]
 
angle_degrees_double(...)
angle_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:344
 
angle_radians(...)
angle_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Angle between two vectors in radians Given two vectors (p1->p2 & p3->p4), calculate the angle between them Angle returned is on [ 0, pi ]
 
angle_radians_double(...)
angle_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:318
 
boltzmann_accept_probability(...)
boltzmann_accept_probability( (float)score_before, (float)score_after, (float)temperature) -> float : Calculates the acceptance probability of a given score-change at the given temperature, generally used in simulated annealing algorithms.
 
ccd_angle(...)
ccd_angle( (vector1_xyzVector_Real)F, (vector1_xyzVector_Real)M, (xyzVector_Real)axis_atom, (xyzVector_Real)theta_hat, (float)alpha, (float)S) -> None : numeric/cyclic_coordinate_descent.hh:32
 
dihedral(...)
dihedral( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Dihedral (torsion) angle in degrees: angle value returned This is a Rosetta++ compatibility version that operates in degrees
 
dihedral_degrees(...)
dihedral_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Dihedral (torsion) angle in degrees: angle value returned
 
dihedral_degrees_double(...)
dihedral_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:479
 
dihedral_double(...)
dihedral_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:531
 
dihedral_radians(...)
dihedral_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Dihedral (torsion) angle in radians: angle value returned Given four positions in a chain ( p1, p2, p3, p4 ), calculates the dihedral (torsion) angle in radians between the vectors p2->p1 and p3->p4 while sighting along the axis defined by the vector p2->p3 (positive indicates right handed twist) Angle returned is on [ -pi, pi ] Degenerate cases are handled and assigned a zero angle but assumed rare (wrt performance tuning) For a reference on the determination of the dihedral angle formula see: http://www.math.fsu.edu/~quine/IntroMathBio_04/torsion_pdb/torsion_pdb.pdf
 
dihedral_radians_double(...)
dihedral_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:429
 
eigenvalue_jacobi(...)
eigenvalue_jacobi( (xyzMatrix_float)a, (float)tol) -> xyzVector_float : Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix Use eigenvector_jacobi if eigenvectors are also desired
 
eigenvector_jacobi(...)
eigenvector_jacobi( (xyzMatrix_float)a, (float)tol, (xyzMatrix_float)J) -> xyzVector_float : Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix Use eigenvalue_jacobi if eigenvectors are not desired
 
equal_by_epsilon(...)
equal_by_epsilon( (float)value1, (float)value2, (float)epsilon) -> bool : are two Real values are equal up to some epsilon implemented only for Reals, to prevent unsigned hassle (Barak 30/6/2009)
 
hsv_to_rgb(...)
hsv_to_rgb( (xyzVector_Real)hsv_triplet) -> xyzVector_Real : convert an HSV color to RGB
 
inplace_product(...)
inplace_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float : xyzMatrix * xyzVector in-place product Input xyzVector is modified
 
inplace_transpose_product(...)
inplace_transpose_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float : xyzMatrix^T * xyzVector in-place transpose product Input xyzVector is modified
 
inverse(...)
inverse( (xyzMatrix_float)a) -> xyzMatrix_float : numeric/xyz.functions.hh:206
 
is_a_finitenumber(...)
is_a_finitenumber( (float)s, (float)a, (float)b) -> bool : numeric/numeric.functions.hh:716
 
log(...)
log( (float)x, (float)base) -> float : Computes log(x) in the given base
 
max(...)
max( (float)a, (float)b) -> float : max( long double, long double )
 
mean(...)
mean( (vector1_Real)values) -> float : numeric/util.hh:78
 
median(...)
median( (vector1_Real)values) -> float : Returns the median from a vector1 of Real values.
 
min(...)
min( (float)a, (float)b) -> float : min( long double, long double )
 
mod(...)
mod( (int)x, (int)y) -> int : x(mod y) computational modulo returning magnitude < | y | and sign of x When used with negative integer arguments this assumes integer division rounds towards zero (de facto and future official standard)
 
nearest_ssize(...)
nearest_ssize( (float)x) -> int : nearest_ssize( x ): Nearest SSize
 
outer_product(...)
outer_product( (xyzVector_float)a, (xyzVector_float)b) -> xyzMatrix_float : xyzVector xyzVector outer product
 
principal_components_and_eigenvalues_ndimensions(...)
principal_components_and_eigenvalues_ndimensions( (vec1_vec1_Real)coords, (bool)shift_center) -> object : Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space.
 
