rosetta.core.scoring.saxs
index
(built-in)

Bindings for core::scoring::saxs namespace

 
Classes
       
builtins.object
DistanceHistogram
FormFactor
FormFactorManager
rosetta.core.scoring.methods.EnergyMethodCreator(builtins.object)
FastSAXSEnergyCreator
SAXSEnergyCreator
SAXSEnergyCreatorCEN
SAXSEnergyCreatorFA
rosetta.core.scoring.methods.WholeStructureEnergy(rosetta.core.scoring.methods.EnergyMethod)
FastSAXSEnergy
SAXSEnergy
SAXSEnergyCEN
SAXSEnergyFA
rosetta.utility.SingletonBase_core_scoring_saxs_SinXOverX_t(builtins.object)
SinXOverX

 
class DistanceHistogram(builtins.object)
     Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.scoring.saxs.DistanceHistogram, distance : float) -> int
 
Returns the number of counts for a given distance
__init__(...) from builtins.PyCapsule
__init__(rosetta.core.scoring.saxs.DistanceHistogram) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.DistanceHistogram,  : rosetta.core.scoring.saxs.DistanceHistogram) -> rosetta.core.scoring.saxs.DistanceHistogram
distance(...) from builtins.PyCapsule
distance(self : rosetta.core.scoring.saxs.DistanceHistogram, bin : int) -> float
 
tells waht distance falls into a certain bin
get(...) from builtins.PyCapsule
get(*args, **kwargs)
Overloaded function.
 
1. get(self : rosetta.core.scoring.saxs.DistanceHistogram, distance : float) -> int
 
Returns the number of counts for a given distance
 
2. get(self : rosetta.core.scoring.saxs.DistanceHistogram, bin : int) -> int
 
Returns the number of counts for a given bin
insert(...) from builtins.PyCapsule
insert(self : rosetta.core.scoring.saxs.DistanceHistogram, distance : float) -> NoneType
 
Adds a distance observation to the histogram
last_nonempty_bin(...) from builtins.PyCapsule
last_nonempty_bin(rosetta.core.scoring.saxs.DistanceHistogram) -> int
size(...) from builtins.PyCapsule
size(rosetta.core.scoring.saxs.DistanceHistogram) -> int
 
Returns the size of this histogram
total(...) from builtins.PyCapsule
total(rosetta.core.scoring.saxs.DistanceHistogram) -> int
 
Returns the total number of counts in this histogram
zeros(...) from builtins.PyCapsule
zeros(rosetta.core.scoring.saxs.DistanceHistogram) -> NoneType
 
Clears this histogram by filling each cell with 0.0

 
class FastSAXSEnergy(rosetta.core.scoring.methods.WholeStructureEnergy)
    
Method resolution order:
FastSAXSEnergy
rosetta.core.scoring.methods.WholeStructureEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.saxs.FastSAXSEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.FastSAXSEnergy,  : rosetta.core.scoring.saxs.FastSAXSEnergy) -> rosetta.core.scoring.saxs.FastSAXSEnergy
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.saxs.FastSAXSEnergy) -> rosetta.core.scoring.methods.EnergyMethod
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.saxs.FastSAXSEnergy, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose,  : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.saxs.FastSAXSEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.saxs.FastSAXSEnergy,  : rosetta.utility.vector1_bool) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.saxs.FastSAXSEnergy, pose : rosetta.core.pose.Pose, sf : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.saxs.FastSAXSEnergy, pose : rosetta.core.pose.Pose, scorefxn : rosetta.core.scoring.ScoreFunction) -> NoneType

Methods inherited from rosetta.core.scoring.methods.WholeStructureEnergy:
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.methods.WholeStructureEnergy) -> float
 
how far apart must two heavy atoms be to have a zero interaction energy?
 
 
 If hydrogen atoms interact at the same range as heavy atoms, then
 this distance should build-in a 2 * max-bound-h-distance-cutoff buffer.
 There is an improper mixing here between run-time aquired chemical knowledge
 (max-bound-h-distance-cutoff) and compile time aquired scoring knowledge
 (max atom cutoff); this could be resolved by adding a boolean
 uses_hydrogen_interaction_distance() to the SRTBEnergy class along with
 a method of the ChemicalManager max_bound_h_distance_cutoff().
 
