rosetta.core.scoring.rna
index
(built-in)

Bindings for core::scoring::rna namespace

 
Modules
       
rosetta.core.scoring.rna.chemical_shift
rosetta.core.scoring.rna.data

 
Classes
       
builtins.object
RNA_AtomVDW
RNA_EnergyMethodOptions
RNA_LowResolutionPotential
RNA_SuitePotential
RNA_TorsionPotential
rosetta.basic.datacache.CacheableData(builtins.object)
RNA_CentroidInfo
RNA_FilteredBaseBaseInfo
RNA_RawBaseBaseInfo
RNA_ScoringInfo
rosetta.core.scoring.methods.ContextDependentTwoBodyEnergy(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy)
RNA_FullAtomStackingEnergy
rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy(rosetta.core.scoring.methods.LongRangeTwoBodyEnergy)
RNA_SuiteEnergy
rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy(rosetta.core.scoring.methods.OneBodyEnergy)
RNA_BulgeEnergy
RNA_FullAtomVDW_BasePhosphate
RNA_SugarCloseEnergy
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy)
RNA_JR_SuiteEnergy
RNA_LJ_BaseEnergy
RNA_PairwiseLowResolutionEnergy
RNA_TorsionEnergy
RNA_VDW_Energy
StackElecEnergy
rosetta.core.scoring.methods.EnergyMethodCreator(builtins.object)
RG_Energy_RNACreator
RNA_BulgeEnergyCreator
RNA_FullAtomStackingEnergyCreator
RNA_FullAtomVDW_BasePhosphateCreator
RNA_JR_SuiteEnergyCreator
RNA_LJ_BaseEnergyCreator
RNA_PairwiseLowResolutionEnergyCreator
RNA_SugarCloseEnergyCreator
RNA_SuiteEnergyCreator
RNA_TorsionEnergyCreator
RNA_VDW_EnergyCreator
StackElecEnergyCreator
rosetta.core.scoring.methods.WholeStructureEnergy(rosetta.core.scoring.methods.EnergyMethod)
RG_Energy_RNA

 
class RG_Energy_RNA(rosetta.core.scoring.methods.WholeStructureEnergy)
    
Method resolution order:
RG_Energy_RNA
rosetta.core.scoring.methods.WholeStructureEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RG_Energy_RNA) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RG_Energy_RNA,  : rosetta.core.scoring.rna.RG_Energy_RNA) -> rosetta.core.scoring.rna.RG_Energy_RNA
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RG_Energy_RNA) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RG_Energy_RNA, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>,  : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
//////////////////////////////
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.rna.RG_Energy_RNA, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RG_Energy_RNA,  : rosetta.utility.vector1_bool) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.rna.RG_Energy_RNA, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.rna.RG_Energy_RNA, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
//////////////////////////////////////////////////////////////////////////

Methods inherited from rosetta.core.scoring.methods.WholeStructureEnergy:
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.methods.WholeStructureEnergy) -> float
 
how far apart must two heavy atoms be to have a zero interaction energy?
 
 
 If hydrogen atoms interact at the same range as heavy atoms, then
 this distance should build-in a 2 * max-bound-h-distance-cutoff buffer.
 There is an improper mixing here between run-time aquired chemical knowledge
 (max-bound-h-distance-cutoff) and compile time aquired scoring knowledge
 (max atom cutoff); this could be resolved by adding a boolean
 uses_hydrogen_interaction_distance() to the SRTBEnergy class along with
 a method of the ChemicalManager max_bound_h_distance_cutoff().
 
 This method allows the WholeStructureEnergy class to define which edges
 should be included in the EnergyGraph so that during the finalize() method
 the Energy class can iterate across the EnergyGraph.  This iteration occurrs
 in the SecondaryStructureEnergy class, where the edges must span 12 angstroms
 between the centroids.  Arguably, the SecondaryStructureEnergy class could use
 the TwelveANeighborGraph (a context graph) and not require that the EnergyGraph
 span such long distances.
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.WholeStructureEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RG_Energy_RNACreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RG_Energy_RNACreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RG_Energy_RNACreator,  : rosetta.core.scoring.rna.RG_Energy_RNACreator) -> rosetta.core.scoring.rna.RG_Energy_RNACreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RG_Energy_RNACreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RG_Energy_RNA
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RG_Energy_RNACreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_AtomVDW(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.rna.RNA_AtomVDW) -> NoneType
 
2. __init__(self : rosetta.core.scoring.rna.RNA_AtomVDW,  : rosetta.core.scoring.rna.RNA_AtomVDW) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_AtomVDW,  : rosetta.core.scoring.rna.RNA_AtomVDW) -> rosetta.core.scoring.rna.RNA_AtomVDW
bump_parameter(...) from builtins.PyCapsule
bump_parameter(self : rosetta.core.scoring.rna.RNA_AtomVDW, atom1 : int, atom2 : int, which_nucleotide1 : str, which_nucleotide2 : str) -> float
vdw_atom_list(...) from builtins.PyCapsule
vdw_atom_list(self : rosetta.core.scoring.rna.RNA_AtomVDW, which_nucleotide : str) -> rosetta.utility.vector1_std_string

 
class RNA_BulgeEnergy(rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy)
    
Method resolution order:
RNA_BulgeEnergy
rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy
rosetta.core.scoring.methods.OneBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_BulgeEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.rna.RNA_BulgeEnergy,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_BulgeEnergy,  : rosetta.utility.vector1_bool) -> NoneType
 
RNA_BulgeEnergy is context independent; indicates that no
 context graphs are required
residue_energy(...) from builtins.PyCapsule
residue_energy(self : rosetta.core.scoring.rna.RNA_BulgeEnergy, rsd : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
//////////////////////////////////////////////////////////////////////////
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.rna.RNA_BulgeEnergy) -> int

Methods inherited from rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType
 
Returns the ci_1b element of the EnergyMethodType enumeration; this
 method should NOT be overridden by derived classes.

Methods inherited from rosetta.core.scoring.methods.OneBodyEnergy:
defines_dof_derivatives(...) from builtins.PyCapsule
defines_dof_derivatives(self : rosetta.core.scoring.methods.OneBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_score_for_residue(...) from builtins.PyCapsule
defines_score_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy,  : rosetta.core.conformation.Residue) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default behavior is to return "true" for all residues.
eval_residue_derivatives(...) from builtins.PyCapsule
eval_residue_derivatives(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on this residue and increment them
 into the input atom_derivs vector1.  The calling function must guarantee that
 setup for derivatives is called before this function is, and that the atom_derivs
 vector contains at least as many entries as there are atoms in the input Residue.
 This base class provides a default noop implementation of this function.
eval_residue_dof_derivative(...) from builtins.PyCapsule
eval_residue_dof_derivative(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.OneBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.OneBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
residue_energy_ext(...) from builtins.PyCapsule
residue_energy_ext(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, pose : rosetta.core.pose.Pose, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the one-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 one body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResSingleMinimizationData object
 for the given residue in a call to setup_for_minimizing_for_residue before this function is
 invoked. This function should not be called unless the use_extended_residue_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit(). The Pose merely serves as context, and the input residue is not required
 to be a member of the Pose.
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : core::scoring::ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase,  : core::scoring::ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResSingleMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.   The Pose merely serves as context, and the input residue is not
 required to be a member of the Pose.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : core::scoring::ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue, who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
use_extended_residue_energy_interface(...) from builtins.PyCapsule
use_extended_residue_energy_interface(rosetta.core.scoring.methods.OneBodyEnergy) -> bool
 
