rosetta.protocols.unfolded_state_energy_calculator
index
(built-in)

Bindings for protocols::unfolded_state_energy_calculator namespace

 
Classes
       
rosetta.protocols.jd2.FileSystemJobDistributor(rosetta.protocols.jd2.JobDistributor)
UnfoldedStateEnergyCalculatorJobDistributor
rosetta.protocols.jd2.MPIWorkPoolJobDistributor(rosetta.protocols.jd2.JobDistributor)
UnfoldedStateEnergyCalculatorMPIWorkPoolJobDistributor
rosetta.protocols.moves.Mover(builtins.object)
UnfoldedStateEnergyCalculatorMover

 
class UnfoldedStateEnergyCalculatorJobDistributor(rosetta.protocols.jd2.FileSystemJobDistributor)
    
Method resolution order:
UnfoldedStateEnergyCalculatorJobDistributor
rosetta.protocols.jd2.FileSystemJobDistributor
rosetta.protocols.jd2.JobDistributor
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorJobDistributor) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_unfolded_energy_data(...) from builtins.PyCapsule
add_unfolded_energy_data(self : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorJobDistributor, tlc : str, scores : rosetta.core.scoring.EMapVector) -> NoneType
assign(...) from builtins.PyCapsule
assign(self : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorJobDistributor,  : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorJobDistributor) -> rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorJobDistributor
go(...) from builtins.PyCapsule
go(self : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorJobDistributor, mover : rosetta.protocols.moves.Mover) -> NoneType
set_energy_terms(...) from builtins.PyCapsule
set_energy_terms(self : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorJobDistributor, weights : rosetta.core.scoring.EMapVector) -> NoneType

Methods inherited from rosetta.protocols.jd2.FileSystemJobDistributor:
current_job_finished(...) from builtins.PyCapsule
current_job_finished(rosetta.protocols.jd2.FileSystemJobDistributor) -> NoneType
get_new_job_id(...) from builtins.PyCapsule
get_new_job_id(rosetta.protocols.jd2.FileSystemJobDistributor) -> int
mark_current_job_id_for_repetition(...) from builtins.PyCapsule
mark_current_job_id_for_repetition(rosetta.protocols.jd2.FileSystemJobDistributor) -> NoneType
remove_bad_inputs_from_job_list(...) from builtins.PyCapsule
remove_bad_inputs_from_job_list(rosetta.protocols.jd2.FileSystemJobDistributor) -> NoneType
restart(...) from builtins.PyCapsule
restart(rosetta.protocols.jd2.FileSystemJobDistributor) -> NoneType

Methods inherited from rosetta.protocols.jd2.JobDistributor:
add_batch(...) from builtins.PyCapsule
add_batch(*args, **kwargs)
Overloaded function.
 
1. add_batch(self : rosetta.protocols.jd2.JobDistributor,  : str) -> NoneType
 
add a new batch ( name will be interpreted as flag_file )
 
2. add_batch(self : rosetta.protocols.jd2.JobDistributor,  : str, id : int) -> NoneType
 
add a new batch ( name will be interpreted as flag_file )
current_batch_id(...) from builtins.PyCapsule
current_batch_id(rosetta.protocols.jd2.JobDistributor) -> int
 
what is the current batch number ? --- refers to position in batches_
current_job(...) from builtins.PyCapsule
current_job(rosetta.protocols.jd2.JobDistributor) -> rosetta.protocols.jd2.Job
 
Movers may ask their controlling job distributor for information about the current job.
 They may also write information to this job for later output, though this use is now discouraged
 as the addition of the MultiplePoseMover now means that a single job may include several
 separate trajectories.
current_job_id(...) from builtins.PyCapsule
current_job_id(rosetta.protocols.jd2.JobDistributor) -> int
 
integer access - which job are we on?
current_output_name(...) from builtins.PyCapsule
current_output_name(rosetta.protocols.jd2.JobDistributor) -> str
 
Movers may ask their controlling job distributor for the output name as defined by the Job and JobOutputter.
get_current_batch(...) from builtins.PyCapsule
get_current_batch(rosetta.protocols.jd2.JobDistributor) -> str
 
what is the current batch ? --- name refers to the flag-file used for this batch
get_instance(...) from builtins.PyCapsule
get_instance() -> rosetta.protocols.jd2.JobDistributor
job_inputter(...) from builtins.PyCapsule
job_inputter(rosetta.protocols.jd2.JobDistributor) -> rosetta.protocols.jd2.JobInputter
 
