rosetta.core.scoring.electron_density
index
(built-in)

Bindings for core::scoring::electron_density namespace

 
Classes
       
builtins.object
ElectronDensity
KromerMann
OneGaussianScattering
poseCoord
rosetta.basic.resource_manager.ResourceLoader(builtins.object)
ElectronDensityLoader
rosetta.basic.resource_manager.ResourceLoaderCreator(builtins.object)
ElectronDensityLoaderCreator
rosetta.basic.resource_manager.ResourceOptions(builtins.object)
ElectronDensityOptions
rosetta.basic.resource_manager.ResourceOptionsCreator(builtins.object)
ElectronDensityOptionsCreator
rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy(rosetta.core.scoring.methods.LongRangeTwoBodyEnergy)
ElecDensAllAtomCenEnergy
ElecDensCenEnergy
rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy(rosetta.core.scoring.methods.LongRangeTwoBodyEnergy)
ElecDensEnergy
FastDensEnergy
rosetta.core.scoring.methods.EnergyMethodCreator(builtins.object)
ElecDensAllAtomCenEnergyCreator
ElecDensCenEnergyCreator
ElecDensEnergyCreator
FastDensEnergyCreator

 
class ElecDensAllAtomCenEnergy(rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy)
    
Method resolution order:
ElecDensAllAtomCenEnergy
rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy
rosetta.core.scoring.methods.LongRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy,  : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy) -> rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy,  : rosetta.core.scoring.EMapVector) -> bool
defines_residue_pair_energy(...) from builtins.PyCapsule
defines_residue_pair_energy(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy, pose : rosetta.core.pose.Pose, res1 : int, res2 : int) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose,  : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
called during gradient-based minimization inside dfunc
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue constraint energy for a given residue
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
 
called at the end of energy evaluation
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy,  : rosetta.utility.vector1_bool) -> NoneType
long_range_type(...) from builtins.PyCapsule
long_range_type(rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy) -> rosetta.core.scoring.methods.LongRangeEnergyType
 
//////////////////////////////////////////////////////////////////////////
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy, pose : rosetta.core.pose.Pose, sf : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType

Methods inherited from rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy:
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls the derived class's residue_pair_energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class ElecDensAllAtomCenEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
ElecDensAllAtomCenEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergyCreator,  : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergyCreator) -> rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new ElecDensCenEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.electron_density.ElecDensAllAtomCenEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class ElecDensCenEnergy(rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy)
    
Method resolution order:
ElecDensCenEnergy
rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy
rosetta.core.scoring.methods.LongRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.electron_density.ElecDensCenEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy,  : rosetta.core.scoring.electron_density.ElecDensCenEnergy) -> rosetta.core.scoring.electron_density.ElecDensCenEnergy
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.electron_density.ElecDensCenEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy,  : rosetta.core.scoring.EMapVector) -> bool
defines_residue_pair_energy(...) from builtins.PyCapsule
defines_residue_pair_energy(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy, pose : rosetta.core.pose.Pose, res1 : int, res2 : int) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose,  : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
called during gradient-based minimization inside dfunc
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue constraint energy for a given residue
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
 
called at the end of energy evaluation
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy,  : rosetta.utility.vector1_bool) -> NoneType
long_range_type(...) from builtins.PyCapsule
long_range_type(rosetta.core.scoring.electron_density.ElecDensCenEnergy) -> rosetta.core.scoring.methods.LongRangeEnergyType
 
//////////////////////////////////////////////////////////////////////////
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy, pose : rosetta.core.pose.Pose, sf : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.electron_density.ElecDensCenEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType

Methods inherited from rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy:
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextDependentLRTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls the derived class's residue_pair_energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class ElecDensCenEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
ElecDensCenEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElecDensCenEnergyCreator,  : rosetta.core.scoring.electron_density.ElecDensCenEnergyCreator) -> rosetta.core.scoring.electron_density.ElecDensCenEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.electron_density.ElecDensCenEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new ElecDensCenEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.electron_density.ElecDensCenEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class ElecDensEnergy(rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy)
    