print_probabilities(...)
print_probabilities( (vector1_Real)probs, (OStream)out) -> None : Writes probs to the specified ostream
 
product(...)
product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float : xyzMatrix * xyzVector product Same as xyzMatrix * xyzVector
 
projection_matrix(...)
projection_matrix( (xyzVector_float)v) -> xyzMatrix_float : Projection matrix onto the line through a vector
 
read_probabilities_or_die(...)
read_probabilities_or_die( (str)filename, (vector1_Real)probs) -> None : Loads normalized, per-residue probabilities from filename, storing the result in probs.
 
rgb_to_hsv(...)
rgb_to_hsv( (xyzVector_Real)rgb_triplet) -> xyzVector_Real : convert and RGB color to HSV
 
rotation_angle(...)
rotation_angle( (xyzMatrix_float)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
 
rotation_angle_Real(...)
rotation_angle_Real( (xyzMatrix_Real)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
 
rotation_angle_double(...)
rotation_angle_double( (xyzMatrix_Real)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
 
rotation_angle_float(...)
rotation_angle_float( (xyzMatrix_float)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
 
rotation_axis(...)
rotation_axis( (xyzMatrix_float)R, (float)theta) -> xyzVector_float : Transformation from rotation matrix to helical axis of rotation Input matrix must be orthogonal Angle of rotation is also returned Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
 
rotation_axis_angle(...)
rotation_axis_angle( (xyzMatrix_float)rotation_matrix) -> xyzVector_float : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.
 
rotation_axis_angle_Real(...)
rotation_axis_angle_Real( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.
 
rotation_axis_angle_double(...)
rotation_axis_angle_double( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.
 
rotation_axis_angle_float(...)
rotation_axis_angle_float( (xyzMatrix_float)rotation_matrix) -> xyzVector_float : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.
 
rotation_matrix(...)
rotation_matrix( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians
 
rotation_matrix_Real(...)
rotation_matrix_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians.
 
rotation_matrix_degrees(...)
rotation_matrix_degrees( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in degrees.
 
rotation_matrix_degrees_Real(...)
rotation_matrix_degrees_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in degrees.
 
rotation_matrix_degrees_double(...)
rotation_matrix_degrees_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in degrees.
 
rotation_matrix_degrees_float(...)
rotation_matrix_degrees_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in degrees.
 
rotation_matrix_double(...)
rotation_matrix_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians.
 
rotation_matrix_float(...)
rotation_matrix_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians.
 
rotation_matrix_radians(...)
rotation_matrix_radians( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians.
 
rotation_matrix_radians_Real(...)
rotation_matrix_radians_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians.
 
rotation_matrix_radians_double(...)
rotation_matrix_radians_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians.
 
rotation_matrix_radians_float(...)
rotation_matrix_radians_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians.
 
sign(...)
sign( (float)x) -> int : sign( x )
 
transpose_product(...)
transpose_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float : xyzMatrix^T * xyzVector product
 
urs_R2ang(...)
urs_R2ang( (xyzMatrix_Real)R) -> float : numeric/UniformRotationSampler.hh:31
 
urs_norm4(...)
urs_norm4( (float)a, (float)b, (float)c, (float)d) -> float : numeric/UniformRotationSampler.hh:28
Variables [hide private]
  __package__ = None
  false_negative = rosetta.numeric._numeric_.RocStatus.false_neg...
  false_positive = rosetta.numeric._numeric_.RocStatus.false_pos...
  true_negative = rosetta.numeric._numeric_.RocStatus.true_negative
  true_positive = rosetta.numeric._numeric_.RocStatus.true_positive
Function Details [hide private]

angle_degrees(...)

 

angle_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    Angle between two vectors in radians
    Given two vectors (p1->p2 & p3->p4),
    calculate the angle between them
    Angle returned is on [ 0, pi ]
    

    C++ signature :
        double angle_degrees(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

angle_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3) -> float :
    Plane angle in degrees: angle value returned
    Given three positions in a chain ( p1, p2, p3 ), calculates the plane
      angle in degrees between the vectors p2->p1 and p2->p3
    Angle returned is on [ 0, 180 ]
    

    C++ signature :
        double angle_degrees(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

angle_degrees_double(...)