Rely on the extended version of the residue_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResSingleMinimizationData.
 Return 'true' for the extended version.  The default method implemented in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.methods.EnergyMethod, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Evaluate the XYZ derivative for an atom in the pose.
 Called during the atomtree derivative calculation, atom_tree_minimize.cc,
 through the ScoreFunction::eval_atom_derivative intermediary.
 F1 and F2 should not zeroed, rather, this class should accumulate its contribution
 from this atom's XYZ derivative
 
 
 The derivative scheme is based on that of Abe, Braun, Noguti and Go (1984)
 "Rapid Calculation of First and Second Derivatives of Conformational Energy with
 Respect to Dihedral Angles for Proteins. General Recurrent Equations"
 Computers & Chemistry 8(4) pp. 239-247. F1 and F2 correspond roughly to Fa and Ga,
 respectively, of equations 7a & 7b in that paper.
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.

 
class RNA_BulgeEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_BulgeEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_BulgeEnergyCreator,  : rosetta.core.scoring.rna.RNA_BulgeEnergyCreator) -> rosetta.core.scoring.rna.RNA_BulgeEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_BulgeEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_BulgeEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_BulgeEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_CentroidInfo(rosetta.basic.datacache.CacheableData)
    /////////////////////////////////////////////////////////////////////////////////////////////////
 
 
 Keep track of RNA centroid information inside the pose.
/ Rhiju move this to its own namespace!
 
 
Method resolution order:
RNA_CentroidInfo
rosetta.basic.datacache.CacheableData
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RNA_CentroidInfo) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_CentroidInfo,  : rosetta.core.scoring.rna.RNA_CentroidInfo) -> rosetta.core.scoring.rna.RNA_CentroidInfo
base_centroids(...) from builtins.PyCapsule
base_centroids(rosetta.core.scoring.rna.RNA_CentroidInfo) -> rosetta.utility.vector1_numeric_xyzVector_double_t
base_stubs(...) from builtins.PyCapsule
base_stubs(rosetta.core.scoring.rna.RNA_CentroidInfo) -> rosetta.utility.vector1_core_kinematics_Stub
calculated(...) from builtins.PyCapsule
calculated(*args, **kwargs)
Overloaded function.
 
1. calculated(rosetta.core.scoring.rna.RNA_CentroidInfo) -> bool
 
2. calculated(rosetta.core.scoring.rna.RNA_CentroidInfo) -> bool
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_CentroidInfo) -> rosetta.basic.datacache.CacheableData
get_base_centroid(...) from builtins.PyCapsule
get_base_centroid(self : rosetta.core.scoring.rna.RNA_CentroidInfo, rsd : rosetta.core.conformation.Residue) -> rosetta.numeric.xyzVector_double_t
get_base_coordinate_system(...) from builtins.PyCapsule
get_base_coordinate_system(*args, **kwargs)
Overloaded function.
 
1. get_base_coordinate_system(self : rosetta.core.scoring.rna.RNA_CentroidInfo, rsd : rosetta.core.conformation.Residue, centroid : rosetta.numeric.xyzVector_double_t) -> rosetta.core.kinematics.Stub
 
2. get_base_coordinate_system(self : rosetta.core.scoring.rna.RNA_CentroidInfo, rsd : rosetta.core.conformation.Residue) -> rosetta.core.kinematics.Stub
set_calculated(...) from builtins.PyCapsule
set_calculated(self : rosetta.core.scoring.rna.RNA_CentroidInfo, setting : bool) -> NoneType
size(...) from builtins.PyCapsule
size(rosetta.core.scoring.rna.RNA_CentroidInfo) -> int
update(...) from builtins.PyCapsule
update(self : rosetta.core.scoring.rna.RNA_CentroidInfo, pose : rosetta.core.pose.Pose) -> NoneType

Methods inherited from rosetta.basic.datacache.CacheableData:
get_self_ptr(...) from builtins.PyCapsule
get_self_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.basic.datacache.CacheableData
 
self pointers
 
2. get_self_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.basic.datacache.CacheableData
get_self_weak_ptr(...) from builtins.PyCapsule
get_self_weak_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_weak_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.std.weak_ptr_const_basic_datacache_CacheableData_t
 
2. get_self_weak_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.std.weak_ptr_basic_datacache_CacheableData_t

 
class RNA_EnergyMethodOptions(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> NoneType
 
2. __init__(self : rosetta.core.scoring.rna.RNA_EnergyMethodOptions,  : rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
__str__(...) from builtins.PyCapsule
__str__(rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> str
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_EnergyMethodOptions,  : rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> rosetta.core.scoring.rna.RNA_EnergyMethodOptions
initialize_from_options(...) from builtins.PyCapsule
initialize_from_options(rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> NoneType
suiteness_bonus(...) from builtins.PyCapsule
suiteness_bonus(*args, **kwargs)
Overloaded function.
 
1. suiteness_bonus(rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> str
 
Parameter for changing suiteness_bonus directory name.
 
2. suiteness_bonus(self : rosetta.core.scoring.rna.RNA_EnergyMethodOptions, setting : str) -> NoneType
syn_G_potential_bonus(...) from builtins.PyCapsule
syn_G_potential_bonus(*args, **kwargs)
Overloaded function.
 
1. syn_G_potential_bonus(rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> float
 
Parameter for adjusting syn-G potential level in RNA_TorsionPotential.
 
2. syn_G_potential_bonus(self : rosetta.core.scoring.rna.RNA_EnergyMethodOptions, setting : float) -> NoneType
torsion_potential(...) from builtins.PyCapsule
torsion_potential(*args, **kwargs)
Overloaded function.
 
1. torsion_potential(rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> str
 
Parameter for changing torsion_potential directory name.
 
2. torsion_potential(self : rosetta.core.scoring.rna.RNA_EnergyMethodOptions, setting : str) -> NoneType

 
class RNA_FilteredBaseBaseInfo(rosetta.basic.datacache.CacheableData)
    /////////////////////////////////////////////////////////////////////////////////////////////////
 
 
 Keep track of RNA centroid information inside the pose.
/ Rhiju move this to its own namespace!
 
 
Method resolution order:
RNA_FilteredBaseBaseInfo
rosetta.basic.datacache.CacheableData
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo,  : rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo
basepair_axis_stagger_scaling(...) from builtins.PyCapsule
basepair_axis_stagger_scaling(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> float
basestack_axis_scaling(...) from builtins.PyCapsule
basestack_axis_scaling(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> float
calculated(...) from builtins.PyCapsule
calculated(*args, **kwargs)
Overloaded function.
 
1. calculated(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> bool
 
2. calculated(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> bool
carry_out_filtering(...) from builtins.PyCapsule
carry_out_filtering(self : rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo, raw_base_base_info : rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> NoneType
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> rosetta.basic.datacache.CacheableData
filtered_base_axis_array(...) from builtins.PyCapsule
filtered_base_axis_array(*args, **kwargs)
Overloaded function.
 
1. filtered_base_axis_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. filtered_base_axis_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
filtered_base_pair_array(...) from builtins.PyCapsule
filtered_base_pair_array(*args, **kwargs)
Overloaded function.
 
1. filtered_base_pair_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. filtered_base_pair_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
filtered_base_stack_array(...) from builtins.PyCapsule
filtered_base_stack_array(*args, **kwargs)
Overloaded function.
 
