random

Bindings for numeric::random namespace

class pyrosetta.rosetta.numeric.random.RandomGenerator

Bases: pybind11_builtins.pybind11_object

Random number generator system

assign(self: pyrosetta.rosetta.numeric.random.RandomGenerator, : pyrosetta.rosetta.numeric.random.RandomGenerator) pyrosetta.rosetta.numeric.random.RandomGenerator

C++: numeric::random::RandomGenerator::operator=(const class numeric::random::RandomGenerator &) –> class numeric::random::RandomGenerator &

gaussian(self: pyrosetta.rosetta.numeric.random.RandomGenerator) float

Get Gaussian distribution random number

C++: numeric::random::RandomGenerator::gaussian() –> double

get_seed(self: pyrosetta.rosetta.numeric.random.RandomGenerator) int

Return the seed used by this RNG.

C++: numeric::random::RandomGenerator::get_seed() const –> int

initialized(self: pyrosetta.rosetta.numeric.random.RandomGenerator) bool

Return whether the RandomGenerator has been initialized (by a call to set_seed)

C++: numeric::random::RandomGenerator::initialized() const –> bool

max(self: pyrosetta.rosetta.numeric.random.RandomGenerator) float

C++: numeric::random::RandomGenerator::max() const –> double

min(self: pyrosetta.rosetta.numeric.random.RandomGenerator) float

C++: numeric::random::RandomGenerator::min() const –> double

random_range(self: pyrosetta.rosetta.numeric.random.RandomGenerator, low: int, high: int) int

Returns a random int in the range specified by the arguments

C++: numeric::random::RandomGenerator::random_range(int, int) –> int

random_range2(self: pyrosetta.rosetta.numeric.random.RandomGenerator, low: int, high: int) int
Returns a random int in the range specified by the arguments

If low == high, it will return the given integer to simplify code using this.

s

JAB - Editing random_range produced huge integration test changes, so this is the result.

If you have a better name, please change this.

C++: numeric::random::RandomGenerator::random_range2(int, int) –> int

restoreState(self: pyrosetta.rosetta.numeric.random.RandomGenerator, in: pyrosetta.rosetta.std.istream) None

C++: numeric::random::RandomGenerator::restoreState(std::istream &) –> void

saveState(self: pyrosetta.rosetta.numeric.random.RandomGenerator, out: pyrosetta.rosetta.std.ostream) None

C++: numeric::random::RandomGenerator::saveState(std::ostream &) –> void

set_seed(*args, **kwargs)

Overloaded function.

  1. set_seed(self: pyrosetta.rosetta.numeric.random.RandomGenerator, generator_type: str, seed: int) -> None

Set the seed and the generator type synchronously.

Currently the two supported generator types are “standard” and “mt19937” with the latter being the recommended form.

C++: numeric::random::RandomGenerator::set_seed(const std::string &, int) –> void

  1. set_seed(self: pyrosetta.rosetta.numeric.random.RandomGenerator, seed: int) -> None

Return the seed used by this RNG.

C++: numeric::random::RandomGenerator::set_seed(int) –> void

uniform(self: pyrosetta.rosetta.numeric.random.RandomGenerator) float

Return from range [0, 1] (?) uniform random number

The implementation of random_range leads me to believe this is actually [0, 1), like most other random number generators. -IWD

C++: numeric::random::RandomGenerator::uniform() –> double

class pyrosetta.rosetta.numeric.random.WeightedSampler

Bases: pybind11_builtins.pybind11_object

add_weight(self: pyrosetta.rosetta.numeric.random.WeightedSampler, weight: float) None

add a single weight to the end

C++: numeric::random::WeightedSampler::add_weight(double) –> void

assign(self: pyrosetta.rosetta.numeric.random.WeightedSampler, : pyrosetta.rosetta.numeric.random.WeightedSampler) pyrosetta.rosetta.numeric.random.WeightedSampler

Copy operator

C++: numeric::random::WeightedSampler::operator=(const class numeric::random::WeightedSampler &) –> class numeric::random::WeightedSampler &

clear(self: pyrosetta.rosetta.numeric.random.WeightedSampler) None

clear weights

C++: numeric::random::WeightedSampler::clear() –> void

random_sample(*args, **kwargs)

Overloaded function.