Method resolution order:
ElecDensEnergy
rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy
rosetta.core.scoring.methods.LongRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.electron_density.ElecDensEnergy) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElecDensEnergy,  : rosetta.core.scoring.electron_density.ElecDensEnergy) -> rosetta.core.scoring.electron_density.ElecDensEnergy
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.electron_density.ElecDensEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.electron_density.ElecDensEnergy,  : rosetta.core.scoring.EMapVector) -> bool
defines_residue_pair_energy(...) from builtins.PyCapsule
defines_residue_pair_energy(self : rosetta.core.scoring.electron_density.ElecDensEnergy, pose : rosetta.core.pose.Pose, res1 : int, res2 : int) -> bool
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.electron_density.ElecDensEnergy, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose,  : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
called during gradient-based minimization inside dfunc
 
        F1 and F2 are not zeroed -- contributions from this atom are
        just summed in
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.electron_density.ElecDensEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue constraint energy for a given residue
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.electron_density.ElecDensEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction, totals : rosetta.core.scoring.EMapVector) -> NoneType
 
called at the end of energy evaluation
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.electron_density.ElecDensEnergy,  : rosetta.utility.vector1_bool) -> NoneType
long_range_type(...) from builtins.PyCapsule
long_range_type(rosetta.core.scoring.electron_density.ElecDensEnergy) -> rosetta.core.scoring.methods.LongRangeEnergyType
 
//////////////////////////////////////////////////////////////////////////
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.electron_density.ElecDensEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.electron_density.ElecDensEnergy, pose : rosetta.core.pose.Pose, sf : rosetta.core.scoring.ScoreFunction) -> NoneType
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.electron_density.ElecDensEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType

Methods inherited from rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy:
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivatives for all atoms on rsd1 and rsd2 with respect
 to each other and increment the derivatives in atom-derivatives vector1s.
 The calling function must guarantee that the r1_atom_derivs vector1 holds at
 least as many entries as there are atoms in rsd1, and that the r2_atom_derivs
 vector1 holds at least as many entries as there are atoms in rsd2.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls the derived class's residue_pair_energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated only in the context of the whole Pose, or can it be included
 in a decomposed manner for a residue or a set of residue-pairs that are
 not part of the Pose that's serving as their context?  The default
 method implemented in the base class returns true in order to grandfather
 in EnergyMethods that have not had their derivatives changed to take
 advantage of the new derivative-evaluation machinery.  Methods that return
 "true" will not have their residue-energy(-ext) / residue-pair-energy(-ext)
 methods invoked by the ScoreFunction during its traversal of the
 MinimizationGraph, and instead will be asked to perform all their work
 during finalize_total_energies().  Similarly, they will be expected to
 perform all their work during eval_atom_deriv() instead of during the
 ScoreFunction's traversal of the MinimizationGraph for derivative evaluation.
 IMPORTANT: Methods that return "true" cannot be included in RTMin.
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class ElecDensEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
ElecDensEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElecDensEnergyCreator,  : rosetta.core.scoring.electron_density.ElecDensEnergyCreator) -> rosetta.core.scoring.electron_density.ElecDensEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.electron_density.ElecDensEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new ElecDensEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.electron_density.ElecDensEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class ElectronDensity(builtins.object)
     Methods defined here:
S2(...) from builtins.PyCapsule
S2(self : rosetta.core.scoring.electron_density.ElectronDensity, h : int, k : int, l : int) -> float
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.electron_density.ElectronDensity) -> NoneType
 
2. __init__(self : rosetta.core.scoring.electron_density.ElectronDensity, poses : rosetta.utility.vector1_std_shared_ptr_core_pose_Pose_t, reso : float, apix : float) -> NoneType
 
3. __init__(self : rosetta.core.scoring.electron_density.ElectronDensity,  : rosetta.core.scoring.electron_density.ElectronDensity) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElectronDensity,  : rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.core.scoring.electron_density.ElectronDensity
cart2idx(...) from builtins.PyCapsule
cart2idx(self : rosetta.core.scoring.electron_density.ElectronDensity, cartX : rosetta.numeric.xyzVector_double_t, idxX : rosetta.numeric.xyzVector_double_t) -> NoneType
clearMask(...) from builtins.PyCapsule
clearMask(rosetta.core.scoring.electron_density.ElectronDensity) -> NoneType
 
reset scoring to use all residues
clear_dCCdx_res_cache(...) from builtins.PyCapsule
clear_dCCdx_res_cache(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose) -> NoneType
 
Resets the counters used for derivative computation in
   sliding-window/fast scoring
computeStats(...) from builtins.PyCapsule
computeStats(rosetta.core.scoring.electron_density.ElectronDensity) -> NoneType
compute_symm_rotations(...) from builtins.PyCapsule
compute_symm_rotations(*args, **kwargs)
Overloaded function.
 