1. filtered_base_stack_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. filtered_base_stack_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
filtered_base_stack_axis_array(...) from builtins.PyCapsule
filtered_base_stack_axis_array(*args, **kwargs)
Overloaded function.
 
1. filtered_base_stack_axis_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. filtered_base_stack_axis_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
filtered_base_stagger_array(...) from builtins.PyCapsule
filtered_base_stagger_array(*args, **kwargs)
Overloaded function.
 
1. filtered_base_stagger_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. filtered_base_stagger_array(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
get_data_score(...) from builtins.PyCapsule
get_data_score(self : rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo, rna_data_info : rosetta.core.scoring.rna.data.RNA_DataInfo) -> float
get_total_base_axis_score(...) from builtins.PyCapsule
get_total_base_axis_score(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> float
get_total_base_pair_score(...) from builtins.PyCapsule
get_total_base_pair_score(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> float
get_total_base_stack_axis_score(...) from builtins.PyCapsule
get_total_base_stack_axis_score(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> float
get_total_base_stack_score(...) from builtins.PyCapsule
get_total_base_stack_score(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> float
get_total_base_stagger_score(...) from builtins.PyCapsule
get_total_base_stagger_score(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> float
resize(...) from builtins.PyCapsule
resize(self : rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo, total_residue : int) -> NoneType
scale_axis_stagger(...) from builtins.PyCapsule
scale_axis_stagger(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> bool
scored_base_pair_list(...) from builtins.PyCapsule
scored_base_pair_list(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> rosetta.std.list_std_pair_double_core_pose_rna_BasePair_std_allocator_std_pair_double_core_pose_rna_BasePair_t
set_calculated(...) from builtins.PyCapsule
set_calculated(self : rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo, setting : bool) -> NoneType
size(...) from builtins.PyCapsule
size(rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo) -> int

Methods inherited from rosetta.basic.datacache.CacheableData:
get_self_ptr(...) from builtins.PyCapsule
get_self_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.basic.datacache.CacheableData
 
self pointers
 
2. get_self_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.basic.datacache.CacheableData
get_self_weak_ptr(...) from builtins.PyCapsule
get_self_weak_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_weak_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.std.weak_ptr_const_basic_datacache_CacheableData_t
 
2. get_self_weak_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.std.weak_ptr_basic_datacache_CacheableData_t

 
class RNA_FullAtomStackingEnergy(rosetta.core.scoring.methods.ContextDependentTwoBodyEnergy)
    
Method resolution order:
RNA_FullAtomStackingEnergy
rosetta.core.scoring.methods.ContextDependentTwoBodyEnergy
rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy,  : rosetta.core.scoring.EMapVector) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>,  : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
get_count_pair_function(...) from builtins.PyCapsule
get_count_pair_function(*args, **kwargs)
Overloaded function.
 
1. get_count_pair_function(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy,  : int,  : int,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> rosetta.core.scoring.etable.count_pair.CountPairFunction
 
Interface function for class NeighborList.
 
2. get_count_pair_function(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue) -> rosetta.core.scoring.etable.count_pair.CountPairFunction
get_intrares_countpair(...) from builtins.PyCapsule
get_intrares_countpair(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> rosetta.core.scoring.etable.count_pair.CountPairFunction
 
Interface function for class NeighborList.
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy,  : rosetta.utility.vector1_bool) -> NoneType
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy, pose : rosetta.core.pose.Pose, scfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_map : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergy, pose : rosetta.core.pose.Pose, scfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
//////////////////////////////////////////////////////////////////////////

Methods inherited from rosetta.core.scoring.methods.ContextDependentTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextDependentTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextDependentTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextDependentTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextDependentTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy:
divides_backbone_and_sidechain_energetics(...) from builtins.PyCapsule
divides_backbone_and_sidechain_energetics(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy) -> bool
 
A derived class should return true for this function if it implements its own
 versions of the backbone_backbone_energy, backbone_sidechain_energy and
 sidechain_sidechain_energy functions.  The default sidechain_sidechain_energy implemented
 by the TwoBodyEnergy base class calls residue_pair_energy.  If the derived class implements its own
 versions of these functions, then calling code may avoid calling it on pairs of residues
 that are "provably distant" based on a pair of bounding spheres for a sidechains and
 backbones and this method's atomic_interaction_cutoff energy method.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls derived class's residue_pair_energy method.  Since short range rotamer pairs
 may not need calculation, the default method looks at blocks of residue type pairs
 and only calls the residue_pair_energy method if the rotamer pairs are within range

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_FullAtomStackingEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_FullAtomStackingEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergyCreator,  : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergyCreator) -> rosetta.core.scoring.rna.RNA_FullAtomStackingEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_FullAtomStackingEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_FullAtomStackingEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_FullAtomStackingEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_FullAtomVDW_BasePhosphate(rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy)
    
Method resolution order:
RNA_FullAtomVDW_BasePhosphate
rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy
rosetta.core.scoring.methods.OneBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(self : handle, options : rosetta.core.scoring.methods.EnergyMethodOptions) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphate) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphate, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose,  : ObjexxFCL::FArray1D<int>,  : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
residue_energy(...) from builtins.PyCapsule
residue_energy(*args, **kwargs)
Overloaded function.
 
1. residue_energy(self : rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphate, rsd : rosetta.core.conformation.Residue, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
2. residue_energy(self : rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphate, rsd : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose, emap : rosetta.core.scoring.EMapVector) -> NoneType
residue_fast_pair_energy_attached_H(...) from builtins.PyCapsule
residue_fast_pair_energy_attached_H(self : rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphate, res1 : rosetta.core.conformation.Residue, atomno1 : int, res2 : rosetta.core.conformation.Residue, atomno2 : int, at1hbegin : int, at1hend : int, at2hbegin : int, at2hend : int, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
//////////////////////////////////////////////////////////////////////////

Methods inherited from rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType
 
Returns the ci_1b element of the EnergyMethodType enumeration; this
 method should NOT be overridden by derived classes.

Methods inherited from rosetta.core.scoring.methods.OneBodyEnergy:
defines_dof_derivatives(...) from builtins.PyCapsule
defines_dof_derivatives(self : rosetta.core.scoring.methods.OneBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_score_for_residue(...) from builtins.PyCapsule
defines_score_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy,  : rosetta.core.conformation.Residue) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default behavior is to return "true" for all residues.
eval_residue_derivatives(...) from builtins.PyCapsule
eval_residue_derivatives(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on this residue and increment them
 into the input atom_derivs vector1.  The calling function must guarantee that
 setup for derivatives is called before this function is, and that the atom_derivs
 vector contains at least as many entries as there are atoms in the input Residue.
 This base class provides a default noop implementation of this function.
eval_residue_dof_derivative(...) from builtins.PyCapsule
eval_residue_dof_derivative(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.OneBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.OneBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
residue_energy_ext(...) from builtins.PyCapsule
residue_energy_ext(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, pose : rosetta.core.pose.Pose, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the one-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 one body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResSingleMinimizationData object
 for the given residue in a call to setup_for_minimizing_for_residue before this function is
 invoked. This function should not be called unless the use_extended_residue_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit(). The Pose merely serves as context, and the input residue is not required
 to be a member of the Pose.
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : core::scoring::ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase,  : core::scoring::ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResSingleMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.   The Pose merely serves as context, and the input residue is not
 required to be a member of the Pose.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : core::scoring::ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue, who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
use_extended_residue_energy_interface(...) from builtins.PyCapsule
use_extended_residue_energy_interface(rosetta.core.scoring.methods.OneBodyEnergy) -> bool
 
