Home | Trees | Indices | Help |
---|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
__package__ = None
|
|||
false_negative = rosetta.numeric._numeric_.RocStatus.false_neg
|
|||
false_positive = rosetta.numeric._numeric_.RocStatus.false_pos
|
|||
true_negative = rosetta.numeric._numeric_.RocStatus.true_negative
|
|||
true_positive = rosetta.numeric._numeric_.RocStatus.true_positive
|
|
angle_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Angle between two vectors in radians Given two vectors (p1->p2 & p3->p4), calculate the angle between them Angle returned is on [ 0, pi ] C++ signature : double angle_degrees(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) angle_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3) -> float : Plane angle in degrees: angle value returned Given three positions in a chain ( p1, p2, p3 ), calculates the plane angle in degrees between the vectors p2->p1 and p2->p3 Angle returned is on [ 0, 180 ] C++ signature : double angle_degrees(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) |
angle_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:344 C++ signature : double angle_degrees_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) angle_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3) -> float : numeric/xyz.functions.hh:289 C++ signature : double angle_degrees_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) |
angle_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Angle between two vectors in radians Given two vectors (p1->p2 & p3->p4), calculate the angle between them Angle returned is on [ 0, pi ] C++ signature : double angle_radians(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) angle_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3) -> float : Plane angle in radians: angle value returned Given three positions in a chain ( p1, p2, p3 ), calculates the plane angle in radians between the vectors p2->p1 and p2->p3 Angle returned is on [ 0, pi ] C++ signature : double angle_radians(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) |
angle_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:318 C++ signature : double angle_radians_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) angle_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3) -> float : numeric/xyz.functions.hh:264 C++ signature : double angle_radians_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) |
boltzmann_accept_probability( (float)score_before, (float)score_after, (float)temperature) -> float : Calculates the acceptance probability of a given score-change at the given temperature, generally used in simulated annealing algorithms. Returns a value in the range (0-1). C++ signature : double boltzmann_accept_probability(double,double,double) |
ccd_angle( (vector1_xyzVector_Real)F, (vector1_xyzVector_Real)M, (xyzVector_Real)axis_atom, (xyzVector_Real)theta_hat, (float)alpha, (float)S) -> None : numeric/cyclic_coordinate_descent.hh:32 C++ signature : void ccd_angle(utility::vector1<numeric::xyzVector<double>, std::allocator<numeric::xyzVector<double> > >,utility::vector1<numeric::xyzVector<double>, std::allocator<numeric::xyzVector<double> > >,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue},double {lvalue}) |
dihedral( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Dihedral (torsion) angle in degrees: angle value returned This is a Rosetta++ compatibility version that operates in degrees C++ signature : double dihedral(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) dihedral( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None : Dihedral (torsion) angle in degrees: angle value passed This is a Rosetta++ compatibility version that operates in degrees C++ signature : void dihedral(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue}) |
dihedral_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Dihedral (torsion) angle in degrees: angle value returned C++ signature : double dihedral_degrees(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) dihedral_degrees( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None : Dihedral (torsion) angle in degrees: angle value passed C++ signature : void dihedral_degrees(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue}) |
