rosetta.core.scoring.rna.data
index
(built-in)

Bindings for core::scoring::rna::data namespace

 
Classes
       
builtins.object
RNA_DMS_LowResolutionPotential
RNA_DMS_Potential
RNA_DataInfo
RNA_Datum
RNA_Reactivity
RNA_ReactivityType
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy)
RNA_DataBackboneEnergy
rosetta.core.scoring.methods.EnergyMethodCreator(builtins.object)
RNA_ChemicalMappingEnergyCreator
RNA_DataBackboneEnergyCreator
rosetta.core.scoring.methods.WholeStructureEnergy(rosetta.core.scoring.methods.EnergyMethod)
RNA_ChemicalMappingEnergy

 
class RNA_ChemicalMappingEnergy(rosetta.core.scoring.methods.WholeStructureEnergy)
    
Method resolution order:
RNA_ChemicalMappingEnergy
rosetta.core.scoring.methods.WholeStructureEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergy) -> float
calculate_energy(...) from builtins.PyCapsule
calculate_energy(*args, **kwargs)
Overloaded function.
 
1. calculate_energy(self : rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergy, pose : rosetta.core.pose.Pose) -> float
 
//////////////////////////////////////////////////////////////////////////
 
2. calculate_energy(self : rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergy, pose : rosetta.core.pose.Pose, use_low_res : bool) -> float
 
//////////////////////////////////////////////////////////////////////////
 
3. calculate_energy(self : rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergy, pose : rosetta.core.pose.Pose, use_low_res : bool, rna_base_pair_computed : bool) -> float
 
//////////////////////////////////////////////////////////////////////////
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergy,  : rosetta.utility.vector1_bool) -> NoneType
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergy) -> int

Methods inherited from rosetta.core.scoring.methods.WholeStructureEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.WholeStructureEnergy,  : rosetta.core.scoring.methods.WholeStructureEnergy) -> rosetta.core.scoring.methods.WholeStructureEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.WholeStructureEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.methods.EnergyMethod, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Evaluate the XYZ derivative for an atom in the pose.
 Called during the atomtree derivative calculation, atom_tree_minimize.cc,
 through the ScoreFunction::eval_atom_derivative intermediary.
 F1 and F2 should not zeroed, rather, this class should accumulate its contribution
 from this atom's XYZ derivative
 
 
 The derivative scheme is based on that of Abe, Braun, Noguti and Go (1984)
 "Rapid Calculation of First and Second Derivatives of Conformational Energy with
 Respect to Dihedral Angles for Proteins. General Recurrent Equations"
 Computers & Chemistry 8(4) pp. 239-247. F1 and F2 correspond roughly to Fa and Ga,
 respectively, of equations 7a & 7b in that paper.
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.

 
class RNA_ChemicalMappingEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_ChemicalMappingEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergyCreator,  : rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergyCreator) -> rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_ChemicalMappingEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.data.RNA_ChemicalMappingEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_DMS_LowResolutionPotential(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential,  : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential) -> rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential
careful_base_pair_classifier(...) from builtins.PyCapsule
careful_base_pair_classifier(rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential) -> bool
evaluate(...) from builtins.PyCapsule
evaluate(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential, pose : rosetta.core.pose.Pose, rna_reactivity : rosetta.core.scoring.rna.data.RNA_Reactivity) -> float
get_rna_base_pairing_status(...) from builtins.PyCapsule
get_rna_base_pairing_status(*args, **kwargs)
Overloaded function.
 
1. get_rna_base_pairing_status(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential, pose : rosetta.core.pose.Pose, wc_edge_paired : rosetta.utility.vector1_bool, hoogsteen_edge_paired : rosetta.utility.vector1_bool, sugar_edge_paired : rosetta.utility.vector1_bool, is_bulged : rosetta.utility.vector1_bool) -> NoneType
 
2. get_rna_base_pairing_status(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential, pose : rosetta.core.pose.Pose, wc_edge_paired : rosetta.utility.vector1_bool, hoogsteen_edge_paired : rosetta.utility.vector1_bool, sugar_edge_paired : rosetta.utility.vector1_bool, is_bulged : rosetta.utility.vector1_bool, already_scored : bool) -> NoneType
get_wc_near_o2prime(...) from builtins.PyCapsule
get_wc_near_o2prime(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential, pose : rosetta.core.pose.Pose, i : int) -> bool
hoog_edge_paired(...) from builtins.PyCapsule
hoog_edge_paired(rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential) -> rosetta.utility.vector1_bool
initialize(...) from builtins.PyCapsule
initialize(*args, **kwargs)
Overloaded function.
 