 

angle_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    numeric/xyz.functions.hh:344

    C++ signature :
        double angle_degrees_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

angle_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3) -> float :
    numeric/xyz.functions.hh:289

    C++ signature :
        double angle_degrees_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

angle_radians(...)

 

angle_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    Angle between two vectors in radians
    Given two vectors (p1->p2 & p3->p4),
    calculate the angle between them
    Angle returned is on [ 0, pi ]
    

    C++ signature :
        double angle_radians(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

angle_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3) -> float :
    Plane angle in radians: angle value returned
    Given three positions in a chain ( p1, p2, p3 ), calculates the plane
      angle in radians between the vectors p2->p1 and p2->p3
    Angle returned is on [ 0, pi ]
    

    C++ signature :
        double angle_radians(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

angle_radians_double(...)

 

angle_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    numeric/xyz.functions.hh:318

    C++ signature :
        double angle_radians_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

angle_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3) -> float :
    numeric/xyz.functions.hh:264

    C++ signature :
        double angle_radians_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

boltzmann_accept_probability(...)

 

boltzmann_accept_probability( (float)score_before, (float)score_after, (float)temperature) -> float :
    Calculates the acceptance probability of a given score-change at
    the given temperature, generally used in simulated annealing algorithms.
    Returns a value in the range (0-1).
    

    C++ signature :
        double boltzmann_accept_probability(double,double,double)

ccd_angle(...)

 

ccd_angle( (vector1_xyzVector_Real)F, (vector1_xyzVector_Real)M, (xyzVector_Real)axis_atom, (xyzVector_Real)theta_hat, (float)alpha, (float)S) -> None :
    numeric/cyclic_coordinate_descent.hh:32

    C++ signature :
        void ccd_angle(utility::vector1<numeric::xyzVector<double>, std::allocator<numeric::xyzVector<double> > >,utility::vector1<numeric::xyzVector<double>, std::allocator<numeric::xyzVector<double> > >,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue},double {lvalue})

dihedral(...)

 

dihedral( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    Dihedral (torsion) angle in degrees: angle value returned
    This is a Rosetta++ compatibility version that operates in degrees
    

    C++ signature :
        double dihedral(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

dihedral( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None :
    Dihedral (torsion) angle in degrees: angle value passed
    This is a Rosetta++ compatibility version that operates in degrees
    

    C++ signature :
        void dihedral(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue})

dihedral_degrees(...)

 

dihedral_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    Dihedral (torsion) angle in degrees: angle value returned
    

    C++ signature :
        double dihedral_degrees(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

dihedral_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None :
    Dihedral (torsion) angle in degrees: angle value passed
    

    C++ signature :
        void dihedral_degrees(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue})

dihedral_degrees_double(...)

 

dihedral_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    numeric/xyz.functions.hh:479

    C++ signature :
        double dihedral_degrees_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

dihedral_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None :
    numeric/xyz.functions.hh:455

    C++ signature :
        void dihedral_degrees_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue})

dihedral_double(...)

 

dihedral_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    numeric/xyz.functions.hh:531

    C++ signature :
        double dihedral_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

dihedral_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None :
    numeric/xyz.functions.hh:506

    C++ signature :
        void dihedral_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue})

dihedral_radians(...)

 

dihedral_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    Dihedral (torsion) angle in radians: angle value returned
    Given four positions in a chain ( p1, p2, p3, p4 ), calculates the dihedral
      (torsion) angle in radians between the vectors p2->p1 and p3->p4 while sighting
      along the axis defined by the vector p2->p3 (positive indicates right handed twist)
    Angle returned is on [ -pi, pi ]
    Degenerate cases are handled and assigned a zero angle but assumed rare
      (wrt performance tuning)
    For a reference on the determination of the dihedral angle formula see:
      http://www.math.fsu.edu/~quine/IntroMathBio_04/torsion_pdb/torsion_pdb.pdf
    

    C++ signature :
        double dihedral_radians(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

dihedral_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None :
    Dihedral (torsion) angle in radians: angle value passed
    Given four positions in a chain ( p1, p2, p3, p4 ), calculates the dihedral
      (torsion) angle in radians between the vectors p2->p1 and p3->p4 while sighting
      along the axis defined by the vector p2->p3 (positive indicates right handed twist)
    Angle returned is on [ -pi, pi ]
    Degenerate cases are handled and assigned a zero angle but assumed rare
      (wrt performance tuning)
    For a reference on the determination of the dihedral angle formula see:
      http://www.math.fsu.edu/~quine/IntroMathBio_04/torsion_pdb/torsion_pdb.pdf
    

    C++ signature :
        void dihedral_radians(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue})

dihedral_radians_double(...)