1. compute_symm_rotations(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose) -> NoneType
 
Computes the symmatric rotation matrices
 
2. compute_symm_rotations(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo) -> NoneType
 
Computes the symmatric rotation matrices
dCCdB_fastRes(...) from builtins.PyCapsule
dCCdB_fastRes(self : rosetta.core.scoring.electron_density.ElectronDensity, atmid : int, resid : int, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose) -> float
 
Gradient of CC w.r.t B factors
dCCdBs(...) from builtins.PyCapsule
dCCdBs(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose, dE_dvars : rosetta.utility.vector1_double, maskC : ObjexxFCL::FArray3D<double>) -> NoneType
 
calculate all gradients of CC w.r.t B factors (slow more precise version)
dCCdx_PointFast(...) from builtins.PyCapsule
dCCdx_PointFast(self : rosetta.core.scoring.electron_density.ElectronDensity, X : rosetta.numeric.xyzVector_double_t, dCCdx : rosetta.numeric.xyzVector_double_t) -> NoneType
 
access fastdens scoring for a single point
dCCdx_aacen(...) from builtins.PyCapsule
dCCdx_aacen(self : rosetta.core.scoring.electron_density.ElectronDensity, atmid : int, resid : int, X : rosetta.numeric.xyzVector_double_t, pose : rosetta.core.pose.Pose, gradX : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Return the gradient of whole-structure-CC w.r.t. atom X's movement
 non-sliding-window analogue of dCCdx
dCCdx_cen(...) from builtins.PyCapsule
dCCdx_cen(self : rosetta.core.scoring.electron_density.ElectronDensity, resid : int, X : rosetta.numeric.xyzVector_double_t, pose : rosetta.core.pose.Pose, gradX : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Return the gradient of CC w.r.t. res X's CA's movement
 Centroid-mode analogue of dCCdx
dCCdx_fastRes(...) from builtins.PyCapsule
dCCdx_fastRes(self : rosetta.core.scoring.electron_density.ElectronDensity, atmid : int, resid : int, X : rosetta.numeric.xyzVector_double_t, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, gradX : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Return the gradient of "fast CC" w.r.t. atom X's movement
 Uses information stored from the previous call to matchRes with this resid
dCCdx_res(...) from builtins.PyCapsule
dCCdx_res(self : rosetta.core.scoring.electron_density.ElectronDensity, atmid : int, resid : int, X : rosetta.numeric.xyzVector_double_t, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, gradX : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Return the gradient of CC w.r.t. atom X's movement
 Uses information stored from the previous call to matchRes with this resid
dens_grad(...) from builtins.PyCapsule
dens_grad(self : rosetta.core.scoring.electron_density.ElectronDensity, idxX : rosetta.numeric.xyzVector_double_t) -> rosetta.numeric.xyzVector_double_t
get(...) from builtins.PyCapsule
get(*args, **kwargs)
Overloaded function.
 
1. get(self : rosetta.core.scoring.electron_density.ElectronDensity, i : int, j : int, k : int) -> float
 
get the density at a grid point
 
2. get(self : rosetta.core.scoring.electron_density.ElectronDensity, X : rosetta.numeric.xyzVector_double_t) -> float
 
get the interpolated density at a point _in index space_
getAtomMask(...) from builtins.PyCapsule
getAtomMask(rosetta.core.scoring.electron_density.ElectronDensity) -> float
getCachedScore(...) from builtins.PyCapsule
getCachedScore(self : rosetta.core.scoring.electron_density.ElectronDensity, resid : int) -> float
 
get the precomputed CC (THIS SHOULD LIVE IN POSE DATACACHE!)
getEffectiveBfactor(...) from builtins.PyCapsule
getEffectiveBfactor(rosetta.core.scoring.electron_density.ElectronDensity) -> float
 
get the "effective B factor": a global b factor based on map resolution
getFSC(...) from builtins.PyCapsule
getFSC(*args, **kwargs)
Overloaded function.
 