 This method allows the WholeStructureEnergy class to define which edges
 should be included in the EnergyGraph so that during the finalize() method
 the Energy class can iterate across the EnergyGraph.  This iteration occurrs
 in the SecondaryStructureEnergy class, where the edges must span 12 angstroms
 between the centroids.  Arguably, the SecondaryStructureEnergy class could use
 the TwelveANeighborGraph (a context graph) and not require that the EnergyGraph
 span such long distances.
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.WholeStructureEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class FastSAXSEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
FastSAXSEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.FastSAXSEnergyCreator,  : rosetta.core.scoring.saxs.FastSAXSEnergyCreator) -> rosetta.core.scoring.saxs.FastSAXSEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.saxs.FastSAXSEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new SAXSEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.saxs.FastSAXSEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class FormFactor(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.scoring.saxs.FormFactor,  : str,  : str) -> NoneType
 
2. __init__(self : rosetta.core.scoring.saxs.FormFactor,  : rosetta.core.scoring.saxs.FormFactor) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.FormFactor,  : rosetta.core.scoring.saxs.FormFactor) -> rosetta.core.scoring.saxs.FormFactor
ff(...) from builtins.PyCapsule
ff(self : rosetta.core.scoring.saxs.FormFactor, q : float) -> float
 
evaluates an atomic form factor for a given scattering angle (defined in 1/A)
get(...) from builtins.PyCapsule
get(self : rosetta.core.scoring.saxs.FormFactor, q_index : int) -> float
 
Returns tabulated ff-value (computed for i-th value of q-argument)
is_glob(...) from builtins.PyCapsule
is_glob(*args, **kwargs)
Overloaded function.
 
1. is_glob(self : rosetta.core.scoring.saxs.FormFactor, flag : bool) -> NoneType
 
2. is_glob(rosetta.core.scoring.saxs.FormFactor) -> bool
name(...) from builtins.PyCapsule
name(rosetta.core.scoring.saxs.FormFactor) -> str
tabulate(...) from builtins.PyCapsule
tabulate(self : rosetta.core.scoring.saxs.FormFactor, q : rosetta.utility.vector1_double) -> NoneType

Data descriptors defined here:
id_

 
class FormFactorManager(builtins.object)
    selects a given number of fragments using a quota scheme
 
  Methods defined here:
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
count_ff(...) from builtins.PyCapsule
count_ff(rosetta.core.scoring.saxs.FormFactorManager) -> int
 
returns the number of form factors registered in this manager
get_atom_index(...) from builtins.PyCapsule
get_atom_index(self : rosetta.core.scoring.saxs.FormFactorManager, atom_name : str) -> int
 
returns an index of an atom type or 0 if teh atom is not registered
get_ff(...) from builtins.PyCapsule
get_ff(*args, **kwargs)
Overloaded function.
 
1. get_ff(self : rosetta.core.scoring.saxs.FormFactorManager, atom_id : int) -> rosetta.core.scoring.saxs.FormFactor
 
returns form factor function for a given atom index
 
2. get_ff(self : rosetta.core.scoring.saxs.FormFactorManager, atom_name : str) -> rosetta.core.scoring.saxs.FormFactor
 
returns form factor function for a given atom
get_known_atoms(...) from builtins.PyCapsule
get_known_atoms(rosetta.core.scoring.saxs.FormFactorManager) -> rosetta.utility.vector1_std_string
 
returns a vector of know atom names
get_manager(...) from builtins.PyCapsule
get_manager() -> rosetta.core.scoring.saxs.FormFactorManager
 
return singleton of the manager
is_known_atom(...) from builtins.PyCapsule
is_known_atom(self : rosetta.core.scoring.saxs.FormFactorManager, atom_name : str) -> bool
 
returns true if the manager has form factor function for a given atom
load_ff(...) from builtins.PyCapsule
load_ff(self : rosetta.core.scoring.saxs.FormFactorManager, config_file : str) -> NoneType
load_ff_from_db(...) from builtins.PyCapsule
load_ff_from_db(self : rosetta.core.scoring.saxs.FormFactorManager, file_name : str) -> NoneType
register_ff(...) from builtins.PyCapsule
register_ff(self : rosetta.core.scoring.saxs.FormFactorManager, atom_name : str, new_ff : rosetta.core.scoring.saxs.FormFactor) -> NoneType
tabulate(...) from builtins.PyCapsule
tabulate(self : rosetta.core.scoring.saxs.FormFactorManager, q : rosetta.utility.vector1_double) -> NoneType
 
asks all the registered form factors to tabulate their values for the new vector of q-arguments

 
class SAXSEnergy(rosetta.core.scoring.methods.WholeStructureEnergy)
    