 

dihedral_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float :
    numeric/xyz.functions.hh:429

    C++ signature :
        double dihedral_radians_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>)

dihedral_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None :
    numeric/xyz.functions.hh:396

    C++ signature :
        void dihedral_radians_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue})

eigenvalue_jacobi(...)

 

eigenvalue_jacobi( (xyzMatrix_float)a, (float)tol) -> xyzVector_float :
    Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix
    Use eigenvector_jacobi if eigenvectors are also desired
    

    C++ signature :
        numeric::xyzVector<float> eigenvalue_jacobi(numeric::xyzMatrix<float>,float)

eigenvalue_jacobi( (xyzMatrix_Real)a, (float)tol) -> xyzVector_Real :
    Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix
    Use eigenvector_jacobi if eigenvectors are also desired
    

    C++ signature :
        numeric::xyzVector<double> eigenvalue_jacobi(numeric::xyzMatrix<double>,double)

eigenvector_jacobi(...)

 

eigenvector_jacobi( (xyzMatrix_float)a, (float)tol, (xyzMatrix_float)J) -> xyzVector_float :
    Classic Jacobi algorithm for the eigenvalues and eigenvectors of a
      real symmetric matrix
    Use eigenvalue_jacobi if eigenvectors are not desired
    

    C++ signature :
        numeric::xyzVector<float> eigenvector_jacobi(numeric::xyzMatrix<float>,float,numeric::xyzMatrix<float> {lvalue})

eigenvector_jacobi( (xyzMatrix_Real)a, (float)tol, (xyzMatrix_Real)J) -> xyzVector_Real :
    Classic Jacobi algorithm for the eigenvalues and eigenvectors of a
      real symmetric matrix
    Use eigenvalue_jacobi if eigenvectors are not desired
    

    C++ signature :
        numeric::xyzVector<double> eigenvector_jacobi(numeric::xyzMatrix<double>,double,numeric::xyzMatrix<double> {lvalue})

equal_by_epsilon(...)

 

equal_by_epsilon( (float)value1, (float)value2, (float)epsilon) -> bool :
    are two Real values are equal up to some epsilon
    implemented only for Reals, to prevent unsigned hassle
    (Barak 30/6/2009)
    

    C++ signature :
        bool equal_by_epsilon(double,double,double)

hsv_to_rgb(...)

 

hsv_to_rgb( (xyzVector_Real)hsv_triplet) -> xyzVector_Real :
    convert an HSV color to RGB
    

    C++ signature :
        numeric::xyzVector<double> hsv_to_rgb(numeric::xyzVector<double>)

hsv_to_rgb( (float)h, (float)s, (float)v) -> xyzVector_Real :
    convert an HSV color to RGB
    

    C++ signature :
        numeric::xyzVector<double> hsv_to_rgb(double,double,double)

inplace_product(...)

 

inplace_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float :
    xyzMatrix * xyzVector in-place product
    Input xyzVector is modified
    

    C++ signature :
        numeric::xyzVector<float> {lvalue} inplace_product(numeric::xyzMatrix<float>,numeric::xyzVector<float> {lvalue})

inplace_product( (xyzMatrix_Real)m, (xyzVector_Real)v) -> xyzVector_Real :
    xyzMatrix * xyzVector in-place product
    Input xyzVector is modified
    

    C++ signature :
        numeric::xyzVector<double> {lvalue} inplace_product(numeric::xyzMatrix<double>,numeric::xyzVector<double> {lvalue})

inplace_transpose_product(...)

 

inplace_transpose_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float :
    xyzMatrix^T * xyzVector in-place transpose product
    Input xyzVector is modified
    

    C++ signature :
        numeric::xyzVector<float> {lvalue} inplace_transpose_product(numeric::xyzMatrix<float>,numeric::xyzVector<float> {lvalue})

inplace_transpose_product( (xyzMatrix_Real)m, (xyzVector_Real)v) -> xyzVector_Real :
    xyzMatrix^T * xyzVector in-place transpose product
    Input xyzVector is modified
    

    C++ signature :
        numeric::xyzVector<double> {lvalue} inplace_transpose_product(numeric::xyzMatrix<double>,numeric::xyzVector<double> {lvalue})

inverse(...)