Rely on the extended version of the residue_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResSingleMinimizationData.
 Return 'true' for the extended version.  The default method implemented in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, total_energy : rosetta.core.scoring.EMapVector) -> NoneType
 
called by the ScoreFunction at the end of energy evaluation.
 The derived class has the opportunity to accumulate a score
 into the pose's total_energy EnergyMap.  WholeStructure energies
 operate within this method; any method using a NeighborList during
 minimization would also operate within this function call.
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.methods.EnergyMethod, context_graphs_required : rosetta.utility.vector1_bool) -> NoneType
 
Indicate in the context-graphs-required list which
 context-graphs this energy method requires that the Pose
 maintain when doing neighbor evaluation.  Context graphs are
 allowed
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_FullAtomVDW_BasePhosphateCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_FullAtomVDW_BasePhosphateCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphateCreator,  : rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphateCreator) -> rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphateCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphateCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_FullAtomVDW_BasePhosphate
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_FullAtomVDW_BasePhosphateCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_JR_SuiteEnergy(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy)
    
Method resolution order:
RNA_JR_SuiteEnergy
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.RNA_JR_SuiteEnergy) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_JR_SuiteEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.RNA_JR_SuiteEnergy,  : rosetta.core.scoring.EMapVector) -> bool
defines_residue_pair_energy(...) from builtins.PyCapsule
defines_residue_pair_energy(self : rosetta.core.scoring.rna.RNA_JR_SuiteEnergy,  : rosetta.core.scoring.EMapVector) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_JR_SuiteEnergy,  : rosetta.core.id.AtomID,  : rosetta.core.pose.Pose,  : ObjexxFCL::FArray1D<int>,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector,  : rosetta.numeric.xyzVector_double_t,  : rosetta.numeric.xyzVector_double_t) -> NoneType
 
called during gradient-based minimization inside dfunc
 
        F1 and F2 are not zeroed -- contributions from this atom are
        just summed in
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.RNA_JR_SuiteEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue constraint energy for a given residue
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_JR_SuiteEnergy,  : rosetta.utility.vector1_bool) -> NoneType
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.RNA_JR_SuiteEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType

Methods inherited from rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy:
divides_backbone_and_sidechain_energetics(...) from builtins.PyCapsule
divides_backbone_and_sidechain_energetics(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy) -> bool
 
A derived class should return true for this function if it implements its own
 versions of the backbone_backbone_energy, backbone_sidechain_energy and
 sidechain_sidechain_energy functions.  The default sidechain_sidechain_energy implemented
 by the TwoBodyEnergy base class calls residue_pair_energy.  If the derived class implements its own
 versions of these functions, then calling code may avoid calling it on pairs of residues
 that are "provably distant" based on a pair of bounding spheres for a sidechains and
 backbones and this method's atomic_interaction_cutoff energy method.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls derived class's residue_pair_energy method.  Since short range rotamer pairs
 may not need calculation, the default method looks at blocks of residue type pairs
 and only calls the residue_pair_energy method if the rotamer pairs are within range

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, total_energy : rosetta.core.scoring.EMapVector) -> NoneType
 
called by the ScoreFunction at the end of energy evaluation.
 The derived class has the opportunity to accumulate a score
 into the pose's total_energy EnergyMap.  WholeStructure energies
 operate within this method; any method using a NeighborList during
 minimization would also operate within this function call.
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_JR_SuiteEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_JR_SuiteEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_JR_SuiteEnergyCreator,  : rosetta.core.scoring.rna.RNA_JR_SuiteEnergyCreator) -> rosetta.core.scoring.rna.RNA_JR_SuiteEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_JR_SuiteEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_JR_SuiteEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_JR_SuiteEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_LJ_BaseEnergy(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy)
    
Method resolution order:
RNA_LJ_BaseEnergy
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : handle, etable_in : rosetta.core.scoring.etable.Etable) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RNA_LJ_BaseEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.RNA_LJ_BaseEnergy) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_LJ_BaseEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergy,  : rosetta.core.scoring.EMapVector) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergy, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
called during gradient-based minimization inside dfunc
 
        F1 and F2 are not zeroed -- contributions from this atom are
        just summed in
eval_atom_energy(...) from builtins.PyCapsule
eval_atom_energy(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergy, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose) -> float
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergy, context_graphs_required : rosetta.utility.vector1_bool) -> NoneType
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergy, pose : rosetta.core.pose.Pose, scfxn : rosetta.core.scoring.ScoreFunction) -> NoneType

Methods inherited from rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy:
divides_backbone_and_sidechain_energetics(...) from builtins.PyCapsule
divides_backbone_and_sidechain_energetics(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy) -> bool
 
A derived class should return true for this function if it implements its own
 versions of the backbone_backbone_energy, backbone_sidechain_energy and
 sidechain_sidechain_energy functions.  The default sidechain_sidechain_energy implemented
 by the TwoBodyEnergy base class calls residue_pair_energy.  If the derived class implements its own
 versions of these functions, then calling code may avoid calling it on pairs of residues
 that are "provably distant" based on a pair of bounding spheres for a sidechains and
 backbones and this method's atomic_interaction_cutoff energy method.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls derived class's residue_pair_energy method.  Since short range rotamer pairs
 may not need calculation, the default method looks at blocks of residue type pairs
 and only calls the residue_pair_energy method if the rotamer pairs are within range

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, total_energy : rosetta.core.scoring.EMapVector) -> NoneType
 
called by the ScoreFunction at the end of energy evaluation.
 The derived class has the opportunity to accumulate a score
 into the pose's total_energy EnergyMap.  WholeStructure energies
 operate within this method; any method using a NeighborList during
 minimization would also operate within this function call.
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_LJ_BaseEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_LJ_BaseEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergyCreator,  : rosetta.core.scoring.rna.RNA_LJ_BaseEnergyCreator) -> rosetta.core.scoring.rna.RNA_LJ_BaseEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_LJ_BaseEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_LJ_BaseEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_LJ_BaseEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_LowResolutionPotential(builtins.object)
    /////////////////////////////////////////////////////////////////////////////////////////////////
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.rna.RNA_LowResolutionPotential) -> NoneType
 