Method resolution order:
SAXSEnergy
rosetta.core.scoring.methods.WholeStructureEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : handle,  : str,  : rosetta.std.weak_ptr_const_core_chemical_ResidueTypeSet_t,  : rosetta.core.scoring.ScoreType,  : rosetta.core.scoring.methods.EnergyMethodCreator) -> NoneType
 
2. __init__(self : handle,  : str,  : rosetta.utility.vector1_double,  : rosetta.utility.vector1_double,  : rosetta.core.scoring.ScoreType,  : rosetta.core.scoring.methods.EnergyMethodCreator) -> NoneType
 
3. __init__(handle, rosetta.core.scoring.saxs.SAXSEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.SAXSEnergy,  : rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.core.scoring.saxs.SAXSEnergy
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.core.scoring.methods.EnergyMethod
compute_zero_intensity(...) from builtins.PyCapsule
compute_zero_intensity(rosetta.core.scoring.saxs.SAXSEnergy) -> float
count_scoring_atoms(...) from builtins.PyCapsule
count_scoring_atoms(rosetta.core.scoring.saxs.SAXSEnergy) -> int
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.saxs.SAXSEnergy,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.saxs.SAXSEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
get_pose_intensities(...) from builtins.PyCapsule
get_pose_intensities(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
get_q(...) from builtins.PyCapsule
get_q(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
get_reference_intensities(...) from builtins.PyCapsule
get_reference_intensities(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.saxs.SAXSEnergy,  : rosetta.utility.vector1_bool) -> NoneType
total_energy(...) from builtins.PyCapsule
total_energy(self : rosetta.core.scoring.saxs.SAXSEnergy, pose : rosetta.core.pose.Pose) -> float

Methods inherited from rosetta.core.scoring.methods.WholeStructureEnergy:
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.methods.WholeStructureEnergy) -> float
 
how far apart must two heavy atoms be to have a zero interaction energy?
 
 
 If hydrogen atoms interact at the same range as heavy atoms, then
 this distance should build-in a 2 * max-bound-h-distance-cutoff buffer.
 There is an improper mixing here between run-time aquired chemical knowledge
 (max-bound-h-distance-cutoff) and compile time aquired scoring knowledge
 (max atom cutoff); this could be resolved by adding a boolean
 uses_hydrogen_interaction_distance() to the SRTBEnergy class along with
 a method of the ChemicalManager max_bound_h_distance_cutoff().
 
 This method allows the WholeStructureEnergy class to define which edges
 should be included in the EnergyGraph so that during the finalize() method
 the Energy class can iterate across the EnergyGraph.  This iteration occurrs
 in the SecondaryStructureEnergy class, where the edges must span 12 angstroms
 between the centroids.  Arguably, the SecondaryStructureEnergy class could use
 the TwelveANeighborGraph (a context graph) and not require that the EnergyGraph
 span such long distances.
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.WholeStructureEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.methods.EnergyMethod, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Evaluate the XYZ derivative for an atom in the pose.
 Called during the atomtree derivative calculation, atom_tree_minimize.cc,
 through the ScoreFunction::eval_atom_derivative intermediary.
 F1 and F2 should not zeroed, rather, this class should accumulate its contribution
 from this atom's XYZ derivative
 
 
 The derivative scheme is based on that of Abe, Braun, Noguti and Go (1984)
 "Rapid Calculation of First and Second Derivatives of Conformational Energy with
 Respect to Dihedral Angles for Proteins. General Recurrent Equations"
 Computers & Chemistry 8(4) pp. 239-247. F1 and F2 correspond roughly to Fa and Ga,
 respectively, of equations 7a & 7b in that paper.
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class SAXSEnergyCEN(SAXSEnergy)
    
Method resolution order:
SAXSEnergyCEN
SAXSEnergy
rosetta.core.scoring.methods.WholeStructureEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.saxs.SAXSEnergyCEN) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.SAXSEnergyCEN,  : rosetta.core.scoring.saxs.SAXSEnergyCEN) -> rosetta.core.scoring.saxs.SAXSEnergyCEN

Methods inherited from SAXSEnergy:
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.core.scoring.methods.EnergyMethod
compute_zero_intensity(...) from builtins.PyCapsule
compute_zero_intensity(rosetta.core.scoring.saxs.SAXSEnergy) -> float
count_scoring_atoms(...) from builtins.PyCapsule
count_scoring_atoms(rosetta.core.scoring.saxs.SAXSEnergy) -> int
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.saxs.SAXSEnergy,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.saxs.SAXSEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
get_pose_intensities(...) from builtins.PyCapsule
get_pose_intensities(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
get_q(...) from builtins.PyCapsule
get_q(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
get_reference_intensities(...) from builtins.PyCapsule
get_reference_intensities(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.saxs.SAXSEnergy,  : rosetta.utility.vector1_bool) -> NoneType
total_energy(...) from builtins.PyCapsule
total_energy(self : rosetta.core.scoring.saxs.SAXSEnergy, pose : rosetta.core.pose.Pose) -> float

Methods inherited from rosetta.core.scoring.methods.WholeStructureEnergy:
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.methods.WholeStructureEnergy) -> float
 
how far apart must two heavy atoms be to have a zero interaction energy?
 