 

inverse( (xyzMatrix_float)a) -> xyzMatrix_float :
    numeric/xyz.functions.hh:206

    C++ signature :
        numeric::xyzMatrix<float> inverse(numeric::xyzMatrix<float>)

inverse( (xyzMatrix_Real)a) -> xyzMatrix_Real :
    numeric/xyz.functions.hh:206

    C++ signature :
        numeric::xyzMatrix<double> inverse(numeric::xyzMatrix<double>)

is_a_finitenumber(...)

 

is_a_finitenumber( (float)s, (float)a, (float)b) -> bool :
    numeric/numeric.functions.hh:716

    C++ signature :
        bool is_a_finitenumber(double,double,double)

log(...)

 

log( (float)x, (float)base) -> float :
    Computes log(x) in the given base
    

    C++ signature :
        double log(double,double)

max(...)

 

max( (float)a, (float)b) -> float :
    max( long double, long double )
    

    C++ signature :
        long double max(long double,long double)

max( (float)a, (float)b) -> float :
    max( double, double )
    

    C++ signature :
        double max(double,double)

max( (float)a, (float)b) -> float :
    max( float, float )
    

    C++ signature :
        float max(float,float)

max( (int)a, (int)b) -> int :
    max( unsigned long int, unsigned long int )
    

    C++ signature :
        unsigned long max(unsigned long,unsigned long)

max( (int)a, (int)b) -> int :
    max( unsigned int, unsigned int )
    

    C++ signature :
        unsigned int max(unsigned int,unsigned int)

max( (int)a, (int)b) -> int :
    max( unsigned short int, unsigned short int )
    

    C++ signature :
        unsigned short max(unsigned short,unsigned short)

max( (int)a, (int)b) -> int :
    max( long int, long int )
    

    C++ signature :
        long max(long,long)

max( (int)a, (int)b) -> int :
    max( int, int )
    

    C++ signature :
        int max(int,int)

max( (int)a, (int)b) -> int :
    max( short int, short int )
    

    C++ signature :
        short max(short,short)

mean(...)

 

mean( (vector1_Real)values) -> float :
    numeric/util.hh:78

    C++ signature :
        double mean(utility::vector1<double, std::allocator<double> >)

median(...)

 

median( (vector1_Real)values) -> float :
    Returns the median from a vector1 of Real values.
    

    C++ signature :
        double median(utility::vector1<double, std::allocator<double> >)

min(...)

 

min( (float)a, (float)b) -> float :
    min( long double, long double )
    

    C++ signature :
        long double min(long double,long double)

min( (float)a, (float)b) -> float :
    min( double, double )
    

    C++ signature :
        double min(double,double)

min( (float)a, (float)b) -> float :
    min( float, float )
    

    C++ signature :
        float min(float,float)

min( (int)a, (int)b) -> int :
    min( unsigned long int, unsigned long int )
    

    C++ signature :
        unsigned long min(unsigned long,unsigned long)

min( (int)a, (int)b) -> int :
    min( unsigned int, unsigned int )
    

    C++ signature :
        unsigned int min(unsigned int,unsigned int)

min( (int)a, (int)b) -> int :
    min( unsigned short int, unsigned short int )
    

    C++ signature :
        unsigned short min(unsigned short,unsigned short)

min( (int)a, (int)b) -> int :
    min( long int, long int )
    

    C++ signature :
        long min(long,long)

min( (int)a, (int)b) -> int :
    min( int, int )
    

    C++ signature :
        int min(int,int)

min( (int)a, (int)b) -> int :
    min( short int, short int )
    

    C++ signature :
        short min(short,short)

mod(...)

 

mod( (int)x, (int)y) -> int :
    x(mod y) computational modulo returning magnitude < | y | and sign of x
    When used with negative integer arguments this assumes integer division
          rounds towards zero (de facto and future official standard)
    

    C++ signature :
        long mod(long,long)

nearest_ssize(...)

 

nearest_ssize( (float)x) -> int :
    nearest_ssize( x ): Nearest SSize
    

    C++ signature :
        long nearest_ssize(long double)

outer_product(...)

