rosetta.numeric.random
index
(built-in)

Bindings for numeric::random namespace

 
Classes
       
builtins.object
RandomGenerator
WeightedSampler
uniform_RG
mt19937_RG
standard_RG

 
class RandomGenerator(builtins.object)
    Random number generator system
 
  Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(rosetta.numeric.random.RandomGenerator) -> float
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.numeric.random.RandomGenerator,  : rosetta.numeric.random.RandomGenerator) -> rosetta.numeric.random.RandomGenerator
gaussian(...) from builtins.PyCapsule
gaussian(rosetta.numeric.random.RandomGenerator) -> float
 
Get Gaussian distribution random number
get_seed(...) from builtins.PyCapsule
get_seed(rosetta.numeric.random.RandomGenerator) -> int
 
Return the seed used by this RNG.
max(...) from builtins.PyCapsule
max(rosetta.numeric.random.RandomGenerator) -> float
min(...) from builtins.PyCapsule
min(rosetta.numeric.random.RandomGenerator) -> float
random_range(...) from builtins.PyCapsule
random_range(self : rosetta.numeric.random.RandomGenerator, low : int, high : int) -> int
 
Returns a random int in the range specified by the arguments
set_seed(...) from builtins.PyCapsule
set_seed(*args, **kwargs)
Overloaded function.
 
1. set_seed(self : rosetta.numeric.random.RandomGenerator, generator_type : str, seed : int) -> NoneType
 
Set the seed and the generator type synchronously.
 Currently the two supported generator types are "standard"
 and "mt19937" with the latter being the recommended form.
 
2. set_seed(self : rosetta.numeric.random.RandomGenerator, seed : int) -> NoneType
 
Return the seed used by this RNG.
uniform(...) from builtins.PyCapsule
uniform(rosetta.numeric.random.RandomGenerator) -> float
 
Return from range [0, 1] (?) uniform random number
 
 The implementation of random_range leads me to believe this is
 actually [0, 1), like most other random number generators.  -IWD

 
class WeightedSampler(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.numeric.random.WeightedSampler) -> NoneType
 
2. __init__(self : rosetta.numeric.random.WeightedSampler, num_weights : int) -> NoneType
 
3. __init__(self : rosetta.numeric.random.WeightedSampler, weights : rosetta.utility.vector1_double) -> NoneType
 
4. __init__(self : rosetta.numeric.random.WeightedSampler,  : rosetta.numeric.random.WeightedSampler) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_weight(...) from builtins.PyCapsule
add_weight(self : rosetta.numeric.random.WeightedSampler, weight : float) -> NoneType
assign(...) from builtins.PyCapsule
assign(self : rosetta.numeric.random.WeightedSampler,  : rosetta.numeric.random.WeightedSampler) -> rosetta.numeric.random.WeightedSampler
 
Copy operator
clear(...) from builtins.PyCapsule
clear(rosetta.numeric.random.WeightedSampler) -> NoneType
random_sample(...) from builtins.PyCapsule
random_sample(*args, **kwargs)
Overloaded function.
 
1. random_sample(self : rosetta.numeric.random.WeightedSampler, randnum : float) -> int
 
2. random_sample(self : rosetta.numeric.random.WeightedSampler,  : rosetta.numeric.random.RandomGenerator) -> int
resize(...) from builtins.PyCapsule
resize(*args, **kwargs)
Overloaded function.
 
1. resize(self : rosetta.numeric.random.WeightedSampler, num_weights : int) -> NoneType
 
2. resize(self : rosetta.numeric.random.WeightedSampler, num_weights : int, default_weight : float) -> NoneType
set_weight(...) from builtins.PyCapsule
set_weight(self : rosetta.numeric.random.WeightedSampler, weight_num : int, weight : float) -> NoneType
size(...) from builtins.PyCapsule
size(rosetta.numeric.random.WeightedSampler) -> int
update_cumulative_distribution(...) from builtins.PyCapsule
update_cumulative_distribution(rosetta.numeric.random.WeightedSampler) -> NoneType
weights(...) from builtins.PyCapsule
weights(*args, **kwargs)
Overloaded function.
 
1. weights(rosetta.numeric.random.WeightedSampler) -> rosetta.utility.vector1_double
 
2. weights(self : rosetta.numeric.random.WeightedSampler, weights : rosetta.utility.vector1_double) -> NoneType

 
class mt19937_RG(uniform_RG)
    
Method resolution order:
mt19937_RG
uniform_RG
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.numeric.random.mt19937_RG,  : rosetta.numeric.random.mt19937_RG) -> rosetta.numeric.random.mt19937_RG
getRandom(...) from builtins.PyCapsule
getRandom(rosetta.numeric.random.mt19937_RG) -> float
getSeed(...) from builtins.PyCapsule
getSeed(rosetta.numeric.random.mt19937_RG) -> int
setSeed(...) from builtins.PyCapsule
setSeed(*args, **kwargs)
Overloaded function.
 