  1. random_sample(self: pyrosetta.rosetta.numeric.random.WeightedSampler) -> int

get a random sample using the default random generator

C++: numeric::random::WeightedSampler::random_sample() const –> unsigned long

  1. random_sample(self: pyrosetta.rosetta.numeric.random.WeightedSampler, : pyrosetta.rosetta.numeric.random.RandomGenerator) -> int

get a random sample by passing a random generator

C++: numeric::random::WeightedSampler::random_sample(class numeric::random::RandomGenerator &) const –> unsigned long

  1. random_sample(self: pyrosetta.rosetta.numeric.random.WeightedSampler, randnum: float) -> int

get a random sample by passing a random number from 0 to 1

C++: numeric::random::WeightedSampler::random_sample(double) const –> unsigned long

resize(*args, **kwargs)

Overloaded function.

  1. resize(self: pyrosetta.rosetta.numeric.random.WeightedSampler, num_weights: int) -> None

  2. resize(self: pyrosetta.rosetta.numeric.random.WeightedSampler, num_weights: int, default_weight: float) -> None

resize weights

C++: numeric::random::WeightedSampler::resize(unsigned long, double) –> void

set_weight(self: pyrosetta.rosetta.numeric.random.WeightedSampler, weight_num: int, weight: float) None

set a single weight

C++: numeric::random::WeightedSampler::set_weight(unsigned long, double) –> void

size(self: pyrosetta.rosetta.numeric.random.WeightedSampler) int

get number of weights

C++: numeric::random::WeightedSampler::size() const –> unsigned long

update_cumulative_distribution(self: pyrosetta.rosetta.numeric.random.WeightedSampler) bool
Update the internal cumulative distribution results

Returns false if there’s an issue with updating the distribution (e.g. empty or all zero weights)

C++: numeric::random::WeightedSampler::update_cumulative_distribution() const –> bool

weights(*args, **kwargs)

Overloaded function.

  1. weights(self: pyrosetta.rosetta.numeric.random.WeightedSampler) -> pyrosetta.rosetta.utility.vector1_double

get weights

C++: numeric::random::WeightedSampler::weights() const –> const class utility::vector1<double, class std::allocator<double> > &

  1. weights(self: pyrosetta.rosetta.numeric.random.WeightedSampler, weights: pyrosetta.rosetta.utility.vector1_double) -> None

set weights

C++: numeric::random::WeightedSampler::weights(const class utility::vector1<double, class std::allocator<double> > &) –> void

pyrosetta.rosetta.numeric.random.gaussian() float

C++: numeric::random::gaussian() –> double

pyrosetta.rosetta.numeric.random.gaussian_random_xform(angsd: float, movsd: float) pyrosetta.rosetta.numeric.xyzTransform_double_t

C++: numeric::random::gaussian_random_xform(const double &, const double &) –> class numeric::xyzTransform<double>

pyrosetta.rosetta.numeric.random.ini_func1(x: int) int

C++: numeric::random::ini_func1(unsigned int) –> unsigned int

pyrosetta.rosetta.numeric.random.ini_func2(x: int) int

C++: numeric::random::ini_func2(unsigned int) –> unsigned int

class pyrosetta.rosetta.numeric.random.mt19937_RG

Bases: pyrosetta.rosetta.numeric.random.uniform_RG

assign(self: pyrosetta.rosetta.numeric.random.mt19937_RG, : pyrosetta.rosetta.numeric.random.mt19937_RG) pyrosetta.rosetta.numeric.random.mt19937_RG

C++: numeric::random::mt19937_RG::operator=(const class numeric::random::mt19937_RG &) –> class numeric::random::mt19937_RG &

getRandom(self: pyrosetta.rosetta.numeric.random.mt19937_RG) float

C++: numeric::random::mt19937_RG::getRandom() –> double

getSeed(self: pyrosetta.rosetta.numeric.random.mt19937_RG) int

C++: numeric::random::mt19937_RG::getSeed() –> int

restoreState(self: pyrosetta.rosetta.numeric.random.mt19937_RG, in: pyrosetta.rosetta.std.istream) None

Deserializes generator state from stream losslessly.