2. __init__(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential,  : rosetta.core.scoring.rna.RNA_LowResolutionPotential) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
base_backbone_distance_cutoff(...) from builtins.PyCapsule
base_backbone_distance_cutoff(rosetta.core.scoring.rna.RNA_LowResolutionPotential) -> float
base_backbone_rho_cutoff(...) from builtins.PyCapsule
base_backbone_rho_cutoff(rosetta.core.scoring.rna.RNA_LowResolutionPotential) -> float
base_backbone_z_cutoff(...) from builtins.PyCapsule
base_backbone_z_cutoff(rosetta.core.scoring.rna.RNA_LowResolutionPotential) -> float
check_clear_for_stacking(...) from builtins.PyCapsule
check_clear_for_stacking(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, pose : rosetta.core.pose.Pose, i : int, sign : int) -> bool
check_for_base_neighbor(...) from builtins.PyCapsule
check_for_base_neighbor(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, rsd1 : rosetta.core.conformation.Residue, heavy_atom_j : rosetta.numeric.xyzVector_double_t, atom_cutoff_weight : float) -> bool
check_forming_base_pair(...) from builtins.PyCapsule
check_forming_base_pair(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, pose : rosetta.core.pose.Pose, i : int, j : int) -> bool
eval_atom_derivative_base_base(...) from builtins.PyCapsule
eval_atom_derivative_base_base(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_atom_derivative_rna_backbone_backbone(...) from builtins.PyCapsule
eval_atom_derivative_rna_backbone_backbone(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_atom_derivative_rna_base_backbone(...) from builtins.PyCapsule
eval_atom_derivative_rna_base_backbone(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_atom_derivative_rna_repulsive(...) from builtins.PyCapsule
eval_atom_derivative_rna_repulsive(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_rna_base_pair_energy(...) from builtins.PyCapsule
eval_rna_base_pair_energy(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, rna_raw_base_base_info : rosetta.core.scoring.rna.RNA_RawBaseBaseInfo, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, centroid1 : rosetta.numeric.xyzVector_double_t, centroid2 : rosetta.numeric.xyzVector_double_t, stub1 : rosetta.core.kinematics.Stub, stub2 : rosetta.core.kinematics.Stub) -> NoneType
finalize(...) from builtins.PyCapsule
finalize(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, pose : rosetta.core.pose.Pose) -> NoneType
get_rna_stack_score(...) from builtins.PyCapsule
get_rna_stack_score(*args, **kwargs)
Overloaded function.
 
1. get_rna_stack_score(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, x : float, y : float, z : float) -> float
 
2. get_rna_stack_score(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, x : float, y : float, z : float, deriv_x : float) -> float
 
3. get_rna_stack_score(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, x : float, y : float, z : float, deriv_x : float, deriv_y : float) -> float
 
4. get_rna_stack_score(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, x : float, y : float, z : float, deriv_x : float, deriv_y : float, deriv_z : float) -> float
get_zeta_cutoff(...) from builtins.PyCapsule
get_zeta_cutoff(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, res_i : rosetta.core.conformation.Residue, zeta_hoogsteen_cutoff : float, zeta_sugar_cutoff : float) -> NoneType
more_precise_base_pair_classification(...) from builtins.PyCapsule
more_precise_base_pair_classification(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, value : bool) -> NoneType
rna_backbone_backbone_pair_energy(...) from builtins.PyCapsule
rna_backbone_backbone_pair_energy(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue) -> float
rna_base_backbone_pair_energy(...) from builtins.PyCapsule
rna_base_backbone_pair_energy(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, centroid1 : rosetta.numeric.xyzVector_double_t, centroid2 : rosetta.numeric.xyzVector_double_t, stub1 : rosetta.core.kinematics.Stub, stub2 : rosetta.core.kinematics.Stub) -> float
rna_repulsive_pair_energy(...) from builtins.PyCapsule
rna_repulsive_pair_energy(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue) -> float
update_rna_base_base_interactions(...) from builtins.PyCapsule
update_rna_base_base_interactions(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, pose : rosetta.core.pose.Pose) -> NoneType
update_rna_base_pair_list(...) from builtins.PyCapsule
update_rna_base_pair_list(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, pose : rosetta.core.pose.Pose) -> NoneType
update_rna_centroid_info(...) from builtins.PyCapsule
update_rna_centroid_info(self : rosetta.core.scoring.rna.RNA_LowResolutionPotential, pose : rosetta.core.pose.Pose) -> NoneType

 
class RNA_PairwiseLowResolutionEnergy(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy)
    
Method resolution order:
RNA_PairwiseLowResolutionEnergy
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy,  : rosetta.core.scoring.EMapVector) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, scorefxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy,  : rosetta.utility.vector1_bool) -> NoneType
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy, pose : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool, designing_residues : rosetta.utility.vector1_bool) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
//////////////////////////////////////////////////////////////////////////

Methods inherited from rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy:
divides_backbone_and_sidechain_energetics(...) from builtins.PyCapsule
divides_backbone_and_sidechain_energetics(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy) -> bool
 
A derived class should return true for this function if it implements its own
 versions of the backbone_backbone_energy, backbone_sidechain_energy and
 sidechain_sidechain_energy functions.  The default sidechain_sidechain_energy implemented
 by the TwoBodyEnergy base class calls residue_pair_energy.  If the derived class implements its own
 versions of these functions, then calling code may avoid calling it on pairs of residues
 that are "provably distant" based on a pair of bounding spheres for a sidechains and
 backbones and this method's atomic_interaction_cutoff energy method.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls derived class's residue_pair_energy method.  Since short range rotamer pairs
 may not need calculation, the default method looks at blocks of residue type pairs
 and only calls the residue_pair_energy method if the rotamer pairs are within range

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_PairwiseLowResolutionEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_PairwiseLowResolutionEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergyCreator,  : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergyCreator) -> rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_PairwiseLowResolutionEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_PairwiseLowResolutionEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_RawBaseBaseInfo(rosetta.basic.datacache.CacheableData)
    /////////////////////////////////////////////////////////////////////////////////////////////////
 
 
 Keep track of RNA centroid information inside the pose.
/ Rhiju move this to its own namespace!
/ Also, should probably use EnergyGraph instead of FArrays -- much smaller memory footprint (!)
/
 
 
Method resolution order:
RNA_RawBaseBaseInfo
rosetta.basic.datacache.CacheableData
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_RawBaseBaseInfo,  : rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> rosetta.core.scoring.rna.RNA_RawBaseBaseInfo
base_axis_array(...) from builtins.PyCapsule
base_axis_array(*args, **kwargs)
Overloaded function.
 
1. base_axis_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray3D<double>
 
2. base_axis_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray3D<double>
base_geometry_height_array(...) from builtins.PyCapsule
base_geometry_height_array(*args, **kwargs)
Overloaded function.
 
1. base_geometry_height_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. base_geometry_height_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
base_geometry_orientation_array(...) from builtins.PyCapsule
base_geometry_orientation_array(*args, **kwargs)
Overloaded function.
 
1. base_geometry_orientation_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. base_geometry_orientation_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
base_pair_array(...) from builtins.PyCapsule
base_pair_array(*args, **kwargs)
Overloaded function.
 
1. base_pair_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray3D<double>
 
2. base_pair_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray3D<double>
base_stack_array(...) from builtins.PyCapsule
base_stack_array(*args, **kwargs)
Overloaded function.
 
1. base_stack_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. base_stack_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
base_stack_axis_array(...) from builtins.PyCapsule
base_stack_axis_array(*args, **kwargs)
Overloaded function.
 
1. base_stack_axis_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
 
2. base_stack_axis_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray2D<double>
base_stagger_array(...) from builtins.PyCapsule
base_stagger_array(*args, **kwargs)
Overloaded function.
 
1. base_stagger_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray3D<double>
 
2. base_stagger_array(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> ObjexxFCL::FArray3D<double>
calculated(...) from builtins.PyCapsule
calculated(*args, **kwargs)
Overloaded function.
 