dihedral_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:479 C++ signature : double dihedral_degrees_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) dihedral_degrees_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None : numeric/xyz.functions.hh:455 C++ signature : void dihedral_degrees_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue}) |
dihedral_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:531 C++ signature : double dihedral_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) dihedral_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None : numeric/xyz.functions.hh:506 C++ signature : void dihedral_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue}) |
dihedral_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : Dihedral (torsion) angle in radians: angle value returned Given four positions in a chain ( p1, p2, p3, p4 ), calculates the dihedral (torsion) angle in radians between the vectors p2->p1 and p3->p4 while sighting along the axis defined by the vector p2->p3 (positive indicates right handed twist) Angle returned is on [ -pi, pi ] Degenerate cases are handled and assigned a zero angle but assumed rare (wrt performance tuning) For a reference on the determination of the dihedral angle formula see: http://www.math.fsu.edu/~quine/IntroMathBio_04/torsion_pdb/torsion_pdb.pdf C++ signature : double dihedral_radians(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) dihedral_radians( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None : Dihedral (torsion) angle in radians: angle value passed Given four positions in a chain ( p1, p2, p3, p4 ), calculates the dihedral (torsion) angle in radians between the vectors p2->p1 and p3->p4 while sighting along the axis defined by the vector p2->p3 (positive indicates right handed twist) Angle returned is on [ -pi, pi ] Degenerate cases are handled and assigned a zero angle but assumed rare (wrt performance tuning) For a reference on the determination of the dihedral angle formula see: http://www.math.fsu.edu/~quine/IntroMathBio_04/torsion_pdb/torsion_pdb.pdf C++ signature : void dihedral_radians(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue}) |
dihedral_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4) -> float : numeric/xyz.functions.hh:429 C++ signature : double dihedral_radians_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>) dihedral_radians_double( (xyzVector_Real)p1, (xyzVector_Real)p2, (xyzVector_Real)p3, (xyzVector_Real)p4, (float)angle) -> None : numeric/xyz.functions.hh:396 C++ signature : void dihedral_radians_double(numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,numeric::xyzVector<double>,double {lvalue}) |
eigenvalue_jacobi( (xyzMatrix_float)a, (float)tol) -> xyzVector_float : Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix Use eigenvector_jacobi if eigenvectors are also desired C++ signature : numeric::xyzVector<float> eigenvalue_jacobi(numeric::xyzMatrix<float>,float) eigenvalue_jacobi( (xyzMatrix_Real)a, (float)tol) -> xyzVector_Real : Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix Use eigenvector_jacobi if eigenvectors are also desired C++ signature : numeric::xyzVector<double> eigenvalue_jacobi(numeric::xyzMatrix<double>,double) |
eigenvector_jacobi( (xyzMatrix_float)a, (float)tol, (xyzMatrix_float)J) -> xyzVector_float : Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix Use eigenvalue_jacobi if eigenvectors are not desired C++ signature : numeric::xyzVector<float> eigenvector_jacobi(numeric::xyzMatrix<float>,float,numeric::xyzMatrix<float> {lvalue}) eigenvector_jacobi( (xyzMatrix_Real)a, (float)tol, (xyzMatrix_Real)J) -> xyzVector_Real : Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix Use eigenvalue_jacobi if eigenvectors are not desired C++ signature : numeric::xyzVector<double> eigenvector_jacobi(numeric::xyzMatrix<double>,double,numeric::xyzMatrix<double> {lvalue}) |
equal_by_epsilon( (float)value1, (float)value2, (float)epsilon) -> bool : are two Real values are equal up to some epsilon implemented only for Reals, to prevent unsigned hassle (Barak 30/6/2009) C++ signature : bool equal_by_epsilon(double,double,double) |
hsv_to_rgb( (xyzVector_Real)hsv_triplet) -> xyzVector_Real : convert an HSV color to RGB C++ signature : numeric::xyzVector<double> hsv_to_rgb(numeric::xyzVector<double>) hsv_to_rgb( (float)h, (float)s, (float)v) -> xyzVector_Real : convert an HSV color to RGB C++ signature : numeric::xyzVector<double> hsv_to_rgb(double,double,double) |