C++: numeric::random::mt19937_RG::restoreState(std::istream &) –> void

saveState(self: pyrosetta.rosetta.numeric.random.mt19937_RG, out: pyrosetta.rosetta.std.ostream) None

Serializes generator state to stream losslessly.

C++: numeric::random::mt19937_RG::saveState(std::ostream &) –> void

setSeed(*args, **kwargs)

Overloaded function.

  1. setSeed(self: pyrosetta.rosetta.numeric.random.mt19937_RG, iseed: int) -> None

Set seed and state

C++: numeric::random::mt19937_RG::setSeed(const int) –> void

  1. setSeed(self: pyrosetta.rosetta.numeric.random.mt19937_RG, : str) -> None

Set seed and state

C++: numeric::random::mt19937_RG::setSeed(const std::string &) –> void

pyrosetta.rosetta.numeric.random.random_normal() pyrosetta.rosetta.numeric.xyzVector_double_t

A random vector chosens uniformly from the surface of a unit sphere centered on the origin.

C++: numeric::random::random_normal() –> class numeric::xyzVector<double>

pyrosetta.rosetta.numeric.random.random_range(low: int, high: int) int
Return a number uniformly drawn from the inclusive range between low

and high. Threadsafe since each thread uses its own random generator.

C++: numeric::random::random_range(int, int) –> int

pyrosetta.rosetta.numeric.random.random_rotation() pyrosetta.rosetta.numeric.xyzMatrix_double_t

C++: numeric::random::random_rotation() –> class numeric::xyzMatrix<double>

pyrosetta.rosetta.numeric.random.random_unit_quaternion() pyrosetta.rosetta.numeric.Quaternion_double_t

C++: numeric::random::random_unit_quaternion() –> class numeric::Quaternion<double>

pyrosetta.rosetta.numeric.random.random_vector() pyrosetta.rosetta.numeric.xyzVector_double_t

A random vector chosen with spherical symmetry around the origin.

Actual distribution is a 3D gaussian with unit variance centered at the origin.

C++: numeric::random::random_vector() –> class numeric::xyzVector<double>

pyrosetta.rosetta.numeric.random.random_vector_spherical() pyrosetta.rosetta.numeric.xyzVector_double_t

A random vector chosen with spherical symmetry around the origin.

Actual distribution is a 3D gaussian with unit variance centered at the origin.

C++: numeric::random::random_vector_spherical() –> class numeric::xyzVector<double>

pyrosetta.rosetta.numeric.random.random_vector_unit_cube() pyrosetta.rosetta.numeric.xyzVector_double_t

A random vector chosen uniformly from within the volume of a unit cube with opposite verticies at (0,0,0) and (1,1,1)

C++: numeric::random::random_vector_unit_cube() –> class numeric::xyzVector<double>

pyrosetta.rosetta.numeric.random.random_xform() pyrosetta.rosetta.numeric.xyzTransform_double_t

C++: numeric::random::random_xform() –> class numeric::xyzTransform<double>

pyrosetta.rosetta.numeric.random.reservoir_sample_accept_prob(n_wanted: int, n_seen: int) float
Returns the probability that the Nth value in a sequence

should be accepted using the reservoir sampling criterion.

If we’ve seen N values and we want to keep K of them, the probability of the Nth value being accepted is min(K/N,1.0).

C++: numeric::random::reservoir_sample_accept_prob(unsigned long, unsigned long) –> double

pyrosetta.rosetta.numeric.random.rg() numeric::random::RandomGenerator

Return the one-per-thread “singleton” random generator.