1. getFSC(self : rosetta.core.scoring.electron_density.ElectronDensity, Frho1 : ObjexxFCL::FArray3D<std::complex<double> >, Frho2 : ObjexxFCL::FArray3D<std::complex<double> >, nbuckets : int, maxreso : float, minreso : float, FSC : rosetta.utility.vector1_double) -> NoneType
 
Compute map-map FSC
 
2. getFSC(self : rosetta.core.scoring.electron_density.ElectronDensity, Frho1 : ObjexxFCL::FArray3D<std::complex<double> >, Frho2 : ObjexxFCL::FArray3D<std::complex<double> >, nbuckets : int, maxreso : float, minreso : float, FSC : rosetta.utility.vector1_double, S2_bin : bool) -> NoneType
 
Compute map-map FSC
getGrid(...) from builtins.PyCapsule
getGrid(rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.numeric.xyzVector_int_t
getIntensities(...) from builtins.PyCapsule
getIntensities(*args, **kwargs)
Overloaded function.
 
1. getIntensities(self : rosetta.core.scoring.electron_density.ElectronDensity, FrhoC : ObjexxFCL::FArray3D<std::complex<double> >, nbuckets : int, maxreso : float, minreso : float, Imap : rosetta.utility.vector1_double) -> NoneType
 
Compute map intensities, masked by a pose.  Also compute mask intensities
 
2. getIntensities(self : rosetta.core.scoring.electron_density.ElectronDensity, FrhoC : ObjexxFCL::FArray3D<std::complex<double> >, nbuckets : int, maxreso : float, minreso : float, Imap : rosetta.utility.vector1_double, S2_bin : bool) -> NoneType
 
Compute map intensities, masked by a pose.  Also compute mask intensities
getMax(...) from builtins.PyCapsule
getMax(rosetta.core.scoring.electron_density.ElectronDensity) -> float
getMean(...) from builtins.PyCapsule
getMean(rosetta.core.scoring.electron_density.ElectronDensity) -> float
getMin(...) from builtins.PyCapsule
getMin(rosetta.core.scoring.electron_density.ElectronDensity) -> float
getOrigin(...) from builtins.PyCapsule
getOrigin(rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.numeric.xyzVector_double_t
getPhaseError(...) from builtins.PyCapsule
getPhaseError(*args, **kwargs)
Overloaded function.
 
1. getPhaseError(self : rosetta.core.scoring.electron_density.ElectronDensity, Frho1 : ObjexxFCL::FArray3D<std::complex<double> >, Frho2 : ObjexxFCL::FArray3D<std::complex<double> >, nbuckets : int, maxreso : float, minreso : float, phaseError : rosetta.utility.vector1_double) -> NoneType
 
Compute map-map phase error
 
2. getPhaseError(self : rosetta.core.scoring.electron_density.ElectronDensity, Frho1 : ObjexxFCL::FArray3D<std::complex<double> >, Frho2 : ObjexxFCL::FArray3D<std::complex<double> >, nbuckets : int, maxreso : float, minreso : float, phaseError : rosetta.utility.vector1_double, S2_bin : bool) -> NoneType
 
Compute map-map phase error
getRSCC(...) from builtins.PyCapsule
getRSCC(*args, **kwargs)
Overloaded function.
 
1. getRSCC(self : rosetta.core.scoring.electron_density.ElectronDensity, density2 : ObjexxFCL::FArray3D<double>, mask : ObjexxFCL::FArray3D<double>) -> float
 
Real-space correlation
 
2. getRSCC(self : rosetta.core.scoring.electron_density.ElectronDensity, rhoC : ObjexxFCL::FArray3D<double>) -> float
 
Real-space correlation
getResolution(...) from builtins.PyCapsule
getResolution(rosetta.core.scoring.electron_density.ElectronDensity) -> float
getResolutionBins(...) from builtins.PyCapsule
getResolutionBins(*args, **kwargs)
Overloaded function.
 
