| |
- builtins.object
-
- RandomGenerator
- WeightedSampler
- uniform_RG
-
- mt19937_RG
- standard_RG
class RandomGenerator(builtins.object) |
|
Random number generator system |
|
Methods defined here:
- __call__(...) from builtins.PyCapsule
- __call__(rosetta.numeric.random.RandomGenerator) -> float
- __init__(self, /, *args, **kwargs)
- Initialize self. See help(type(self)) for accurate signature.
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.numeric.random.RandomGenerator, : rosetta.numeric.random.RandomGenerator) -> rosetta.numeric.random.RandomGenerator
- gaussian(...) from builtins.PyCapsule
- gaussian(rosetta.numeric.random.RandomGenerator) -> float
Get Gaussian distribution random number
- get_seed(...) from builtins.PyCapsule
- get_seed(rosetta.numeric.random.RandomGenerator) -> int
Return the seed used by this RNG.
- max(...) from builtins.PyCapsule
- max(rosetta.numeric.random.RandomGenerator) -> float
- min(...) from builtins.PyCapsule
- min(rosetta.numeric.random.RandomGenerator) -> float
- random_range(...) from builtins.PyCapsule
- random_range(self : rosetta.numeric.random.RandomGenerator, low : int, high : int) -> int
Returns a random int in the range specified by the arguments
- set_seed(...) from builtins.PyCapsule
- set_seed(*args, **kwargs)
Overloaded function.
1. set_seed(self : rosetta.numeric.random.RandomGenerator, generator_type : str, seed : int) -> NoneType
Set the seed and the generator type synchronously.
Currently the two supported generator types are "standard"
and "mt19937" with the latter being the recommended form.
2. set_seed(self : rosetta.numeric.random.RandomGenerator, seed : int) -> NoneType
Return the seed used by this RNG.
- uniform(...) from builtins.PyCapsule
- uniform(rosetta.numeric.random.RandomGenerator) -> float
Return from range [0, 1] (?) uniform random number
The implementation of random_range leads me to believe this is
actually [0, 1), like most other random number generators. -IWD
|
class WeightedSampler(builtins.object) |
| |
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(rosetta.numeric.random.WeightedSampler) -> NoneType
2. __init__(self : rosetta.numeric.random.WeightedSampler, num_weights : int) -> NoneType
3. __init__(self : rosetta.numeric.random.WeightedSampler, weights : rosetta.utility.vector1_double) -> NoneType
4. __init__(self : rosetta.numeric.random.WeightedSampler, : rosetta.numeric.random.WeightedSampler) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- add_weight(...) from builtins.PyCapsule
- add_weight(self : rosetta.numeric.random.WeightedSampler, weight : float) -> NoneType
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.numeric.random.WeightedSampler, : rosetta.numeric.random.WeightedSampler) -> rosetta.numeric.random.WeightedSampler
Copy operator
- clear(...) from builtins.PyCapsule
- clear(rosetta.numeric.random.WeightedSampler) -> NoneType
- random_sample(...) from builtins.PyCapsule
- random_sample(*args, **kwargs)
Overloaded function.
1. random_sample(self : rosetta.numeric.random.WeightedSampler, randnum : float) -> int
2. random_sample(self : rosetta.numeric.random.WeightedSampler, : rosetta.numeric.random.RandomGenerator) -> int
- resize(...) from builtins.PyCapsule
- resize(*args, **kwargs)
Overloaded function.
1. resize(self : rosetta.numeric.random.WeightedSampler, num_weights : int) -> NoneType
2. resize(self : rosetta.numeric.random.WeightedSampler, num_weights : int, default_weight : float) -> NoneType
- set_weight(...) from builtins.PyCapsule
- set_weight(self : rosetta.numeric.random.WeightedSampler, weight_num : int, weight : float) -> NoneType
- size(...) from builtins.PyCapsule
- size(rosetta.numeric.random.WeightedSampler) -> int
- update_cumulative_distribution(...) from builtins.PyCapsule
- update_cumulative_distribution(rosetta.numeric.random.WeightedSampler) -> NoneType
- weights(...) from builtins.PyCapsule
- weights(*args, **kwargs)
Overloaded function.
1. weights(rosetta.numeric.random.WeightedSampler) -> rosetta.utility.vector1_double
2. weights(self : rosetta.numeric.random.WeightedSampler, weights : rosetta.utility.vector1_double) -> NoneType
|
|