 
 If hydrogen atoms interact at the same range as heavy atoms, then
 this distance should build-in a 2 * max-bound-h-distance-cutoff buffer.
 There is an improper mixing here between run-time aquired chemical knowledge
 (max-bound-h-distance-cutoff) and compile time aquired scoring knowledge
 (max atom cutoff); this could be resolved by adding a boolean
 uses_hydrogen_interaction_distance() to the SRTBEnergy class along with
 a method of the ChemicalManager max_bound_h_distance_cutoff().
 
 This method allows the WholeStructureEnergy class to define which edges
 should be included in the EnergyGraph so that during the finalize() method
 the Energy class can iterate across the EnergyGraph.  This iteration occurrs
 in the SecondaryStructureEnergy class, where the edges must span 12 angstroms
 between the centroids.  Arguably, the SecondaryStructureEnergy class could use
 the TwelveANeighborGraph (a context graph) and not require that the EnergyGraph
 span such long distances.
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.WholeStructureEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.methods.EnergyMethod, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Evaluate the XYZ derivative for an atom in the pose.
 Called during the atomtree derivative calculation, atom_tree_minimize.cc,
 through the ScoreFunction::eval_atom_derivative intermediary.
 F1 and F2 should not zeroed, rather, this class should accumulate its contribution
 from this atom's XYZ derivative
 
 
 The derivative scheme is based on that of Abe, Braun, Noguti and Go (1984)
 "Rapid Calculation of First and Second Derivatives of Conformational Energy with
 Respect to Dihedral Angles for Proteins. General Recurrent Equations"
 Computers & Chemistry 8(4) pp. 239-247. F1 and F2 correspond roughly to Fa and Ga,
 respectively, of equations 7a & 7b in that paper.
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class SAXSEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
SAXSEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.saxs.SAXSEnergyCreator) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.SAXSEnergyCreator,  : rosetta.core.scoring.saxs.SAXSEnergyCreator) -> rosetta.core.scoring.saxs.SAXSEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.saxs.SAXSEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new SAXSEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.saxs.SAXSEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class SAXSEnergyCreatorCEN(SAXSEnergyCreator)
    
Method resolution order:
SAXSEnergyCreatorCEN
SAXSEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.saxs.SAXSEnergyCreatorCEN) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.SAXSEnergyCreatorCEN,  : rosetta.core.scoring.saxs.SAXSEnergyCreatorCEN) -> rosetta.core.scoring.saxs.SAXSEnergyCreatorCEN
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.saxs.SAXSEnergyCreatorCEN,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new SAXSEnergyCEN
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.saxs.SAXSEnergyCreatorCEN) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.saxs.SAXSEnergyCreatorCEN) -> int

 
class SAXSEnergyCreatorFA(SAXSEnergyCreator)
    
Method resolution order:
SAXSEnergyCreatorFA
SAXSEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.saxs.SAXSEnergyCreatorFA) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.SAXSEnergyCreatorFA,  : rosetta.core.scoring.saxs.SAXSEnergyCreatorFA) -> rosetta.core.scoring.saxs.SAXSEnergyCreatorFA
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.saxs.SAXSEnergyCreatorFA,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new SAXSEnergyFA
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.saxs.SAXSEnergyCreatorFA) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.saxs.SAXSEnergyCreatorFA) -> int

 
class SAXSEnergyFA(SAXSEnergy)
    
Method resolution order:
SAXSEnergyFA
SAXSEnergy
rosetta.core.scoring.methods.WholeStructureEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.saxs.SAXSEnergyFA) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.saxs.SAXSEnergyFA,  : rosetta.core.scoring.saxs.SAXSEnergyFA) -> rosetta.core.scoring.saxs.SAXSEnergyFA