1. getResolutionBins(self : rosetta.core.scoring.electron_density.ElectronDensity, nbuckets : int, maxreso : float, minreso : float,  : rosetta.utility.vector1_double,  : rosetta.utility.vector1_unsigned_long) -> NoneType
 
get resolution bins
 
2. getResolutionBins(self : rosetta.core.scoring.electron_density.ElectronDensity, nbuckets : int, maxreso : float, minreso : float,  : rosetta.utility.vector1_double,  : rosetta.utility.vector1_unsigned_long, S2_bin : bool) -> NoneType
 
get resolution bins
getSCscaling(...) from builtins.PyCapsule
getSCscaling(rosetta.core.scoring.electron_density.ElectronDensity) -> float
getScoreWindowContext(...) from builtins.PyCapsule
getScoreWindowContext(rosetta.core.scoring.electron_density.ElectronDensity) -> bool
getStdev(...) from builtins.PyCapsule
getStdev(rosetta.core.scoring.electron_density.ElectronDensity) -> float
getTransform(...) from builtins.PyCapsule
getTransform(rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.numeric.xyzVector_double_t
 
Get the transformation from indices to Cartesian coords using 'real' origin
getWindow(...) from builtins.PyCapsule
getWindow(rosetta.core.scoring.electron_density.ElectronDensity) -> int
get_R(...) from builtins.PyCapsule
get_R(self : rosetta.core.scoring.electron_density.ElectronDensity, subunit : int, R : rosetta.numeric.xyzMatrix_double_t) -> NoneType
 
gets rotation vactor for subunit 'subunit' in last-scored pose (Rosetta symmetry)
get_c2f(...) from builtins.PyCapsule
get_c2f(rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.numeric.xyzMatrix_double_t
get_cellDimensions(...) from builtins.PyCapsule
get_cellDimensions(rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.numeric.xyzVector_double_t
get_data(...) from builtins.PyCapsule
get_data(rosetta.core.scoring.electron_density.ElectronDensity) -> ObjexxFCL::FArray3D<float>
 
access raw density data
get_f2c(...) from builtins.PyCapsule
get_f2c(rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.numeric.xyzMatrix_double_t
 
get frac<=>cartesian conversion matrices
get_symmMap(...) from builtins.PyCapsule
get_symmMap(self : rosetta.core.scoring.electron_density.ElectronDensity, vrtid : int, X_map : rosetta.utility.vector1_int, R : rosetta.numeric.xyzMatrix_double_t) -> NoneType
 
get symmetrized gradients for -score_symm_complex
get_voxel_spacing(...) from builtins.PyCapsule
get_voxel_spacing(rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.numeric.xyzVector_double_t
 
set voxel spacing of the map
getsymmOps(...) from builtins.PyCapsule
getsymmOps(rosetta.core.scoring.electron_density.ElectronDensity) -> rosetta.utility.vector1_core_kinematics_RT
grad(...) from builtins.PyCapsule
grad(self : rosetta.core.scoring.electron_density.ElectronDensity, X : rosetta.numeric.xyzVector_double_t) -> rosetta.numeric.xyzVector_double_t
 
get the interpolated gradient at a point _in index space_
init(...) from builtins.PyCapsule
init(rosetta.core.scoring.electron_density.ElectronDensity) -> NoneType
 
initialize vars from command line options
isMapLoaded(...) from builtins.PyCapsule
isMapLoaded(rosetta.core.scoring.electron_density.ElectronDensity) -> bool
mapSphericalSamples(...) from builtins.PyCapsule
mapSphericalSamples(self : rosetta.core.scoring.electron_density.ElectronDensity, mapShellR : ObjexxFCL::FArray3D<double>, nRsteps : int, delR : float, B : int, center : rosetta.numeric.xyzVector_double_t) -> NoneType
 
resample the map in spherical shells around a pose
maskResidues(...) from builtins.PyCapsule
maskResidues(*args, **kwargs)
Overloaded function.
 
1. maskResidues(self : rosetta.core.scoring.electron_density.ElectronDensity, scoring_mask : int) -> NoneType
 
set scoring to use only a subset of residues
 
2. maskResidues(self : rosetta.core.scoring.electron_density.ElectronDensity, scoring_mask : rosetta.utility.vector1_int) -> NoneType
 
set scoring to use only a subset of residues
matchCentroidPose(...) from builtins.PyCapsule
matchCentroidPose(*args, **kwargs)
Overloaded function.
 
1. matchCentroidPose(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose) -> float
 
Quickly matches a centroid pose into a low-resolution density map
   by placing a single Gaussian at each CA
 
2. matchCentroidPose(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo) -> float
 
Quickly matches a centroid pose into a low-resolution density map
   by placing a single Gaussian at each CA
 
3. matchCentroidPose(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo, cacheCCs : bool) -> float
 
Quickly matches a centroid pose into a low-resolution density map
   by placing a single Gaussian at each CA
matchPointFast(...) from builtins.PyCapsule
matchPointFast(self : rosetta.core.scoring.electron_density.ElectronDensity, X : rosetta.numeric.xyzVector_double_t) -> float
 
access fastdens scoring for a single point
matchPose(...) from builtins.PyCapsule
matchPose(*args, **kwargs)
Overloaded function.
 