1. initialize(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential, pose : rosetta.core.pose.Pose) -> NoneType
 
2. initialize(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential, pose : rosetta.core.pose.Pose, rna_base_pair_computed : bool) -> NoneType
is_bulged(...) from builtins.PyCapsule
is_bulged(rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential) -> rosetta.utility.vector1_bool
set_careful_base_pair_classifier(...) from builtins.PyCapsule
set_careful_base_pair_classifier(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential, setting : bool) -> NoneType
sugar_edge_paired(...) from builtins.PyCapsule
sugar_edge_paired(rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential) -> rosetta.utility.vector1_bool
update_edge_paired(...) from builtins.PyCapsule
update_edge_paired(self : rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential, i : int, k : int, wc_edge_paired : rosetta.utility.vector1_bool, hoogsteen_edge_paired : rosetta.utility.vector1_bool, sugar_edge_paired : rosetta.utility.vector1_bool) -> NoneType
wc_edge_paired(...) from builtins.PyCapsule
wc_edge_paired(rosetta.core.scoring.rna.data.RNA_DMS_LowResolutionPotential) -> rosetta.utility.vector1_bool

 
class RNA_DMS_Potential(builtins.object)
     Methods defined here:
DMS_values(...) from builtins.PyCapsule
DMS_values(rosetta.core.scoring.rna.data.RNA_DMS_Potential) -> rosetta.utility.vector1_double
__init__(...) from builtins.PyCapsule
__init__(rosetta.core.scoring.rna.data.RNA_DMS_Potential) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
check_chbonded(...) from builtins.PyCapsule
check_chbonded(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, pose : rosetta.core.pose.Pose, i : int, atom_name : str) -> bool
check_hbonded(...) from builtins.PyCapsule
check_hbonded(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, pose : rosetta.core.pose.Pose, i : int, atom_name : str, is_acceptor : bool) -> bool
evaluate(...) from builtins.PyCapsule
evaluate(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, pose : rosetta.core.pose.Pose, rna_reactivity : rosetta.core.scoring.rna.data.RNA_Reactivity) -> float
get_N1_lonepair_donor_angle(...) from builtins.PyCapsule
get_N1_lonepair_donor_angle(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, acc_rsd : rosetta.core.conformation.Residue, don_rsd : rosetta.core.conformation.Residue, don_h_atm : int) -> float
get_binding_energy(...) from builtins.PyCapsule
get_binding_energy(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, i : int, probe_xyz : rosetta.numeric.xyzVector_double_t, scorefxn : rosetta.core.scoring.ScoreFunction) -> float
get_logL_values(...) from builtins.PyCapsule
get_logL_values(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, pose : rosetta.core.pose.Pose, i : int) -> rosetta.utility.vector1_double
get_occupancy_densities(...) from builtins.PyCapsule
get_occupancy_densities(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, occupancy_densities : rosetta.utility.vector1_double, pose : rosetta.core.pose.Pose, i : int, probe_xyz : rosetta.numeric.xyzVector_double_t, shells : rosetta.utility.vector1_double) -> NoneType
get_occupancy_density(...) from builtins.PyCapsule
get_occupancy_density(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, pose : rosetta.core.pose.Pose, i : int, probe_xyz : rosetta.numeric.xyzVector_double_t, shells : (float, float)) -> float
get_probe_scorefxn(...) from builtins.PyCapsule
get_probe_scorefxn(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, soft_rep : bool, just_atr_rep : bool) -> rosetta.core.scoring.ScoreFunction
get_probe_xyz(...) from builtins.PyCapsule
get_probe_xyz(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, rsd : rosetta.core.conformation.Residue, probe_dist : float) -> rosetta.numeric.xyzVector_double_t
initialize(...) from builtins.PyCapsule
initialize(self : rosetta.core.scoring.rna.data.RNA_DMS_Potential, pose : rosetta.core.pose.Pose) -> NoneType

 
class RNA_DataBackboneEnergy(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy)
    
Method resolution order:
RNA_DataBackboneEnergy
rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy) -> float
check_sugar_atom(...) from builtins.PyCapsule
check_sugar_atom(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy, n : int) -> bool
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy,  : rosetta.core.scoring.EMapVector) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy, atom_id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, scorefxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
get_sugar_env_score(...) from builtins.PyCapsule
get_sugar_env_score(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy, rsd_buried : rosetta.core.conformation.Residue, rsd_other : rosetta.core.conformation.Residue) -> float
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy,  : rosetta.utility.vector1_bool) -> NoneType
initialize_atom_numbers_sugar(...) from builtins.PyCapsule
initialize_atom_numbers_sugar(rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy) -> NoneType
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy, pose : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
//////////////////////////////////////////////////////////////////////////