JobInputter access
job_inputter_input_source(...) from builtins.PyCapsule
job_inputter_input_source(rosetta.protocols.jd2.JobDistributor) -> rosetta.protocols.jd2.JobInputterInputSource.Enum
 
The input source for the current JobInputter.
job_outputter(...) from builtins.PyCapsule
job_outputter(rosetta.protocols.jd2.JobDistributor) -> protocols::jd2::JobOutputter
 
Movers (or derived classes) may ask for the JobOutputter
mpi_finalize(...) from builtins.PyCapsule
mpi_finalize(self : rosetta.protocols.jd2.JobDistributor, finalize : bool) -> NoneType
 
should the go() function call MPI_finalize()? It probably should, this is true by default.
set_job_inputter(...) from builtins.PyCapsule
set_job_inputter(self : rosetta.protocols.jd2.JobDistributor, new_job_inputter : rosetta.protocols.jd2.JobInputter) -> NoneType
 
Set the JobInputter and reset the Job list -- this is not something you want to do
 after go() has been called, but before it has returned.
set_job_outputter(...) from builtins.PyCapsule
set_job_outputter(self : rosetta.protocols.jd2.JobDistributor, new_job_outputter : protocols::jd2::JobOutputter) -> NoneType
 
Movers (or derived classes) may ask for the JobOutputter
total_nr_jobs(...) from builtins.PyCapsule
total_nr_jobs(rosetta.protocols.jd2.JobDistributor) -> int

 
class UnfoldedStateEnergyCalculatorMPIWorkPoolJobDistributor(rosetta.protocols.jd2.MPIWorkPoolJobDistributor)
    
Method resolution order:
UnfoldedStateEnergyCalculatorMPIWorkPoolJobDistributor
rosetta.protocols.jd2.MPIWorkPoolJobDistributor
rosetta.protocols.jd2.JobDistributor
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_unfolded_energy_data(...) from builtins.PyCapsule
add_unfolded_energy_data(self : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMPIWorkPoolJobDistributor, tlc : str, scores : rosetta.core.scoring.EMapVector) -> NoneType
 
dummy for master/slave version
assign(...) from builtins.PyCapsule
assign(self : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMPIWorkPoolJobDistributor,  : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMPIWorkPoolJobDistributor) -> rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMPIWorkPoolJobDistributor
set_energy_terms(...) from builtins.PyCapsule
set_energy_terms(self : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMPIWorkPoolJobDistributor, weights : rosetta.core.scoring.EMapVector) -> NoneType
 
dummy for master/slave version

Methods inherited from rosetta.protocols.jd2.MPIWorkPoolJobDistributor:
get_new_job_id(...) from builtins.PyCapsule
get_new_job_id(rosetta.protocols.jd2.MPIWorkPoolJobDistributor) -> int
 
dummy for master/slave version
go(...) from builtins.PyCapsule
go(self : rosetta.protocols.jd2.MPIWorkPoolJobDistributor, mover : rosetta.protocols.moves.Mover) -> NoneType
 
dummy for master/slave version
job_failed(...) from builtins.PyCapsule
job_failed(self : rosetta.protocols.jd2.MPIWorkPoolJobDistributor, pose : rosetta.core.pose.Pose, will_retry : bool) -> NoneType
 
Called if job fails.
job_succeeded(...) from builtins.PyCapsule
job_succeeded(self : rosetta.protocols.jd2.MPIWorkPoolJobDistributor, pose : rosetta.core.pose.Pose, run_time : float, tag : str) -> NoneType
 
dummy for master/slave version
mark_current_job_id_for_repetition(...) from builtins.PyCapsule
mark_current_job_id_for_repetition(rosetta.protocols.jd2.MPIWorkPoolJobDistributor) -> NoneType
 
dummy for master/slave version
mpi_finalize(...) from builtins.PyCapsule
mpi_finalize(self : rosetta.protocols.jd2.MPIWorkPoolJobDistributor, finalize : bool) -> NoneType
 
should the go() function call MPI_finalize()? It probably should, this is true by default.
remove_bad_inputs_from_job_list(...) from builtins.PyCapsule
remove_bad_inputs_from_job_list(rosetta.protocols.jd2.MPIWorkPoolJobDistributor) -> NoneType
 
dummy for master/slave version

Methods inherited from rosetta.protocols.jd2.JobDistributor:
add_batch(...) from builtins.PyCapsule
add_batch(*args, **kwargs)
Overloaded function.
 