 

outer_product( (xyzVector_float)a, (xyzVector_float)b) -> xyzMatrix_float :
    xyzVector xyzVector outer product
    

    C++ signature :
        numeric::xyzMatrix<float> outer_product(numeric::xyzVector<float>,numeric::xyzVector<float>)

outer_product( (xyzVector_Real)a, (xyzVector_Real)b) -> xyzMatrix_Real :
    xyzVector xyzVector outer product
    

    C++ signature :
        numeric::xyzMatrix<double> outer_product(numeric::xyzVector<double>,numeric::xyzVector<double>)

principal_components_and_eigenvalues_ndimensions(...)

 

principal_components_and_eigenvalues_ndimensions( (vec1_vec1_Real)coords, (bool)shift_center) -> object :
    Return a pair containing a matrix (vector of vectors) of all of the
    principal components and a vector of the corresponding eigenvalues of the
    given set of points in n-dimensional space.
    Note that this does not assume that the input vectors are 3-dimensional.
    If shift_center=false, the mean vector is not subtracted by this function.
    (Failure to subtract mean vector prior to function call will produce odd results,
    however.)
    Vikram K. Mulligan (vmullig@uw.edu)
    

    C++ signature :
        std::pair<utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >, utility::vector1<double, std::allocator<double> > > principal_components_and_eigenvalues_ndimensions(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >,bool)

print_probabilities(...)

 

print_probabilities( (vector1_Real)probs, (OStream)out) -> None :
    Writes probs to the specified ostream
    

    C++ signature :
        void print_probabilities(utility::vector1<double, std::allocator<double> >,std::ostream {lvalue})

product(...)

 

product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float :
    xyzMatrix * xyzVector product
    Same as xyzMatrix * xyzVector
    

    C++ signature :
        numeric::xyzVector<float> product(numeric::xyzMatrix<float>,numeric::xyzVector<float>)

product( (xyzMatrix_Real)m, (xyzVector_Real)v) -> xyzVector_Real :
    xyzMatrix * xyzVector product
    Same as xyzMatrix * xyzVector
    

    C++ signature :
        numeric::xyzVector<double> product(numeric::xyzMatrix<double>,numeric::xyzVector<double>)

projection_matrix(...)

 

projection_matrix( (xyzVector_float)v) -> xyzMatrix_float :
    Projection matrix onto the line through a vector
    

    C++ signature :
        numeric::xyzMatrix<float> projection_matrix(numeric::xyzVector<float>)

projection_matrix( (xyzVector_Real)v) -> xyzMatrix_Real :
    Projection matrix onto the line through a vector
    

    C++ signature :
        numeric::xyzMatrix<double> projection_matrix(numeric::xyzVector<double>)

read_probabilities_or_die(...)

 

read_probabilities_or_die( (str)filename, (vector1_Real)probs) -> None :
    Loads normalized, per-residue probabilities from filename,
    storing the result in probs. Assumes line i holds the probability
    of sampling residue i. There must be 1 line for each residue in the
    pose on which this data will be used.
    

    C++ signature :
        void read_probabilities_or_die(std::string,utility::vector1<double, std::allocator<double> >*)

rgb_to_hsv(...)

 

rgb_to_hsv( (xyzVector_Real)rgb_triplet) -> xyzVector_Real :
    convert and RGB color to HSV
    

    C++ signature :
        numeric::xyzVector<double> rgb_to_hsv(numeric::xyzVector<double>)

rgb_to_hsv( (float)r, (float)b, (float)g) -> xyzVector_Real :
    convert an RGB color to HSV
    

    C++ signature :
        numeric::xyzVector<double> rgb_to_hsv(double,double,double)

rotation_angle(...)

 

rotation_angle( (xyzMatrix_float)rotation_matrix) -> float :
    Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi].
    numeric::rotation_axis returns both axis and angle of rotation.

    C++ signature :
        float rotation_angle(numeric::xyzMatrix<float>)

rotation_angle( (xyzMatrix_Real)rotation_matrix) -> float :
    Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi].
    numeric::rotation_axis returns both axis and angle of rotation.

    C++ signature :
        double rotation_angle(numeric::xyzMatrix<double>)

rotation_angle( (xyzMatrix_Real)rotation_matrix) -> float :
    Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi].
    numeric::rotation_axis returns both axis and angle of rotation.

    C++ signature :
        double rotation_angle(numeric::xyzMatrix<double>)

rotation_angle_Real(...)

 

rotation_angle_Real( (xyzMatrix_Real)rotation_matrix) -> float :
    Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi].
    numeric::rotation_axis returns both axis and angle of rotation.