1. matchPose(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose) -> float
 
Match a pose into a medium-resolution density map
   by placing a single Gaussian at each atom
 
2. matchPose(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo) -> float
 
Match a pose into a medium-resolution density map
   by placing a single Gaussian at each atom
 
3. matchPose(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo, cacheCCs : bool) -> float
 
Match a pose into a medium-resolution density map
   by placing a single Gaussian at each atom
matchRes(...) from builtins.PyCapsule
matchRes(*args, **kwargs)
Overloaded function.
 
1. matchRes(self : rosetta.core.scoring.electron_density.ElectronDensity, resid : int, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose) -> float
 
Match a residue's conformation to the density map.
   Backbone atoms from adjacent residues are also used for scoring.
   Returns the correlation coefficient between map and pose
   Internally stores per-res CCs, per-atom dCC/dxs
 
2. matchRes(self : rosetta.core.scoring.electron_density.ElectronDensity, resid : int, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo) -> float
 
Match a residue's conformation to the density map.
   Backbone atoms from adjacent residues are also used for scoring.
   Returns the correlation coefficient between map and pose
   Internally stores per-res CCs, per-atom dCC/dxs
 
3. matchRes(self : rosetta.core.scoring.electron_density.ElectronDensity, resid : int, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo, cacheCCs : bool) -> float
 
Match a residue's conformation to the density map.
   Backbone atoms from adjacent residues are also used for scoring.
   Returns the correlation coefficient between map and pose
   Internally stores per-res CCs, per-atom dCC/dxs
matchResFast(...) from builtins.PyCapsule
matchResFast(*args, **kwargs)
Overloaded function.
 
1. matchResFast(self : rosetta.core.scoring.electron_density.ElectronDensity, resid : int, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose) -> float
 
Match a residue's conformation to the density map.
    Same as matchRes, but using a fast approximation to the match function
 
2. matchResFast(self : rosetta.core.scoring.electron_density.ElectronDensity, resid : int, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo) -> float
 
Match a residue's conformation to the density map.
    Same as matchRes, but using a fast approximation to the match function
 
3. matchResFast(self : rosetta.core.scoring.electron_density.ElectronDensity, resid : int, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, symmInfo : rosetta.core.conformation.symmetry.SymmetryInfo, sc_scale : float) -> float
 
Match a residue's conformation to the density map.
    Same as matchRes, but using a fast approximation to the match function
maxNominalRes(...) from builtins.PyCapsule
maxNominalRes(rosetta.core.scoring.electron_density.ElectronDensity) -> float
 
Return the highest possible resolution relection in reciprocal space for the given grid
readMRCandResize(...) from builtins.PyCapsule
readMRCandResize(*args, **kwargs)
Overloaded function.
 
1. readMRCandResize(self : rosetta.core.scoring.electron_density.ElectronDensity, mapfile : str) -> bool
 
Load an MRC density map
 
2. readMRCandResize(self : rosetta.core.scoring.electron_density.ElectronDensity, mapfile : str, reso : float) -> bool
 
Load an MRC density map
 
3. readMRCandResize(self : rosetta.core.scoring.electron_density.ElectronDensity, mapfile : str, reso : float, gridSpacing : float) -> bool
 
Load an MRC density map
reciprocalSpaceFilter(...) from builtins.PyCapsule
reciprocalSpaceFilter(self : rosetta.core.scoring.electron_density.ElectronDensity, maxreso : float, minreso : float, fadewidth : float) -> NoneType
 
Filter the map in reciprocal space
rescale_fastscoring_temp_bins(...) from builtins.PyCapsule
rescale_fastscoring_temp_bins(*args, **kwargs)
Overloaded function.
 
1. rescale_fastscoring_temp_bins(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose) -> NoneType
 
2. rescale_fastscoring_temp_bins(self : rosetta.core.scoring.electron_density.ElectronDensity, pose : rosetta.core.pose.Pose, init : bool) -> NoneType
resize(...) from builtins.PyCapsule
resize(self : rosetta.core.scoring.electron_density.ElectronDensity, approxGridSpacing : float) -> NoneType
 
resize the map via FFT resampling
scaleIntensities(...) from builtins.PyCapsule
scaleIntensities(*args, **kwargs)
Overloaded function.
 