1. add_batch(self : rosetta.protocols.jd2.JobDistributor,  : str) -> NoneType
 
add a new batch ( name will be interpreted as flag_file )
 
2. add_batch(self : rosetta.protocols.jd2.JobDistributor,  : str, id : int) -> NoneType
 
add a new batch ( name will be interpreted as flag_file )
current_batch_id(...) from builtins.PyCapsule
current_batch_id(rosetta.protocols.jd2.JobDistributor) -> int
 
what is the current batch number ? --- refers to position in batches_
current_job(...) from builtins.PyCapsule
current_job(rosetta.protocols.jd2.JobDistributor) -> rosetta.protocols.jd2.Job
 
Movers may ask their controlling job distributor for information about the current job.
 They may also write information to this job for later output, though this use is now discouraged
 as the addition of the MultiplePoseMover now means that a single job may include several
 separate trajectories.
current_job_id(...) from builtins.PyCapsule
current_job_id(rosetta.protocols.jd2.JobDistributor) -> int
 
integer access - which job are we on?
current_output_name(...) from builtins.PyCapsule
current_output_name(rosetta.protocols.jd2.JobDistributor) -> str
 
Movers may ask their controlling job distributor for the output name as defined by the Job and JobOutputter.
get_current_batch(...) from builtins.PyCapsule
get_current_batch(rosetta.protocols.jd2.JobDistributor) -> str
 
what is the current batch ? --- name refers to the flag-file used for this batch
get_instance(...) from builtins.PyCapsule
get_instance() -> rosetta.protocols.jd2.JobDistributor
job_inputter(...) from builtins.PyCapsule
job_inputter(rosetta.protocols.jd2.JobDistributor) -> rosetta.protocols.jd2.JobInputter
 
JobInputter access
job_inputter_input_source(...) from builtins.PyCapsule
job_inputter_input_source(rosetta.protocols.jd2.JobDistributor) -> rosetta.protocols.jd2.JobInputterInputSource.Enum
 
The input source for the current JobInputter.
job_outputter(...) from builtins.PyCapsule
job_outputter(rosetta.protocols.jd2.JobDistributor) -> protocols::jd2::JobOutputter
 
Movers (or derived classes) may ask for the JobOutputter
restart(...) from builtins.PyCapsule
restart(rosetta.protocols.jd2.JobDistributor) -> NoneType
set_job_inputter(...) from builtins.PyCapsule
set_job_inputter(self : rosetta.protocols.jd2.JobDistributor, new_job_inputter : rosetta.protocols.jd2.JobInputter) -> NoneType
 
Set the JobInputter and reset the Job list -- this is not something you want to do
 after go() has been called, but before it has returned.
set_job_outputter(...) from builtins.PyCapsule
set_job_outputter(self : rosetta.protocols.jd2.JobDistributor, new_job_outputter : protocols::jd2::JobOutputter) -> NoneType
 
Movers (or derived classes) may ask for the JobOutputter
total_nr_jobs(...) from builtins.PyCapsule
total_nr_jobs(rosetta.protocols.jd2.JobDistributor) -> int

 
class UnfoldedStateEnergyCalculatorMover(rosetta.protocols.moves.Mover)
    
Method resolution order:
UnfoldedStateEnergyCalculatorMover
rosetta.protocols.moves.Mover
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : handle, job_dist : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorJobDistributor, pack_scrfxn : rosetta.core.scoring.ScoreFunction, score_scrfxn : rosetta.core.scoring.ScoreFunction, frag_length : int, mut_aa : str, repack_fragments : bool, native_sequence : bool, seq_match_seq : str, seq_match_pos : int, seq_match_frags : bool) -> NoneType
 
2. __init__(handle, rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMover) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
apply(...) from builtins.PyCapsule
apply(self : rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMover, pose : rosetta.core.pose.Pose) -> NoneType
fresh_instance(...) from builtins.PyCapsule
fresh_instance(rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMover) -> rosetta.protocols.moves.Mover
get_name(...) from builtins.PyCapsule
get_name(rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMover) -> str
reinitialize_for_each_job(...) from builtins.PyCapsule
reinitialize_for_each_job(rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMover) -> bool
reinitialize_for_new_input(...) from builtins.PyCapsule
reinitialize_for_new_input(rosetta.protocols.unfolded_state_energy_calculator.UnfoldedStateEnergyCalculatorMover) -> bool

Methods inherited from rosetta.protocols.moves.Mover:
assign(...) from builtins.PyCapsule
assign(self : rosetta.protocols.moves.Mover, other : rosetta.protocols.moves.Mover) -> rosetta.protocols.moves.Mover
clear_info(...) from builtins.PyCapsule
clear_info(rosetta.protocols.moves.Mover) -> NoneType
 