1. calculated(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> bool
 
2. calculated(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> bool
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> rosetta.basic.datacache.CacheableData
copy_values(...) from builtins.PyCapsule
copy_values(self : rosetta.core.scoring.rna.RNA_RawBaseBaseInfo, src : rosetta.core.scoring.rna.RNA_RawBaseBaseInfo, i : int, j : int) -> NoneType
resize(...) from builtins.PyCapsule
resize(self : rosetta.core.scoring.rna.RNA_RawBaseBaseInfo, total_residue : int) -> NoneType
set_calculated(...) from builtins.PyCapsule
set_calculated(self : rosetta.core.scoring.rna.RNA_RawBaseBaseInfo, setting : bool) -> NoneType
size(...) from builtins.PyCapsule
size(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> int
zero(...) from builtins.PyCapsule
zero(rosetta.core.scoring.rna.RNA_RawBaseBaseInfo) -> NoneType

Methods inherited from rosetta.basic.datacache.CacheableData:
get_self_ptr(...) from builtins.PyCapsule
get_self_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.basic.datacache.CacheableData
 
self pointers
 
2. get_self_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.basic.datacache.CacheableData
get_self_weak_ptr(...) from builtins.PyCapsule
get_self_weak_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_weak_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.std.weak_ptr_const_basic_datacache_CacheableData_t
 
2. get_self_weak_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.std.weak_ptr_basic_datacache_CacheableData_t

 
class RNA_ScoringInfo(rosetta.basic.datacache.CacheableData)
    /////////////////////////////////////////////////////////////////////////////////////////////////
 
 
Keep track of RNA centroid, useful atom, base-base info inside the pose.
 
 
Method resolution order:
RNA_ScoringInfo
rosetta.basic.datacache.CacheableData
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RNA_ScoringInfo) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_ScoringInfo,  : rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.RNA_ScoringInfo
atom_numbers_for_mg_calculation(...) from builtins.PyCapsule
atom_numbers_for_mg_calculation(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.utility.vector1_utility_vector1_unsigned_long_std_allocator_unsigned_long_t
atom_numbers_for_vdw_calculation(...) from builtins.PyCapsule
atom_numbers_for_vdw_calculation(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.utility.vector1_utility_vector1_unsigned_long_std_allocator_unsigned_long_t
calculated(...) from builtins.PyCapsule
calculated(rosetta.core.scoring.rna.RNA_ScoringInfo) -> bool
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.basic.datacache.CacheableData
is_magnesium(...) from builtins.PyCapsule
is_magnesium(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.utility.vector1_bool
mg_calculation_annotated_sequence(...) from builtins.PyCapsule
mg_calculation_annotated_sequence(rosetta.core.scoring.rna.RNA_ScoringInfo) -> str
nonconst_atom_numbers_for_mg_calculation(...) from builtins.PyCapsule
nonconst_atom_numbers_for_mg_calculation(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.utility.vector1_utility_vector1_unsigned_long_std_allocator_unsigned_long_t
nonconst_atom_numbers_for_vdw_calculation(...) from builtins.PyCapsule
nonconst_atom_numbers_for_vdw_calculation(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.utility.vector1_utility_vector1_unsigned_long_std_allocator_unsigned_long_t
nonconst_is_magnesium(...) from builtins.PyCapsule
nonconst_is_magnesium(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.utility.vector1_bool
rna_centroid_info(...) from builtins.PyCapsule
rna_centroid_info(*args, **kwargs)
Overloaded function.
 
1. rna_centroid_info(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.RNA_CentroidInfo
 
2. rna_centroid_info(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.RNA_CentroidInfo
rna_data_info(...) from builtins.PyCapsule
rna_data_info(*args, **kwargs)
Overloaded function.
 
1. rna_data_info(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.data.RNA_DataInfo
 
2. rna_data_info(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.data.RNA_DataInfo
rna_filtered_base_base_info(...) from builtins.PyCapsule
rna_filtered_base_base_info(*args, **kwargs)
Overloaded function.
 
1. rna_filtered_base_base_info(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo
 
2. rna_filtered_base_base_info(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.RNA_FilteredBaseBaseInfo
rna_raw_base_base_info(...) from builtins.PyCapsule
rna_raw_base_base_info(*args, **kwargs)
Overloaded function.
 
1. rna_raw_base_base_info(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.RNA_RawBaseBaseInfo
 
2. rna_raw_base_base_info(rosetta.core.scoring.rna.RNA_ScoringInfo) -> rosetta.core.scoring.rna.RNA_RawBaseBaseInfo
set_mg_calculation_annotated_sequence(...) from builtins.PyCapsule
set_mg_calculation_annotated_sequence(self : rosetta.core.scoring.rna.RNA_ScoringInfo, sequence : str) -> NoneType
set_vdw_calculation_annotated_sequence(...) from builtins.PyCapsule
set_vdw_calculation_annotated_sequence(self : rosetta.core.scoring.rna.RNA_ScoringInfo, sequence : str) -> NoneType
size(...) from builtins.PyCapsule
size(rosetta.core.scoring.rna.RNA_ScoringInfo) -> int
vdw_calculation_annotated_sequence(...) from builtins.PyCapsule
vdw_calculation_annotated_sequence(rosetta.core.scoring.rna.RNA_ScoringInfo) -> str

Methods inherited from rosetta.basic.datacache.CacheableData:
get_self_ptr(...) from builtins.PyCapsule
get_self_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.basic.datacache.CacheableData
 
self pointers
 
2. get_self_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.basic.datacache.CacheableData
get_self_weak_ptr(...) from builtins.PyCapsule
get_self_weak_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_weak_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.std.weak_ptr_const_basic_datacache_CacheableData_t
 
2. get_self_weak_ptr(rosetta.basic.datacache.CacheableData) -> rosetta.std.weak_ptr_basic_datacache_CacheableData_t

 
class RNA_SugarCloseEnergy(rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy)
    
Method resolution order:
RNA_SugarCloseEnergy
rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy
rosetta.core.scoring.methods.OneBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RNA_SugarCloseEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_sugar_ring_closure_constraints(...) from builtins.PyCapsule
add_sugar_ring_closure_constraints(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergy, rsd : rosetta.core.conformation.Residue, cst_set : rosetta.core.scoring.constraints.ConstraintSet) -> NoneType
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_SugarCloseEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergy, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose,  : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
////////////////////////////////////////////////////////////////////////////
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergy,  : rosetta.utility.vector1_bool) -> NoneType
 
RNA_SugarCloseEnergy is context independent; indicates that no
 context graphs are required
residue_energy(...) from builtins.PyCapsule
residue_energy(*args, **kwargs)
Overloaded function.
 
1. residue_energy(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergy, rsd : rosetta.core.conformation.Residue, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
//////////////////////////////////////////////////////////////////////////
 
2. residue_energy(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergy, rsd : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_sugar_ring_closure_constraints(...) from builtins.PyCapsule
setup_sugar_ring_closure_constraints(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergy, pose : rosetta.core.pose.Pose) -> NoneType

Methods inherited from rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentOneBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType
 
Returns the ci_1b element of the EnergyMethodType enumeration; this
 method should NOT be overridden by derived classes.