inplace_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float : xyzMatrix * xyzVector in-place product Input xyzVector is modified C++ signature : numeric::xyzVector<float> {lvalue} inplace_product(numeric::xyzMatrix<float>,numeric::xyzVector<float> {lvalue}) inplace_product( (xyzMatrix_Real)m, (xyzVector_Real)v) -> xyzVector_Real : xyzMatrix * xyzVector in-place product Input xyzVector is modified C++ signature : numeric::xyzVector<double> {lvalue} inplace_product(numeric::xyzMatrix<double>,numeric::xyzVector<double> {lvalue}) |
inplace_transpose_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float : xyzMatrix^T * xyzVector in-place transpose product Input xyzVector is modified C++ signature : numeric::xyzVector<float> {lvalue} inplace_transpose_product(numeric::xyzMatrix<float>,numeric::xyzVector<float> {lvalue}) inplace_transpose_product( (xyzMatrix_Real)m, (xyzVector_Real)v) -> xyzVector_Real : xyzMatrix^T * xyzVector in-place transpose product Input xyzVector is modified C++ signature : numeric::xyzVector<double> {lvalue} inplace_transpose_product(numeric::xyzMatrix<double>,numeric::xyzVector<double> {lvalue}) |
inverse( (xyzMatrix_float)a) -> xyzMatrix_float : numeric/xyz.functions.hh:206 C++ signature : numeric::xyzMatrix<float> inverse(numeric::xyzMatrix<float>) inverse( (xyzMatrix_Real)a) -> xyzMatrix_Real : numeric/xyz.functions.hh:206 C++ signature : numeric::xyzMatrix<double> inverse(numeric::xyzMatrix<double>) |
is_a_finitenumber( (float)s, (float)a, (float)b) -> bool : numeric/numeric.functions.hh:716 C++ signature : bool is_a_finitenumber(double,double,double) |
log( (float)x, (float)base) -> float : Computes log(x) in the given base C++ signature : double log(double,double) |
max( (float)a, (float)b) -> float : max( long double, long double ) C++ signature : long double max(long double,long double) max( (float)a, (float)b) -> float : max( double, double ) C++ signature : double max(double,double) max( (float)a, (float)b) -> float : max( float, float ) C++ signature : float max(float,float) max( (int)a, (int)b) -> int : max( unsigned long int, unsigned long int ) C++ signature : unsigned long max(unsigned long,unsigned long) max( (int)a, (int)b) -> int : max( unsigned int, unsigned int ) C++ signature : unsigned int max(unsigned int,unsigned int) max( (int)a, (int)b) -> int : max( unsigned short int, unsigned short int ) C++ signature : unsigned short max(unsigned short,unsigned short) max( (int)a, (int)b) -> int : max( long int, long int ) C++ signature : long max(long,long) max( (int)a, (int)b) -> int : max( int, int ) C++ signature : int max(int,int) max( (int)a, (int)b) -> int : max( short int, short int ) C++ signature : short max(short,short) |
mean( (vector1_Real)values) -> float : numeric/util.hh:78 C++ signature : double mean(utility::vector1<double, std::allocator<double> >) |
median( (vector1_Real)values) -> float : Returns the median from a vector1 of Real values. C++ signature : double median(utility::vector1<double, std::allocator<double> >) |
min( (float)a, (float)b) -> float : min( long double, long double ) C++ signature : long double min(long double,long double) min( (float)a, (float)b) -> float : min( double, double ) C++ signature : double min(double,double) min( (float)a, (float)b) -> float : min( float, float ) C++ signature : float min(float,float) min( (int)a, (int)b) -> int : min( unsigned long int, unsigned long int ) C++ signature : unsigned long min(unsigned long,unsigned long) min( (int)a, (int)b) -> int : min( unsigned int, unsigned int ) C++ signature : unsigned int min(unsigned int,unsigned int) min( (int)a, (int)b) -> int : min( unsigned short int, unsigned short int ) C++ signature : unsigned short min(unsigned short,unsigned short) min( (int)a, (int)b) -> int : min( long int, long int ) C++ signature : long min(long,long) min( (int)a, (int)b) -> int : min( int, int ) C++ signature : int min(int,int) min( (int)a, (int)b) -> int : min( short int, short int ) C++ signature : short min(short,short) |
mod( (int)x, (int)y) -> int : x(mod y) computational modulo returning magnitude < | y | and sign of x When used with negative integer arguments this assumes integer division rounds towards zero (de facto and future official standard) C++ signature : long mod(long,long) |