Strings container can be used to return miscellaneous info (as std::string) from a mover, such as notes about the results of apply(). The job distributor (Apr 09 vintage) will check this function to see if your protocol wants to add string info to the Job that ran this mover. One way this can be useful is that later, a JobOutputter may include/append this info to an output file.
 
 
 clear_info is called by jd2 before calling apply
clone(...) from builtins.PyCapsule
clone(rosetta.protocols.moves.Mover) -> rosetta.protocols.moves.Mover
 
Return a clone of the Mover object.
create(...) from builtins.PyCapsule
create(rosetta.protocols.moves.Mover) -> rosetta.protocols.moves.Mover
get_additional_output(...) from builtins.PyCapsule
get_additional_output(rosetta.protocols.moves.Mover) -> rosetta.core.pose.Pose
 
fpd
 
 
 Mechanism by which a mover may return multiple output poses from a single input pose.
get_current_job(...) from builtins.PyCapsule
get_current_job(rosetta.protocols.moves.Mover) -> protocols::jobdist::BasicJob
get_current_tag(...) from builtins.PyCapsule
get_current_tag(rosetta.protocols.moves.Mover) -> str
 
A tag is a unique identifier used to identify structures produced
 by this Moverget_current_tag() returns the tag, and set_current_tag( std::string tag )
 sets the tag.  This functionality is not intended for use with the 2008 job distributor.
get_input_pose(...) from builtins.PyCapsule
get_input_pose(rosetta.protocols.moves.Mover) -> rosetta.core.pose.Pose
get_last_move_status(...) from builtins.PyCapsule
get_last_move_status(rosetta.protocols.moves.Mover) -> rosetta.protocols.moves.MoverStatus
 
returns status after an apply().  The job distributor (august 08 vintage) will check this function to see if your protocol wants to filter its results - if your protocol wants to say "that run was no good, skip it" then use the protected last_move_status(MoverStatus) to change the value that this function will return.
get_native_pose(...) from builtins.PyCapsule
get_native_pose(rosetta.protocols.moves.Mover) -> rosetta.core.pose.Pose
get_self_ptr(...) from builtins.PyCapsule
get_self_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_ptr(rosetta.protocols.moves.Mover) -> rosetta.protocols.moves.Mover
 
2. get_self_ptr(rosetta.protocols.moves.Mover) -> rosetta.protocols.moves.Mover
get_self_weak_ptr(...) from builtins.PyCapsule
get_self_weak_ptr(*args, **kwargs)
Overloaded function.
 
1. get_self_weak_ptr(rosetta.protocols.moves.Mover) -> rosetta.std.weak_ptr_const_protocols_moves_Mover_t
 
2. get_self_weak_ptr(rosetta.protocols.moves.Mover) -> rosetta.std.weak_ptr_protocols_moves_Mover_t
get_type(...) from builtins.PyCapsule
get_type(rosetta.protocols.moves.Mover) -> str
info(...) from builtins.PyCapsule
info(*args, **kwargs)
Overloaded function.
 
1. info(rosetta.protocols.moves.Mover) -> rosetta.std.list_std_string_std_allocator_std_string_t
 
non-const accessor
 
2. info(rosetta.protocols.moves.Mover) -> rosetta.std.list_std_string_std_allocator_std_string_t
 
const accessor
last_proposal_density_ratio(...) from builtins.PyCapsule
last_proposal_density_ratio(rosetta.protocols.moves.Mover) -> float
name(...) from builtins.PyCapsule
name() -> str
register_options(...) from builtins.PyCapsule
register_options(*args, **kwargs)
Overloaded function.
 
1. register_options() -> NoneType
 
Overload this static method if you access options within the mover.
 
 
 These options will end up in -help of your application if users of this mover call register_options.
 Do this recursively!
 If you use movers within your mover, call their register_options in your register_options() method.
 
2. register_options() -> NoneType
 
3. register_options() -> NoneType
 
4. register_options() -> NoneType
 
5. register_options() -> NoneType
 
6. register_options() -> NoneType
 
7. register_options() -> NoneType
 
8. register_options() -> NoneType
 
9. register_options() -> NoneType
 
Associates relevant options with the AntibodyModeler class
 
10. register_options() -> NoneType
 
Associates relevant options with the AntibodyModeler class
 
11. register_options() -> NoneType
 
Associates relevant options with the SnugDock class
 
12. register_options() -> NoneType
 
Associates relevant options with the SnugDockProtocol class
 
13. register_options() -> NoneType
 
Register the options used by this mover with the global options
 system.
 