Methods inherited from rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy:
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy,  : rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy:
divides_backbone_and_sidechain_energetics(...) from builtins.PyCapsule
divides_backbone_and_sidechain_energetics(rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy) -> bool
 
A derived class should return true for this function if it implements its own
 versions of the backbone_backbone_energy, backbone_sidechain_energy and
 sidechain_sidechain_energy functions.  The default sidechain_sidechain_energy implemented
 by the TwoBodyEnergy base class calls residue_pair_energy.  If the derived class implements its own
 versions of these functions, then calling code may avoid calling it on pairs of residues
 that are "provably distant" based on a pair of bounding spheres for a sidechains and
 backbones and this method's atomic_interaction_cutoff energy method.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamer
 Since short range rotamer pairs may not need calculation, the default method
 looks at blocks of residue type pairs and only calls the residue_pair_energy method
 if the rotamer pairs are within range
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.ShortRangeTwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls derived class's residue_pair_energy method.  Since short range rotamer pairs
 may not need calculation, the default method looks at blocks of residue type pairs
 and only calls the residue_pair_energy method if the rotamer pairs are within range

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, total_energy : rosetta.core.scoring.EMapVector) -> NoneType
 
called by the ScoreFunction at the end of energy evaluation.
 The derived class has the opportunity to accumulate a score
 into the pose's total_energy EnergyMap.  WholeStructure energies
 operate within this method; any method using a NeighborList during
 minimization would also operate within this function call.
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class RNA_DataBackboneEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
RNA_DataBackboneEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergyCreator,  : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergyCreator) -> rosetta.core.scoring.rna.data.RNA_DataBackboneEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.rna.data.RNA_DataBackboneEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new RNA_DataBackboneEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.rna.data.RNA_DataBackboneEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class RNA_DataInfo(builtins.object)
    /////////////////////////////////////////////////////////////////////////////////////////////////
 
 
Keep track of RNA chemical mapping data inside the pose.
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.rna.data.RNA_DataInfo) -> NoneType
 
2. __init__(self : rosetta.core.scoring.rna.data.RNA_DataInfo, src : rosetta.core.scoring.rna.data.RNA_DataInfo) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_datum(...) from builtins.PyCapsule
add_datum(self : rosetta.core.scoring.rna.data.RNA_DataInfo, rna_datum : rosetta.core.scoring.rna.data.RNA_Datum) -> NoneType
add_reactivity(...) from builtins.PyCapsule
add_reactivity(self : rosetta.core.scoring.rna.data.RNA_DataInfo, rna_reactivity : rosetta.core.scoring.rna.data.RNA_Reactivity) -> NoneType
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.rna.data.RNA_DataInfo, src : rosetta.core.scoring.rna.data.RNA_DataInfo) -> rosetta.core.scoring.rna.data.RNA_DataInfo
backbone_burial(...) from builtins.PyCapsule
backbone_burial(rosetta.core.scoring.rna.data.RNA_DataInfo) -> ObjexxFCL::FArray1D<bool>
backbone_exposed(...) from builtins.PyCapsule
backbone_exposed(rosetta.core.scoring.rna.data.RNA_DataInfo) -> ObjexxFCL::FArray1D<bool>
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.rna.data.RNA_DataInfo) -> rosetta.core.scoring.rna.data.RNA_DataInfo
rna_data(...) from builtins.PyCapsule
rna_data(rosetta.core.scoring.rna.data.RNA_DataInfo) -> rosetta.utility.vector1_core_scoring_rna_data_RNA_Datum
rna_reactivities(...) from builtins.PyCapsule
rna_reactivities(rosetta.core.scoring.rna.data.RNA_DataInfo) -> rosetta.utility.vector1_core_scoring_rna_data_RNA_Reactivity
set_backbone_burial(...) from builtins.PyCapsule
set_backbone_burial(self : rosetta.core.scoring.rna.data.RNA_DataInfo, backbone_burial : ObjexxFCL::FArray1D<bool>) -> NoneType
set_backbone_exposed(...) from builtins.PyCapsule
set_backbone_exposed(self : rosetta.core.scoring.rna.data.RNA_DataInfo, backbone_exposed : ObjexxFCL::FArray1D<bool>) -> NoneType
size(...) from builtins.PyCapsule
size(rosetta.core.scoring.rna.data.RNA_DataInfo) -> int
zero(...) from builtins.PyCapsule
zero(rosetta.core.scoring.rna.data.RNA_DataInfo) -> NoneType

 
class RNA_Datum(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.scoring.rna.data.RNA_Datum, position : int, edge : int, weight : float) -> NoneType
 