nearest_ssize( (float)x) -> int : nearest_ssize( x ): Nearest SSize C++ signature : long nearest_ssize(long double) |
outer_product( (xyzVector_float)a, (xyzVector_float)b) -> xyzMatrix_float : xyzVector xyzVector outer product C++ signature : numeric::xyzMatrix<float> outer_product(numeric::xyzVector<float>,numeric::xyzVector<float>) outer_product( (xyzVector_Real)a, (xyzVector_Real)b) -> xyzMatrix_Real : xyzVector xyzVector outer product C++ signature : numeric::xyzMatrix<double> outer_product(numeric::xyzVector<double>,numeric::xyzVector<double>) |
principal_components_and_eigenvalues_ndimensions( (vec1_vec1_Real)coords, (bool)shift_center) -> object : Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space. Note that this does not assume that the input vectors are 3-dimensional. If shift_center=false, the mean vector is not subtracted by this function. (Failure to subtract mean vector prior to function call will produce odd results, however.) Vikram K. Mulligan (vmullig@uw.edu) C++ signature : std::pair<utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >, utility::vector1<double, std::allocator<double> > > principal_components_and_eigenvalues_ndimensions(utility::vector1<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > >,bool) |
print_probabilities( (vector1_Real)probs, (OStream)out) -> None : Writes probs to the specified ostream C++ signature : void print_probabilities(utility::vector1<double, std::allocator<double> >,std::ostream {lvalue}) |
product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float : xyzMatrix * xyzVector product Same as xyzMatrix * xyzVector C++ signature : numeric::xyzVector<float> product(numeric::xyzMatrix<float>,numeric::xyzVector<float>) product( (xyzMatrix_Real)m, (xyzVector_Real)v) -> xyzVector_Real : xyzMatrix * xyzVector product Same as xyzMatrix * xyzVector C++ signature : numeric::xyzVector<double> product(numeric::xyzMatrix<double>,numeric::xyzVector<double>) |
projection_matrix( (xyzVector_float)v) -> xyzMatrix_float : Projection matrix onto the line through a vector C++ signature : numeric::xyzMatrix<float> projection_matrix(numeric::xyzVector<float>) projection_matrix( (xyzVector_Real)v) -> xyzMatrix_Real : Projection matrix onto the line through a vector C++ signature : numeric::xyzMatrix<double> projection_matrix(numeric::xyzVector<double>) |
read_probabilities_or_die( (str)filename, (vector1_Real)probs) -> None : Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used. C++ signature : void read_probabilities_or_die(std::string,utility::vector1<double, std::allocator<double> >*) |
rgb_to_hsv( (xyzVector_Real)rgb_triplet) -> xyzVector_Real : convert and RGB color to HSV C++ signature : numeric::xyzVector<double> rgb_to_hsv(numeric::xyzVector<double>) rgb_to_hsv( (float)r, (float)b, (float)g) -> xyzVector_Real : convert an RGB color to HSV C++ signature : numeric::xyzVector<double> rgb_to_hsv(double,double,double) |
rotation_angle( (xyzMatrix_float)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal. Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]. numeric::rotation_axis returns both axis and angle of rotation. C++ signature : float rotation_angle(numeric::xyzMatrix<float>) rotation_angle( (xyzMatrix_Real)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal. Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]. numeric::rotation_axis returns both axis and angle of rotation. C++ signature : double rotation_angle(numeric::xyzMatrix<double>) rotation_angle( (xyzMatrix_Real)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal. Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]. numeric::rotation_axis returns both axis and angle of rotation. C++ signature : double rotation_angle(numeric::xyzMatrix<double>) |
rotation_angle_Real( (xyzMatrix_Real)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal. Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]. numeric::rotation_axis returns both axis and angle of rotation. C++ signature : double rotation_angle_Real(numeric::xyzMatrix<double>) |
rotation_angle_double( (xyzMatrix_Real)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal. Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]. numeric::rotation_axis returns both axis and angle of rotation. C++ signature : double rotation_angle_double(numeric::xyzMatrix<double>) |