1. scaleIntensities(self : rosetta.core.scoring.electron_density.ElectronDensity, I_tgt : rosetta.utility.vector1_double, maxreso : float, minreso : float) -> NoneType
 
Scale map intensities to a target spectum
 
2. scaleIntensities(self : rosetta.core.scoring.electron_density.ElectronDensity, I_tgt : rosetta.utility.vector1_double, maxreso : float, minreso : float, S2_bin : bool) -> NoneType
 
Scale map intensities to a target spectum
setOrigin(...) from builtins.PyCapsule
setOrigin(self : rosetta.core.scoring.electron_density.ElectronDensity, newori : rosetta.numeric.xyzVector_double_t) -> NoneType
setSCscaling(...) from builtins.PyCapsule
setSCscaling(self : rosetta.core.scoring.electron_density.ElectronDensity, SC_scalingin : float) -> NoneType
setScoreWindowContext(...) from builtins.PyCapsule
setScoreWindowContext(self : rosetta.core.scoring.electron_density.ElectronDensity, newVal : bool) -> NoneType
setWindow(...) from builtins.PyCapsule
setWindow(self : rosetta.core.scoring.electron_density.ElectronDensity, window_in : int) -> NoneType
set_nres(...) from builtins.PyCapsule
set_nres(self : rosetta.core.scoring.electron_density.ElectronDensity, nres : int) -> NoneType
 
set # of residues
set_voxel_spacing(...) from builtins.PyCapsule
set_voxel_spacing(*args, **kwargs)
Overloaded function.
 
1. set_voxel_spacing(self : rosetta.core.scoring.electron_density.ElectronDensity, apix : rosetta.numeric.xyzVector_double_t) -> NoneType
 
set voxel spacing of the map
 
2. set_voxel_spacing(self : rosetta.core.scoring.electron_density.ElectronDensity, apix : float) -> NoneType
 
set voxel spacing of the map
writeMRC(...) from builtins.PyCapsule
writeMRC(self : rosetta.core.scoring.electron_density.ElectronDensity, mapfilestem : str) -> bool
 
(debugging) Write MRC mapfile

 
class ElectronDensityLoader(rosetta.basic.resource_manager.ResourceLoader)
    
Method resolution order:
ElectronDensityLoader
rosetta.basic.resource_manager.ResourceLoader
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.scoring.electron_density.ElectronDensityLoader) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElectronDensityLoader,  : rosetta.core.scoring.electron_density.ElectronDensityLoader) -> rosetta.core.scoring.electron_density.ElectronDensityLoader
default_options(...) from builtins.PyCapsule
default_options(rosetta.core.scoring.electron_density.ElectronDensityLoader) -> rosetta.basic.resource_manager.ResourceOptions

 
class ElectronDensityLoaderCreator(rosetta.basic.resource_manager.ResourceLoaderCreator)
    creator for the ElectronDensityLoader class
 
 
Method resolution order:
ElectronDensityLoaderCreator
rosetta.basic.resource_manager.ResourceLoaderCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElectronDensityLoaderCreator,  : rosetta.core.scoring.electron_density.ElectronDensityLoaderCreator) -> rosetta.core.scoring.electron_density.ElectronDensityLoaderCreator
create_resource_loader(...) from builtins.PyCapsule
create_resource_loader(rosetta.core.scoring.electron_density.ElectronDensityLoaderCreator) -> rosetta.basic.resource_manager.ResourceLoader
loader_type(...) from builtins.PyCapsule
loader_type(rosetta.core.scoring.electron_density.ElectronDensityLoaderCreator) -> str

 
class ElectronDensityOptions(rosetta.basic.resource_manager.ResourceOptions)
    
Method resolution order:
ElectronDensityOptions
rosetta.basic.resource_manager.ResourceOptions
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(self : handle, name : str) -> NoneType
 
3. __init__(self : handle, name : str, mapreso : float, grid_spacing : float) -> NoneType
 