2. __init__(self : rosetta.core.scoring.rna.data.RNA_Datum,  : rosetta.core.scoring.rna.data.RNA_Datum) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
edge(...) from builtins.PyCapsule
edge(rosetta.core.scoring.rna.data.RNA_Datum) -> int
position(...) from builtins.PyCapsule
position(rosetta.core.scoring.rna.data.RNA_Datum) -> int
set_edge(...) from builtins.PyCapsule
set_edge(self : rosetta.core.scoring.rna.data.RNA_Datum, setting : int) -> NoneType
set_position(...) from builtins.PyCapsule
set_position(self : rosetta.core.scoring.rna.data.RNA_Datum, setting : int) -> NoneType
set_weight(...) from builtins.PyCapsule
set_weight(self : rosetta.core.scoring.rna.data.RNA_Datum, setting : float) -> NoneType
weight(...) from builtins.PyCapsule
weight(rosetta.core.scoring.rna.data.RNA_Datum) -> float

 
class RNA_Reactivity(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.scoring.rna.data.RNA_Reactivity, position : int, type : rosetta.core.scoring.rna.data.RNA_ReactivityType, value : float) -> NoneType
 
2. __init__(self : rosetta.core.scoring.rna.data.RNA_Reactivity,  : rosetta.core.scoring.rna.data.RNA_Reactivity) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
position(...) from builtins.PyCapsule
position(rosetta.core.scoring.rna.data.RNA_Reactivity) -> int
set_position(...) from builtins.PyCapsule
set_position(self : rosetta.core.scoring.rna.data.RNA_Reactivity, setting : int) -> NoneType
set_type(...) from builtins.PyCapsule
set_type(self : rosetta.core.scoring.rna.data.RNA_Reactivity, setting : rosetta.core.scoring.rna.data.RNA_ReactivityType) -> NoneType
set_value(...) from builtins.PyCapsule
set_value(self : rosetta.core.scoring.rna.data.RNA_Reactivity, setting : float) -> NoneType
type(...) from builtins.PyCapsule
type(rosetta.core.scoring.rna.data.RNA_Reactivity) -> rosetta.core.scoring.rna.data.RNA_ReactivityType
value(...) from builtins.PyCapsule
value(rosetta.core.scoring.rna.data.RNA_Reactivity) -> float

 
class RNA_ReactivityType(builtins.object)
     Methods defined here:
__eq__(...) from builtins.PyCapsule
__eq__(rosetta.core.scoring.rna.data.RNA_ReactivityType, rosetta.core.scoring.rna.data.RNA_ReactivityType) -> bool
__hash__(...) from builtins.PyCapsule
__hash__(rosetta.core.scoring.rna.data.RNA_ReactivityType) -> int
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.rna.data.RNA_ReactivityType, int) -> NoneType
 
2. __init__(rosetta.core.scoring.rna.data.RNA_ReactivityType, int) -> NoneType
__int__(...) from builtins.PyCapsule
__int__(rosetta.core.scoring.rna.data.RNA_ReactivityType) -> int
__ne__(...) from builtins.PyCapsule
__ne__(rosetta.core.scoring.rna.data.RNA_ReactivityType, rosetta.core.scoring.rna.data.RNA_ReactivityType) -> bool
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
__repr__(...) from builtins.PyCapsule
__repr__(rosetta.core.scoring.rna.data.RNA_ReactivityType) -> str

Data and other attributes defined here:
CMCT = RNA_ReactivityType.CMCT
DMS = RNA_ReactivityType.DMS
HRF = RNA_ReactivityType.HRF
NO_REACTIVITY = RNA_ReactivityType.NO_REACTIVITY
SHAPE_1M7 = RNA_ReactivityType.SHAPE_1M7

 
Functions
       
get_bool_idx(...) method of builtins.PyCapsule instance
get_bool_idx(value : bool, values : rosetta.utility.vector1_bool) -> int
get_idx(...) method of builtins.PyCapsule instance
get_idx(value : float, values : rosetta.utility.vector1_double) -> int
lookup_idx(...) method of builtins.PyCapsule instance
lookup_idx(value : float, values : rosetta.utility.vector1_double) -> int

 
Data
        CMCT = RNA_ReactivityType.CMCT
DMS = RNA_ReactivityType.DMS
HRF = RNA_ReactivityType.HRF
NO_REACTIVITY = RNA_ReactivityType.NO_REACTIVITY
SHAPE_1M7 = RNA_ReactivityType.SHAPE_1M7