C++: numeric::random::rg() –> class numeric::random::RandomGenerator &

pyrosetta.rosetta.numeric.random.sformat_idxof(i: int) int

C++: numeric::random::sformat_idxof(int) –> int

class pyrosetta.rosetta.numeric.random.standard_RG

Bases: pyrosetta.rosetta.numeric.random.uniform_RG

Generator based on rand() < clib > function.

assign(self: pyrosetta.rosetta.numeric.random.standard_RG, : pyrosetta.rosetta.numeric.random.standard_RG) pyrosetta.rosetta.numeric.random.standard_RG

C++: numeric::random::standard_RG::operator=(const class numeric::random::standard_RG &) –> class numeric::random::standard_RG &

getRandom(self: pyrosetta.rosetta.numeric.random.standard_RG) float

C++: numeric::random::standard_RG::getRandom() –> double

getSeed(self: pyrosetta.rosetta.numeric.random.standard_RG) int

C++: numeric::random::standard_RG::getSeed() –> int

restoreState(self: pyrosetta.rosetta.numeric.random.standard_RG, : pyrosetta.rosetta.std.istream) None

C++: numeric::random::standard_RG::restoreState(std::istream &) –> void

saveState(self: pyrosetta.rosetta.numeric.random.standard_RG, : pyrosetta.rosetta.std.ostream) None

C++: numeric::random::standard_RG::saveState(std::ostream &) –> void

setSeed(*args, **kwargs)

Overloaded function.

  1. setSeed(self: pyrosetta.rosetta.numeric.random.standard_RG, seed: int) -> None

C++: numeric::random::standard_RG::setSeed(const int) –> void

  1. setSeed(self: pyrosetta.rosetta.numeric.random.standard_RG, : str) -> None

C++: numeric::random::standard_RG::setSeed(const std::string &) –> void

pyrosetta.rosetta.numeric.random.uniform() float

C++: numeric::random::uniform() –> double

class pyrosetta.rosetta.numeric.random.uniform_RG

Bases: pybind11_builtins.pybind11_object

Uniform random number generator

assign(self: pyrosetta.rosetta.numeric.random.uniform_RG, : pyrosetta.rosetta.numeric.random.uniform_RG) pyrosetta.rosetta.numeric.random.uniform_RG

C++: numeric::random::uniform_RG::operator=(const class numeric::random::uniform_RG &) –> class numeric::random::uniform_RG &

getRandom(self: pyrosetta.rosetta.numeric.random.uniform_RG) float

C++: numeric::random::uniform_RG::getRandom() –> double

getSeed(self: pyrosetta.rosetta.numeric.random.uniform_RG) int

C++: numeric::random::uniform_RG::getSeed() –> int

restoreState(self: pyrosetta.rosetta.numeric.random.uniform_RG, in: pyrosetta.rosetta.std.istream) None

C++: numeric::random::uniform_RG::restoreState(std::istream &) –> void

saveState(self: pyrosetta.rosetta.numeric.random.uniform_RG, out: pyrosetta.rosetta.std.ostream) None

C++: numeric::random::uniform_RG::saveState(std::ostream &) –> void

setSeed(*args, **kwargs)

Overloaded function.

  1. setSeed(self: pyrosetta.rosetta.numeric.random.uniform_RG, seed: int) -> None

C++: numeric::random::uniform_RG::setSeed(const int) –> void

  1. setSeed(self: pyrosetta.rosetta.numeric.random.uniform_RG, seed: str) -> None

C++: numeric::random::uniform_RG::setSeed(const std::string &) –> void

pyrosetta.rosetta.numeric.random.uniform_vector_sphere(*args, **kwargs)

Overloaded function.

  1. uniform_vector_sphere() -> pyrosetta.rosetta.numeric.xyzVector_double_t

  2. uniform_vector_sphere(radius: float) -> pyrosetta.rosetta.numeric.xyzVector_double_t

A random vector chosen uniformly from the ball (volume enclosed within a sphere) of the given radius around the origin.

C++: numeric::random::uniform_vector_sphere(double) –> class numeric::xyzVector<double>