    C++ signature :
        double rotation_angle_Real(numeric::xyzMatrix<double>)

rotation_angle_double(...)

 

rotation_angle_double( (xyzMatrix_Real)rotation_matrix) -> float :
    Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi].
    numeric::rotation_axis returns both axis and angle of rotation.

    C++ signature :
        double rotation_angle_double(numeric::xyzMatrix<double>)

rotation_angle_float(...)

 

rotation_angle_float( (xyzMatrix_float)rotation_matrix) -> float :
    Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal.
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi].
    numeric::rotation_axis returns both axis and angle of rotation.

    C++ signature :
        float rotation_angle_float(numeric::xyzMatrix<float>)

rotation_axis(...)

 

rotation_axis( (xyzMatrix_float)R, (float)theta) -> xyzVector_float :
    Transformation from rotation matrix to helical axis of rotation
    Input matrix must be orthogonal
    Angle of rotation is also returned
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
    

    C++ signature :
        numeric::xyzVector<float> rotation_axis(numeric::xyzMatrix<float>,float {lvalue})

rotation_axis( (xyzMatrix_Real)R, (float)theta) -> xyzVector_Real :
    Transformation from rotation matrix to helical axis of rotation
    Input matrix must be orthogonal
    Angle of rotation is also returned
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
    

    C++ signature :
        numeric::xyzVector<double> rotation_axis(numeric::xyzMatrix<double>,double {lvalue})

rotation_axis_angle(...)

 

rotation_axis_angle( (xyzMatrix_float)rotation_matrix) -> xyzVector_float :
    Transformation from rotation matrix to compact axis-angle representation
    Input matrix must be orthogonal
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
    Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.

    C++ signature :
        numeric::xyzVector<float> rotation_axis_angle(numeric::xyzMatrix<float>)

rotation_axis_angle( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real :
    Transformation from rotation matrix to compact axis-angle representation
    Input matrix must be orthogonal
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
    Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.

    C++ signature :
        numeric::xyzVector<double> rotation_axis_angle(numeric::xyzMatrix<double>)

rotation_axis_angle( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real :
    Transformation from rotation matrix to compact axis-angle representation
    Input matrix must be orthogonal
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
    Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.

    C++ signature :
        numeric::xyzVector<double> rotation_axis_angle(numeric::xyzMatrix<double>)

rotation_axis_angle_Real(...)

 

rotation_axis_angle_Real( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real :
    Transformation from rotation matrix to compact axis-angle representation
    Input matrix must be orthogonal
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
    Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.

    C++ signature :
        numeric::xyzVector<double> rotation_axis_angle_Real(numeric::xyzMatrix<double>)

rotation_axis_angle_double(...)

 

rotation_axis_angle_double( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real :
    Transformation from rotation matrix to compact axis-angle representation
    Input matrix must be orthogonal
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
    Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.

    C++ signature :
        numeric::xyzVector<double> rotation_axis_angle_double(numeric::xyzMatrix<double>)

rotation_axis_angle_float(...)

 

rotation_axis_angle_float( (xyzMatrix_float)rotation_matrix) -> xyzVector_float :
    Transformation from rotation matrix to compact axis-angle representation
    Input matrix must be orthogonal
    Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]
    Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation.

    C++ signature :
        numeric::xyzVector<float> rotation_axis_angle_float(numeric::xyzMatrix<float>)

rotation_matrix(...)

 

rotation_matrix( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float :
    Rotation matrix for rotation about an axis by an angle in radians
    

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix(numeric::xyzVector<float>,float)

rotation_matrix( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians
    

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>,double)

rotation_matrix( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix(numeric::xyzVector<float>,float)

rotation_matrix( (xyzVector_float)axis_angle) -> xyzMatrix_float :
    Rotation matrix for rotation from axis-angle representation.
    Magnitude of rotation (in radians) is taken as axis_angle.magnitude().

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix(numeric::xyzVector<float>)

rotation_matrix( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>,double)

rotation_matrix( (xyzVector_Real)axis_angle) -> xyzMatrix_Real :
    Rotation matrix for rotation from axis-angle representation.
    Magnitude of rotation (in radians) is taken as axis_angle.magnitude().

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>)

rotation_matrix( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>,double)

rotation_matrix( (xyzVector_Real)axis_angle) -> xyzMatrix_Real :
    Rotation matrix for rotation from axis-angle representation.
    Magnitude of rotation (in radians) is taken as axis_angle.magnitude().