Methods inherited from SAXSEnergy:
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.core.scoring.methods.EnergyMethod
compute_zero_intensity(...) from builtins.PyCapsule
compute_zero_intensity(rosetta.core.scoring.saxs.SAXSEnergy) -> float
count_scoring_atoms(...) from builtins.PyCapsule
count_scoring_atoms(rosetta.core.scoring.saxs.SAXSEnergy) -> int
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.saxs.SAXSEnergy,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.saxs.SAXSEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
get_pose_intensities(...) from builtins.PyCapsule
get_pose_intensities(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
get_q(...) from builtins.PyCapsule
get_q(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
get_reference_intensities(...) from builtins.PyCapsule
get_reference_intensities(rosetta.core.scoring.saxs.SAXSEnergy) -> rosetta.utility.vector1_double
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.saxs.SAXSEnergy,  : rosetta.utility.vector1_bool) -> NoneType
total_energy(...) from builtins.PyCapsule
total_energy(self : rosetta.core.scoring.saxs.SAXSEnergy, pose : rosetta.core.pose.Pose) -> float

Methods inherited from rosetta.core.scoring.methods.WholeStructureEnergy:
atomic_interaction_cutoff(...) from builtins.PyCapsule
atomic_interaction_cutoff(rosetta.core.scoring.methods.WholeStructureEnergy) -> float
 
how far apart must two heavy atoms be to have a zero interaction energy?
 
 
 If hydrogen atoms interact at the same range as heavy atoms, then
 this distance should build-in a 2 * max-bound-h-distance-cutoff buffer.
 There is an improper mixing here between run-time aquired chemical knowledge
 (max-bound-h-distance-cutoff) and compile time aquired scoring knowledge
 (max atom cutoff); this could be resolved by adding a boolean
 uses_hydrogen_interaction_distance() to the SRTBEnergy class along with
 a method of the ChemicalManager max_bound_h_distance_cutoff().
 
 This method allows the WholeStructureEnergy class to define which edges
 should be included in the EnergyGraph so that during the finalize() method
 the Energy class can iterate across the EnergyGraph.  This iteration occurrs
 in the SecondaryStructureEnergy class, where the edges must span 12 angstroms
 between the centroids.  Arguably, the SecondaryStructureEnergy class could use
 the TwelveANeighborGraph (a context graph) and not require that the EnergyGraph
 span such long distances.
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.WholeStructureEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.methods.EnergyMethod, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Evaluate the XYZ derivative for an atom in the pose.
 Called during the atomtree derivative calculation, atom_tree_minimize.cc,
 through the ScoreFunction::eval_atom_derivative intermediary.
 F1 and F2 should not zeroed, rather, this class should accumulate its contribution
 from this atom's XYZ derivative
 
 
 The derivative scheme is based on that of Abe, Braun, Noguti and Go (1984)
 "Rapid Calculation of First and Second Derivatives of Conformational Energy with
 Respect to Dihedral Angles for Proteins. General Recurrent Equations"
 Computers & Chemistry 8(4) pp. 239-247. F1 and F2 correspond roughly to Fa and Ga,
 respectively, of equations 7a & 7b in that paper.
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.methods.EnergyMethod, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction) -> NoneType
 
Called immediately before atom- and DOF-derivatives are calculated
 allowing the derived class a chance to prepare for future calls.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
if an energy method needs to cache something in the pose (e.g. in pose.energies()),
 before scoring begins, it must do so in this method.  All long range energy
 functions must initialize their LREnergyContainers before scoring begins.
 The default is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class SinXOverX(rosetta.utility.SingletonBase_core_scoring_saxs_SinXOverX_t)
    
Method resolution order:
SinXOverX
rosetta.utility.SingletonBase_core_scoring_saxs_SinXOverX_t
builtins.object

Methods defined here:
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
evaluate(...) from builtins.PyCapsule
evaluate(self : rosetta.core.scoring.saxs.SinXOverX, x : float) -> float

Methods inherited from rosetta.utility.SingletonBase_core_scoring_saxs_SinXOverX_t:
get_instance(...) from builtins.PyCapsule
get_instance() -> core::scoring::saxs::SinXOverX

 
Functions
       
aa2idx(...) method of builtins.PyCapsule instance
aa2idx(aa : rosetta.core.chemical.AA) -> int
load_fastsax_spectrum(...) method of builtins.PyCapsule instance
load_fastsax_spectrum(nq : int, q : __gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > >, i_obs : __gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > >, i_sig : __gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > >) -> NoneType
load_form_factors(...) method of builtins.PyCapsule instance
load_form_factors(nq : int, q_in : __gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > >, spectra : __gnu_cxx::__normal_iterator<utility::vector1<double, std::allocator<double> >*, std::vector<utility::vector1<double, std::allocator<double> >, std::allocator<utility::vector1<double, std::allocator<double> > > > >) -> NoneType