rotation_angle_float( (xyzMatrix_float)rotation_matrix) -> float : Transformation from rotation matrix to magnitude of helical rotation, input matrix must be orthogonal. Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]. numeric::rotation_axis returns both axis and angle of rotation. C++ signature : float rotation_angle_float(numeric::xyzMatrix<float>) |
rotation_axis( (xyzMatrix_float)R, (float)theta) -> xyzVector_float : Transformation from rotation matrix to helical axis of rotation Input matrix must be orthogonal Angle of rotation is also returned Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] C++ signature : numeric::xyzVector<float> rotation_axis(numeric::xyzMatrix<float>,float {lvalue}) rotation_axis( (xyzMatrix_Real)R, (float)theta) -> xyzVector_Real : Transformation from rotation matrix to helical axis of rotation Input matrix must be orthogonal Angle of rotation is also returned Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] C++ signature : numeric::xyzVector<double> rotation_axis(numeric::xyzMatrix<double>,double {lvalue}) |
rotation_axis_angle( (xyzMatrix_float)rotation_matrix) -> xyzVector_float : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation. C++ signature : numeric::xyzVector<float> rotation_axis_angle(numeric::xyzMatrix<float>) rotation_axis_angle( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation. C++ signature : numeric::xyzVector<double> rotation_axis_angle(numeric::xyzMatrix<double>) rotation_axis_angle( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation. C++ signature : numeric::xyzVector<double> rotation_axis_angle(numeric::xyzMatrix<double>) |
rotation_axis_angle_Real( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation. C++ signature : numeric::xyzVector<double> rotation_axis_angle_Real(numeric::xyzMatrix<double>) |
rotation_axis_angle_double( (xyzMatrix_Real)rotation_matrix) -> xyzVector_Real : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation. C++ signature : numeric::xyzVector<double> rotation_axis_angle_double(numeric::xyzMatrix<double>) |
rotation_axis_angle_float( (xyzMatrix_float)rotation_matrix) -> xyzVector_float : Transformation from rotation matrix to compact axis-angle representation Input matrix must be orthogonal Orientation of axis chosen so that the angle of rotation is non-negative [0,pi] Resulting vector will be oriented in axis of rotation with magnitude equal to magnitude of rotation. C++ signature : numeric::xyzVector<float> rotation_axis_angle_float(numeric::xyzMatrix<float>) |
rotation_matrix( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians C++ signature : numeric::xyzMatrix<float> rotation_matrix(numeric::xyzVector<float>,float) rotation_matrix( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians C++ signature : numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>,double) rotation_matrix( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<float> rotation_matrix(numeric::xyzVector<float>,float) rotation_matrix( (xyzVector_float)axis_angle) -> xyzMatrix_float : Rotation matrix for rotation from axis-angle representation. Magnitude of rotation (in radians) is taken as axis_angle.magnitude(). C++ signature : numeric::xyzMatrix<float> rotation_matrix(numeric::xyzVector<float>) rotation_matrix( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>,double) rotation_matrix( (xyzVector_Real)axis_angle) -> xyzMatrix_Real : Rotation matrix for rotation from axis-angle representation. Magnitude of rotation (in radians) is taken as axis_angle.magnitude(). C++ signature : numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>) rotation_matrix( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>,double) rotation_matrix( (xyzVector_Real)axis_angle) -> xyzMatrix_Real : Rotation matrix for rotation from axis-angle representation. Magnitude of rotation (in radians) is taken as axis_angle.magnitude(). C++ signature : numeric::xyzMatrix<double> rotation_matrix(numeric::xyzVector<double>) |