14. register_options() -> NoneType
 
15. register_options() -> NoneType
 
Associate relevant options with the TemperedDocking class.
 
16. register_options() -> NoneType
 
17. register_options() -> NoneType
 
18. register_options() -> NoneType
 
Associates relevant options with the TemperedDocking class.
 
19. register_options() -> NoneType
 
20. register_options() -> NoneType
 
Associates relevant options with the ConstraintSetMover class
 
21. register_options() -> NoneType
 
22. register_options() -> NoneType
 
Associates relevant options with the DockingInitialPerturbation class
 
23. register_options() -> NoneType
 
Associates relevant options with the DockingProtocol class
 
24. register_options() -> NoneType
 
Associates relevant options with the TemperedDocking class
 
25. register_options() -> NoneType
 
26. register_options() -> NoneType
 
27. register_options() -> NoneType
 
28. register_options() -> NoneType
 
register options
 
29. register_options() -> NoneType
 
30. register_options() -> NoneType
 
Registers applicable options
 
31. register_options() -> NoneType
 
Register options with the option system.
 
32. register_options() -> NoneType
 
33. register_options() -> NoneType
 
34. register_options() -> NoneType
 
Associates relevant options with the LoopRefineInnerCycle class
 
35. register_options() -> NoneType
 
Associates relevant options with the LoopRefineInnerCycleContainer class
 
36. register_options() -> NoneType
 
Associates relevant options with the LoopRefineInnerCycle class
 
37. register_options() -> NoneType
 
Associates relevant options with the LoopRefineInnerCycle class
 
38. register_options() -> NoneType
 
39. register_options() -> NoneType
 
Register options with the option system.
 
40. register_options() -> NoneType
reset_status(...) from builtins.PyCapsule
reset_status(rosetta.protocols.moves.Mover) -> NoneType
 
resets status to SUCCESS, meant to be used before an apply().  The job distributor (august 08 vintage) uses this to ensure non-accumulation of status across apply()s.
set_current_job(...) from builtins.PyCapsule
set_current_job(self : rosetta.protocols.moves.Mover, job : protocols::jobdist::BasicJob) -> NoneType
 
////////////////////////////end Job Distributor interface////////////////////////////////////////
set_current_tag(...) from builtins.PyCapsule
set_current_tag(self : rosetta.protocols.moves.Mover, new_tag : str) -> NoneType
set_input_pose(...) from builtins.PyCapsule
set_input_pose(self : rosetta.protocols.moves.Mover, pose : rosetta.core.pose.Pose) -> NoneType
 
setter for poses contained for rms
set_native_pose(...) from builtins.PyCapsule
set_native_pose(self : rosetta.protocols.moves.Mover, pose : rosetta.core.pose.Pose) -> NoneType
 
setter for native poses contained for rms ---- we should get rid of this method? it is widely used, but a bit unsafe
set_type(...) from builtins.PyCapsule
set_type(self : rosetta.protocols.moves.Mover, setting : str) -> NoneType
test_move(...) from builtins.PyCapsule
test_move(self : rosetta.protocols.moves.Mover, pose : rosetta.core.pose.Pose) -> NoneType
 
: Unit test support function.  Apply one move to a given pose.
      Allows extra test specific functions to be called before applying
type(...) from builtins.PyCapsule
type(*args, **kwargs)
Overloaded function.
 
1. type(rosetta.protocols.moves.Mover) -> str
 
2. type(self : rosetta.protocols.moves.Mover, type_in : str) -> NoneType

 
Functions
       
calc_all_averages(...) method of builtins.PyCapsule instance
calc_all_averages(unweighted_energies : rosetta.utility.vector1_core_scoring_EMapVector, energy_terms : rosetta.core.scoring.EMapVector) -> NoneType
calc_vector_boltzmann(...) method of builtins.PyCapsule instance
calc_vector_boltzmann(data : rosetta.utility.vector1_double) -> float
calc_vector_mean(...) method of builtins.PyCapsule instance
calc_vector_mean(data : rosetta.utility.vector1_double) -> float
calc_vector_median(...) method of builtins.PyCapsule instance
calc_vector_median(data : rosetta.utility.vector1_double) -> float
calc_vector_mode(...) method of builtins.PyCapsule instance
calc_vector_mode(data : rosetta.utility.vector1_double) -> float