Methods inherited from rosetta.core.scoring.methods.OneBodyEnergy:
defines_dof_derivatives(...) from builtins.PyCapsule
defines_dof_derivatives(self : rosetta.core.scoring.methods.OneBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_score_for_residue(...) from builtins.PyCapsule
defines_score_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy,  : rosetta.core.conformation.Residue) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default behavior is to return "true" for all residues.
eval_residue_derivatives(...) from builtins.PyCapsule
eval_residue_derivatives(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on this residue and increment them
 into the input atom_derivs vector1.  The calling function must guarantee that
 setup for derivatives is called before this function is, and that the atom_derivs
 vector contains at least as many entries as there are atoms in the input Residue.
 This base class provides a default noop implementation of this function.
eval_residue_dof_derivative(...) from builtins.PyCapsule
eval_residue_dof_derivative(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.OneBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.OneBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
residue_energy_ext(...) from builtins.PyCapsule
residue_energy_ext(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : core::scoring::ResSingleMinimizationData, pose : rosetta.core.pose.Pose, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the one-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 one body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResSingleMinimizationData object
 for the given residue in a call to setup_for_minimizing_for_residue before this function is
 invoked. This function should not be called unless the use_extended_residue_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit(). The Pose merely serves as context, and the input residue is not required
 to be a member of the Pose.
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : core::scoring::ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase,  : core::scoring::ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResSingleMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.   The Pose merely serves as context, and the input residue is not
 required to be a member of the Pose.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.OneBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : core::scoring::ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue, who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
use_extended_residue_energy_interface(...) from builtins.PyCapsule
use_extended_residue_energy_interface(rosetta.core.scoring.methods.OneBodyEnergy) -> bool
 
Rely on the extended version of the residue_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResSingleMinimizationData.
 Return 'true' for the extended version.  The default method implemented in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, total_energy : rosetta.core.scoring.EMapVector) -> NoneType
 
called by the ScoreFunction at the end of energy evaluation.
 The derived class has the opportunity to accumulate a score
 into the pose's total_energy EnergyMap.  WholeStructure energies
 operate within this method; any method using a NeighborList during
 minimization would also operate within this function call.
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_SugarCloseEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_SugarCloseEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergyCreator,  : rosetta.core.scoring.rna.RNA_SugarCloseEnergyCreator) -> rosetta.core.scoring.rna.RNA_SugarCloseEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_SugarCloseEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_SugarCloseEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_SugarCloseEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_SuiteEnergy(rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy)
    
Method resolution order:
RNA_SuiteEnergy
rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy
rosetta.core.scoring.methods.LongRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : handle, options : rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.RNA_SuiteEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.RNA_SuiteEnergy) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_SuiteEnergy) -> rosetta.core.scoring.methods.EnergyMethod
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.rna.RNA_SuiteEnergy,  : rosetta.core.pose.Pose) -> bool
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.RNA_SuiteEnergy,  : rosetta.core.scoring.EMapVector) -> bool
defines_residue_pair_energy(...) from builtins.PyCapsule
defines_residue_pair_energy(self : rosetta.core.scoring.rna.RNA_SuiteEnergy,  : rosetta.core.pose.Pose, res1 : int, res2 : int) -> bool
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.RNA_SuiteEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.rna.RNA_SuiteEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData,  : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_SuiteEnergy,  : rosetta.utility.vector1_bool) -> NoneType
long_range_type(...) from builtins.PyCapsule
long_range_type(rosetta.core.scoring.rna.RNA_SuiteEnergy) -> rosetta.core.scoring.methods.LongRangeEnergyType
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.rna.RNA_SuiteEnergy,  : rosetta.core.pose.Pose) -> bool
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.RNA_SuiteEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.rna.RNA_SuiteEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType

Methods inherited from rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls the derived class's residue_pair_energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.methods.EnergyMethod, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Evaluate the XYZ derivative for an atom in the pose.
 Called during the atomtree derivative calculation, atom_tree_minimize.cc,
 through the ScoreFunction::eval_atom_derivative intermediary.
 F1 and F2 should not zeroed, rather, this class should accumulate its contribution
 from this atom's XYZ derivative
 
 
 The derivative scheme is based on that of Abe, Braun, Noguti and Go (1984)
 "Rapid Calculation of First and Second Derivatives of Conformational Energy with
 Respect to Dihedral Angles for Proteins. General Recurrent Equations"
 Computers & Chemistry 8(4) pp. 239-247. F1 and F2 correspond roughly to Fa and Ga,
 respectively, of equations 7a & 7b in that paper.
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, total_energy : rosetta.core.scoring.EMapVector) -> NoneType
 
called by the ScoreFunction at the end of energy evaluation.
 The derived class has the opportunity to accumulate a score
 into the pose's total_energy EnergyMap.  WholeStructure energies
 operate within this method; any method using a NeighborList during
 minimization would also operate within this function call.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_SuiteEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_SuiteEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_SuiteEnergyCreator,  : rosetta.core.scoring.rna.RNA_SuiteEnergyCreator) -> rosetta.core.scoring.rna.RNA_SuiteEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_SuiteEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_SuiteEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_SuiteEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_SuitePotential(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.rna.RNA_SuitePotential, rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> NoneType
 
doc
 
2. __init__(self : rosetta.core.scoring.rna.RNA_SuitePotential, options : rosetta.core.scoring.rna.RNA_EnergyMethodOptions, calculate_suiteness_bonus : bool) -> NoneType
 
3. __init__(self : rosetta.core.scoring.rna.RNA_SuitePotential,  : rosetta.core.scoring.rna.RNA_SuitePotential) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
eval_score(...) from builtins.PyCapsule
eval_score(self : rosetta.core.scoring.rna.RNA_SuitePotential, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose) -> bool
get_deriv(...) from builtins.PyCapsule
get_deriv(rosetta.core.scoring.rna.RNA_SuitePotential) -> rosetta.utility.vector1_double
get_score(...) from builtins.PyCapsule
get_score(rosetta.core.scoring.rna.RNA_SuitePotential) -> float
get_torsion_ids(...) from builtins.PyCapsule
get_torsion_ids(rosetta.core.scoring.rna.RNA_SuitePotential) -> rosetta.utility.vector1_core_id_TorsionID

 
class RNA_TorsionEnergy(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy)
    
Method resolution order:
RNA_TorsionEnergy
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle, rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> NoneType
 
doc
 
2. __init__(self : handle, options : rosetta.core.scoring.rna.RNA_EnergyMethodOptions, rna_torsion_potential : rosetta.core.scoring.rna.RNA_TorsionPotential) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.RNA_TorsionEnergy) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_TorsionEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.RNA_TorsionEnergy,  : rosetta.core.scoring.EMapVector) -> bool
defines_residue_pair_energy(...) from builtins.PyCapsule
defines_residue_pair_energy(self : rosetta.core.scoring.rna.RNA_TorsionEnergy,  : rosetta.core.scoring.EMapVector) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_TorsionEnergy, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose,  : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
called during gradient-based minimization inside dfunc
 
        F1 and F2 are not zeroed -- contributions from this atom are
        just summed in
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.RNA_TorsionEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue constraint energy for a given residue
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_TorsionEnergy,  : rosetta.utility.vector1_bool) -> NoneType
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.RNA_TorsionEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType

Methods inherited from rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy:
divides_backbone_and_sidechain_energetics(...) from builtins.PyCapsule
divides_backbone_and_sidechain_energetics(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy) -> bool
 
A derived class should return true for this function if it implements its own
 versions of the backbone_backbone_energy, backbone_sidechain_energy and
 sidechain_sidechain_energy functions.  The default sidechain_sidechain_energy implemented
 by the TwoBodyEnergy base class calls residue_pair_energy.  If the derived class implements its own
 versions of these functions, then calling code may avoid calling it on pairs of residues
 that are "provably distant" based on a pair of bounding spheres for a sidechains and
 backbones and this method's atomic_interaction_cutoff energy method.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls derived class's residue_pair_energy method.  Since short range rotamer pairs
 may not need calculation, the default method looks at blocks of residue type pairs
 and only calls the residue_pair_energy method if the rotamer pairs are within range