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>)

rotation_matrix_Real(...)

 

rotation_matrix_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_Real(numeric::xyzVector<double>,double)

rotation_matrix_Real( (xyzVector_Real)axis_angle) -> xyzMatrix_Real :
    Rotation matrix for rotation from axis-angle representation.
    Magnitude of rotation (in radians) is taken as axis_angle.magnitude().

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_Real(numeric::xyzVector<double>)

rotation_matrix_degrees(...)

 

rotation_matrix_degrees( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float :
    Rotation matrix for rotation about an axis by an angle in degrees.

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix_degrees(numeric::xyzVector<float>,float)

rotation_matrix_degrees( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in degrees.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_degrees(numeric::xyzVector<double>,double)

rotation_matrix_degrees( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in degrees.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_degrees(numeric::xyzVector<double>,double)

rotation_matrix_degrees_Real(...)

 

rotation_matrix_degrees_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in degrees.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_degrees_Real(numeric::xyzVector<double>,double)

rotation_matrix_degrees_double(...)

 

rotation_matrix_degrees_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in degrees.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_degrees_double(numeric::xyzVector<double>,double)

rotation_matrix_degrees_float(...)

 

rotation_matrix_degrees_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float :
    Rotation matrix for rotation about an axis by an angle in degrees.

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix_degrees_float(numeric::xyzVector<float>,float)

rotation_matrix_double(...)

 

rotation_matrix_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_double(numeric::xyzVector<double>,double)

rotation_matrix_double( (xyzVector_Real)axis_angle) -> xyzMatrix_Real :
    Rotation matrix for rotation from axis-angle representation.
    Magnitude of rotation (in radians) is taken as axis_angle.magnitude().

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_double(numeric::xyzVector<double>)

rotation_matrix_float(...)

 

rotation_matrix_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix_float(numeric::xyzVector<float>,float)

rotation_matrix_float( (xyzVector_float)axis_angle) -> xyzMatrix_float :
    Rotation matrix for rotation from axis-angle representation.
    Magnitude of rotation (in radians) is taken as axis_angle.magnitude().

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix_float(numeric::xyzVector<float>)

rotation_matrix_radians(...)

 

rotation_matrix_radians( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix_radians(numeric::xyzVector<float>,float)

rotation_matrix_radians( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_radians(numeric::xyzVector<double>,double)

rotation_matrix_radians( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_radians(numeric::xyzVector<double>,double)

rotation_matrix_radians_Real(...)

 

rotation_matrix_radians_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_radians_Real(numeric::xyzVector<double>,double)

rotation_matrix_radians_double(...)

 

rotation_matrix_radians_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<double> rotation_matrix_radians_double(numeric::xyzVector<double>,double)

rotation_matrix_radians_float(...)

 

rotation_matrix_radians_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float :
    Rotation matrix for rotation about an axis by an angle in radians.

    C++ signature :
        numeric::xyzMatrix<float> rotation_matrix_radians_float(numeric::xyzVector<float>,float)

sign(...)

 

sign( (float)x) -> int :
    sign( x )
    

    C++ signature :
        int sign(double)

transpose_product(...)

 

transpose_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float :
    xyzMatrix^T * xyzVector product
    

    C++ signature :
        numeric::xyzVector<float> transpose_product(numeric::xyzMatrix<float>,numeric::xyzVector<float>)

transpose_product( (xyzMatrix_Real)m, (xyzVector_Real)v) -> xyzVector_Real :
    xyzMatrix^T * xyzVector product
    

    C++ signature :
        numeric::xyzVector<double> transpose_product(numeric::xyzMatrix<double>,numeric::xyzVector<double>)

urs_R2ang(...)

 

urs_R2ang( (xyzMatrix_Real)R) -> float :
    numeric/UniformRotationSampler.hh:31

    C++ signature :
        double urs_R2ang(numeric::xyzMatrix<double>)

urs_norm4(...)

 

urs_norm4( (float)a, (float)b, (float)c, (float)d) -> float :
    numeric/UniformRotationSampler.hh:28

    C++ signature :
        double urs_norm4(double,double,double,double)


Variables Details [hide private]

false_negative

Value:
rosetta.numeric._numeric_.RocStatus.false_negative

false_positive

Value:
rosetta.numeric._numeric_.RocStatus.false_positive