1. setSeed(self : rosetta.numeric.random.mt19937_RG, iseed : int) -> NoneType
 
Set seed and state
 
2. setSeed(self : rosetta.numeric.random.mt19937_RG,  : str) -> NoneType
 
Set seed and state

 
class standard_RG(uniform_RG)
    Generator based on rand() < clib > function.
 
 
Method resolution order:
standard_RG
uniform_RG
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.numeric.random.standard_RG,  : rosetta.numeric.random.standard_RG) -> rosetta.numeric.random.standard_RG
getRandom(...) from builtins.PyCapsule
getRandom(rosetta.numeric.random.standard_RG) -> float
getSeed(...) from builtins.PyCapsule
getSeed(rosetta.numeric.random.standard_RG) -> int
setSeed(...) from builtins.PyCapsule
setSeed(*args, **kwargs)
Overloaded function.
 
1. setSeed(self : rosetta.numeric.random.standard_RG, seed : int) -> NoneType
 
2. setSeed(self : rosetta.numeric.random.standard_RG,  : str) -> NoneType

 
class uniform_RG(builtins.object)
    Uniform random number generator
 
  Methods defined here:
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.numeric.random.uniform_RG,  : rosetta.numeric.random.uniform_RG) -> rosetta.numeric.random.uniform_RG
getRandom(...) from builtins.PyCapsule
getRandom(rosetta.numeric.random.uniform_RG) -> float
getSeed(...) from builtins.PyCapsule
getSeed(rosetta.numeric.random.uniform_RG) -> int
setSeed(...) from builtins.PyCapsule
setSeed(*args, **kwargs)
Overloaded function.
 
1. setSeed(self : rosetta.numeric.random.uniform_RG, seed : int) -> NoneType
 
2. setSeed(self : rosetta.numeric.random.uniform_RG, seed : str) -> NoneType

 
Functions
       
do_recursion(...) method of builtins.PyCapsule instance
do_recursion(r : rosetta.W128_T, a : rosetta.W128_T, b : rosetta.W128_T, c : rosetta.W128_T, lung : rosetta.W128_T) -> NoneType
 
This function represents the recursion formula.
 
 
 output
 
 
 a 128-bit part of the internal state array
 
 
 a 128-bit part of the internal state array
 
 
 a 128-bit part of the internal state array
 
 
 a 128-bit part of the internal state array
gaussian(...) method of builtins.PyCapsule instance
gaussian() -> float
gaussian_random_xform(...) method of builtins.PyCapsule instance
gaussian_random_xform(angsd : float, movsd : float) -> rosetta.numeric.xyzTransform_double_t
ini_func1(...) method of builtins.PyCapsule instance
ini_func1(x : int) -> int
ini_func2(...) method of builtins.PyCapsule instance
ini_func2(x : int) -> int
lshift128(...) method of builtins.PyCapsule instance
lshift128(out : rosetta.W128_T, in : rosetta.W128_T, shift : int) -> NoneType
random_normal(...) method of builtins.PyCapsule instance
random_normal() -> rosetta.numeric.xyzVector_double_t
random_range(...) method of builtins.PyCapsule instance
random_range(low : int, high : int) -> int
 
Return a number uniformly drawn from the inclusive range between low
 and high.  Threadsafe since each thread uses its own random generator.
random_rotation(...) method of builtins.PyCapsule instance
random_rotation() -> rosetta.numeric.xyzMatrix_double_t
random_vector(...) method of builtins.PyCapsule instance
random_vector() -> rosetta.numeric.xyzVector_double_t
random_vector_spherical(...) method of builtins.PyCapsule instance
random_vector_spherical() -> rosetta.numeric.xyzVector_double_t
random_vector_unit_cube(...) method of builtins.PyCapsule instance
random_vector_unit_cube() -> rosetta.numeric.xyzVector_double_t
random_xform(...) method of builtins.PyCapsule instance
random_xform() -> rosetta.numeric.xyzTransform_double_t
reservoir_sample_accept_prob(...) method of builtins.PyCapsule instance
reservoir_sample_accept_prob(n_wanted : int, n_seen : int) -> float
 
Returns the probability that the Nth value in a sequence
 should be accepted using the reservoir sampling criterion.
 
 
 If we've seen N values and we want to keep K of them,
 the probability of the Nth value being accepted is min(K/N,1.0).
rg(...) method of builtins.PyCapsule instance
rg() -> numeric::random::RandomGenerator
 
Return the one-per-thread "singleton" random generator.
sformat_idxof(...) method of builtins.PyCapsule instance
sformat_idxof(i : int) -> int
uniform(...) method of builtins.PyCapsule instance
uniform() -> float