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, total_energy : rosetta.core.scoring.EMapVector) -> NoneType
 
called by the ScoreFunction at the end of energy evaluation.
 The derived class has the opportunity to accumulate a score
 into the pose's total_energy EnergyMap.  WholeStructure energies
 operate within this method; any method using a NeighborList during
 minimization would also operate within this function call.
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_TorsionEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_TorsionEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_TorsionEnergyCreator,  : rosetta.core.scoring.rna.RNA_TorsionEnergyCreator) -> rosetta.core.scoring.rna.RNA_TorsionEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_TorsionEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_TorsionEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_TorsionEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_TorsionPotential(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.scoring.rna.RNA_TorsionPotential, options : rosetta.core.scoring.rna.RNA_EnergyMethodOptions) -> NoneType
 
2. __init__(self : rosetta.core.scoring.rna.RNA_TorsionPotential,  : rosetta.core.scoring.rna.RNA_TorsionPotential) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_TorsionPotential, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.RNA_TorsionPotential, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose) -> float
intrares_side_chain_score(...) from builtins.PyCapsule
intrares_side_chain_score(rosetta.core.scoring.rna.RNA_TorsionPotential) -> float
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.RNA_TorsionPotential, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose) -> float
set_verbose(...) from builtins.PyCapsule
set_verbose(self : rosetta.core.scoring.rna.RNA_TorsionPotential, setting : bool) -> NoneType

 
class RNA_VDW_Energy(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy)
    
Method resolution order:
RNA_VDW_Energy
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.RNA_VDW_Energy) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.RNA_VDW_Energy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.RNA_VDW_Energy,  : rosetta.core.scoring.EMapVector) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.RNA_VDW_Energy, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, scorefxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.RNA_VDW_Energy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.RNA_VDW_Energy, context_graphs_required : rosetta.utility.vector1_bool) -> NoneType
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.RNA_VDW_Energy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.rna.RNA_VDW_Energy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.rna.RNA_VDW_Energy, pose : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.rna.RNA_VDW_Energy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
//////////////////////////////////////////////////////////////////////////

Methods inherited from rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy:
divides_backbone_and_sidechain_energetics(...) from builtins.PyCapsule
divides_backbone_and_sidechain_energetics(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy) -> bool
 
A derived class should return true for this function if it implements its own
 versions of the backbone_backbone_energy, backbone_sidechain_energy and
 sidechain_sidechain_energy functions.  The default sidechain_sidechain_energy implemented
 by the TwoBodyEnergy base class calls residue_pair_energy.  If the derived class implements its own
 versions of these functions, then calling code may avoid calling it on pairs of residues
 that are "provably distant" based on a pair of bounding spheres for a sidechains and
 backbones and this method's atomic_interaction_cutoff energy method.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls derived class's residue_pair_energy method.  Since short range rotamer pairs
 may not need calculation, the default method looks at blocks of residue type pairs
 and only calls the residue_pair_energy method if the rotamer pairs are within range

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, total_energy : rosetta.core.scoring.EMapVector) -> NoneType
 
called by the ScoreFunction at the end of energy evaluation.
 The derived class has the opportunity to accumulate a score
 into the pose's total_energy EnergyMap.  WholeStructure energies
 operate within this method; any method using a NeighborList during
 minimization would also operate within this function call.
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_VDW_EnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_VDW_EnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.RNA_VDW_EnergyCreator,  : rosetta.core.scoring.rna.RNA_VDW_EnergyCreator) -> rosetta.core.scoring.rna.RNA_VDW_EnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.RNA_VDW_EnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_VDW_Energy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.RNA_VDW_EnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class StackElecEnergy(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy)
    
Method resolution order:
StackElecEnergy
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : handle, options : rosetta.core.scoring.methods.EnergyMethodOptions) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.rna.StackElecEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.StackElecEnergy) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.StackElecEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.StackElecEnergy,  : rosetta.core.scoring.EMapVector) -> bool
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.rna.StackElecEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.StackElecEnergy, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>,  : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.StackElecEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.rna.StackElecEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
get_count_pair_function(...) from builtins.PyCapsule
get_count_pair_function(*args, **kwargs)
Overloaded function.
 
1. get_count_pair_function(self : rosetta.core.scoring.rna.StackElecEnergy, res1 : int, res2 : int, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> rosetta.core.scoring.etable.count_pair.CountPairFunction
 
2. get_count_pair_function(self : rosetta.core.scoring.rna.StackElecEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue) -> rosetta.core.scoring.etable.count_pair.CountPairFunction
get_intrares_countpair(...) from builtins.PyCapsule
get_intrares_countpair(self : rosetta.core.scoring.rna.StackElecEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> rosetta.core.scoring.etable.count_pair.CountPairFunction
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.StackElecEnergy,  : rosetta.utility.vector1_bool) -> NoneType
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.rna.StackElecEnergy, pose : rosetta.core.pose.Pose) -> bool
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.StackElecEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.rna.StackElecEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.rna.StackElecEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.rna.StackElecEnergy, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_map : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.rna.StackElecEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, pair_data : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.rna.StackElecEnergy, pose : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool, designing_residues : rosetta.utility.vector1_bool) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.rna.StackElecEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
//////////////////////////////////////////////////////////////////////////
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.rna.StackElecEnergy) -> bool

Methods inherited from rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy:
divides_backbone_and_sidechain_energetics(...) from builtins.PyCapsule
divides_backbone_and_sidechain_energetics(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy) -> bool
 
A derived class should return true for this function if it implements its own
 versions of the backbone_backbone_energy, backbone_sidechain_energy and
 sidechain_sidechain_energy functions.  The default sidechain_sidechain_energy implemented
 by the TwoBodyEnergy base class calls residue_pair_energy.  If the derived class implements its own
 versions of these functions, then calling code may avoid calling it on pairs of residues
 that are "provably distant" based on a pair of bounding spheres for a sidechains and
 backbones and this method's atomic_interaction_cutoff energy method.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls derived class's residue_pair_energy method.  Since short range rotamer pairs
 may not need calculation, the default method looks at blocks of residue type pairs
 and only calls the residue_pair_energy method if the rotamer pairs are within range

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class StackElecEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
StackElecEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.StackElecEnergyCreator,  : rosetta.core.scoring.rna.StackElecEnergyCreator) -> rosetta.core.scoring.rna.StackElecEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.StackElecEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new StackElecEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.StackElecEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
Functions
       
clear_rna_scoring_info(...) method of builtins.PyCapsule instance
clear_rna_scoring_info(pose : rosetta.core.pose.Pose) -> NoneType
get_fade_correction(...) method of builtins.PyCapsule instance
get_fade_correction(z : float, cutoff_lower : float, cutoff_upper : float, fade_zone : float, fade_value : float, fade_deriv : float) -> NoneType
nonconst_rna_scoring_info_from_pose(...) method of builtins.PyCapsule instance
nonconst_rna_scoring_info_from_pose(pose : rosetta.core.pose.Pose) -> rosetta.core.scoring.rna.RNA_ScoringInfo
rna_scoring_info_from_pose(...) method of builtins.PyCapsule instance
rna_scoring_info_from_pose(pose : rosetta.core.pose.Pose) -> rosetta.core.scoring.rna.RNA_ScoringInfo