rotation_matrix_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<double> rotation_matrix_Real(numeric::xyzVector<double>,double) rotation_matrix_Real( (xyzVector_Real)axis_angle) -> xyzMatrix_Real : Rotation matrix for rotation from axis-angle representation. Magnitude of rotation (in radians) is taken as axis_angle.magnitude(). C++ signature : numeric::xyzMatrix<double> rotation_matrix_Real(numeric::xyzVector<double>) |
rotation_matrix_degrees( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in degrees. C++ signature : numeric::xyzMatrix<float> rotation_matrix_degrees(numeric::xyzVector<float>,float) rotation_matrix_degrees( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in degrees. C++ signature : numeric::xyzMatrix<double> rotation_matrix_degrees(numeric::xyzVector<double>,double) rotation_matrix_degrees( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in degrees. C++ signature : numeric::xyzMatrix<double> rotation_matrix_degrees(numeric::xyzVector<double>,double) |
rotation_matrix_degrees_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in degrees. C++ signature : numeric::xyzMatrix<double> rotation_matrix_degrees_Real(numeric::xyzVector<double>,double) |
rotation_matrix_degrees_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in degrees. C++ signature : numeric::xyzMatrix<double> rotation_matrix_degrees_double(numeric::xyzVector<double>,double) |
rotation_matrix_degrees_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in degrees. C++ signature : numeric::xyzMatrix<float> rotation_matrix_degrees_float(numeric::xyzVector<float>,float) |
rotation_matrix_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<double> rotation_matrix_double(numeric::xyzVector<double>,double) rotation_matrix_double( (xyzVector_Real)axis_angle) -> xyzMatrix_Real : Rotation matrix for rotation from axis-angle representation. Magnitude of rotation (in radians) is taken as axis_angle.magnitude(). C++ signature : numeric::xyzMatrix<double> rotation_matrix_double(numeric::xyzVector<double>) |
rotation_matrix_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<float> rotation_matrix_float(numeric::xyzVector<float>,float) rotation_matrix_float( (xyzVector_float)axis_angle) -> xyzMatrix_float : Rotation matrix for rotation from axis-angle representation. Magnitude of rotation (in radians) is taken as axis_angle.magnitude(). C++ signature : numeric::xyzMatrix<float> rotation_matrix_float(numeric::xyzVector<float>) |
rotation_matrix_radians( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<float> rotation_matrix_radians(numeric::xyzVector<float>,float) rotation_matrix_radians( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<double> rotation_matrix_radians(numeric::xyzVector<double>,double) rotation_matrix_radians( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<double> rotation_matrix_radians(numeric::xyzVector<double>,double) |
rotation_matrix_radians_Real( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<double> rotation_matrix_radians_Real(numeric::xyzVector<double>,double) |
rotation_matrix_radians_double( (xyzVector_Real)axis, (float)theta) -> xyzMatrix_Real : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<double> rotation_matrix_radians_double(numeric::xyzVector<double>,double) |
rotation_matrix_radians_float( (xyzVector_float)axis, (float)theta) -> xyzMatrix_float : Rotation matrix for rotation about an axis by an angle in radians. C++ signature : numeric::xyzMatrix<float> rotation_matrix_radians_float(numeric::xyzVector<float>,float) |
sign( (float)x) -> int : sign( x ) C++ signature : int sign(double) |
transpose_product( (xyzMatrix_float)m, (xyzVector_float)v) -> xyzVector_float : xyzMatrix^T * xyzVector product C++ signature : numeric::xyzVector<float> transpose_product(numeric::xyzMatrix<float>,numeric::xyzVector<float>) transpose_product( (xyzMatrix_Real)m, (xyzVector_Real)v) -> xyzVector_Real : xyzMatrix^T * xyzVector product C++ signature : numeric::xyzVector<double> transpose_product(numeric::xyzMatrix<double>,numeric::xyzVector<double>) |
urs_R2ang( (xyzMatrix_Real)R) -> float : numeric/UniformRotationSampler.hh:31 C++ signature : double urs_R2ang(numeric::xyzMatrix<double>) |
urs_norm4( (float)a, (float)b, (float)c, (float)d) -> float : numeric/UniformRotationSampler.hh:28 C++ signature : double urs_norm4(double,double,double,double) |
|
false_negative
|
false_positive
|
Home | Trees | Indices | Help |
---|
Generated by Epydoc 3.0.1 on Sat Jun 6 00:10:52 2015 | http://epydoc.sourceforge.net |