4. __init__(handle, rosetta.core.scoring.electron_density.ElectronDensityOptions) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElectronDensityOptions,  : rosetta.core.scoring.electron_density.ElectronDensityOptions) -> rosetta.core.scoring.electron_density.ElectronDensityOptions
get_grid_spacing(...) from builtins.PyCapsule
get_grid_spacing(rosetta.core.scoring.electron_density.ElectronDensityOptions) -> float
get_mapreso(...) from builtins.PyCapsule
get_mapreso(rosetta.core.scoring.electron_density.ElectronDensityOptions) -> float
parse_my_tag(...) from builtins.PyCapsule
parse_my_tag(self : rosetta.core.scoring.electron_density.ElectronDensityOptions, tag : rosetta.utility.tag.Tag) -> NoneType
set_grid_spacing(...) from builtins.PyCapsule
set_grid_spacing(self : rosetta.core.scoring.electron_density.ElectronDensityOptions, grid_spacing : float) -> NoneType
set_mapreso(...) from builtins.PyCapsule
set_mapreso(self : rosetta.core.scoring.electron_density.ElectronDensityOptions, mapreso : float) -> NoneType
type(...) from builtins.PyCapsule
type(rosetta.core.scoring.electron_density.ElectronDensityOptions) -> str
 
The class name for a particular ResourceOptions instance.
 This function allows for better error message delivery

Methods inherited from rosetta.basic.resource_manager.ResourceOptions:
__str__(...) from builtins.PyCapsule
__str__(rosetta.basic.resource_manager.ResourceOptions) -> str
name(...) from builtins.PyCapsule
name(*args, **kwargs)
Overloaded function.
 
1. name(rosetta.basic.resource_manager.ResourceOptions) -> str
 
A name given to a particular ResourceOptions instance.
 This function allows for better error message delivery.
 
2. name(self : rosetta.basic.resource_manager.ResourceOptions, setting : str) -> NoneType
 
Set the name for this %ResoureOptions instance.

 
class ElectronDensityOptionsCreator(rosetta.basic.resource_manager.ResourceOptionsCreator)
    creator for the ElectronDensityOptions class
 
 
Method resolution order:
ElectronDensityOptionsCreator
rosetta.basic.resource_manager.ResourceOptionsCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.ElectronDensityOptionsCreator,  : rosetta.core.scoring.electron_density.ElectronDensityOptionsCreator) -> rosetta.core.scoring.electron_density.ElectronDensityOptionsCreator
create_options(...) from builtins.PyCapsule
create_options(rosetta.core.scoring.electron_density.ElectronDensityOptionsCreator) -> rosetta.basic.resource_manager.ResourceOptions
options_type(...) from builtins.PyCapsule
options_type(rosetta.core.scoring.electron_density.ElectronDensityOptionsCreator) -> str

 
class FastDensEnergy(rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy)
    
Method resolution order:
FastDensEnergy
rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy
rosetta.core.scoring.methods.LongRangeTwoBodyEnergy
rosetta.core.scoring.methods.TwoBodyEnergy
rosetta.core.scoring.methods.EnergyMethod
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(self : handle, opts : rosetta.core.scoring.methods.EnergyMethodOptions) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.FastDensEnergy,  : rosetta.core.scoring.electron_density.FastDensEnergy) -> rosetta.core.scoring.electron_density.FastDensEnergy
clone(...) from builtins.PyCapsule
clone(rosetta.core.scoring.electron_density.FastDensEnergy) -> rosetta.core.scoring.methods.EnergyMethod
 
clone
defines_intrares_energy(...) from builtins.PyCapsule
defines_intrares_energy(self : rosetta.core.scoring.electron_density.FastDensEnergy,  : rosetta.core.scoring.EMapVector) -> bool
defines_residue_pair_energy(...) from builtins.PyCapsule
defines_residue_pair_energy(self : rosetta.core.scoring.electron_density.FastDensEnergy, pose : rosetta.core.pose.Pose, res1 : int, res2 : int) -> bool
eval_intrares_energy(...) from builtins.PyCapsule
eval_intrares_energy(self : rosetta.core.scoring.electron_density.FastDensEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
eval_residue_pair_derivatives(...) from builtins.PyCapsule
eval_residue_pair_derivatives(self : rosetta.core.scoring.electron_density.FastDensEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue,  : rosetta.core.scoring.ResSingleMinimizationData,  : rosetta.core.scoring.ResSingleMinimizationData, min_data : rosetta.core.scoring.ResPairMinimizationData,  : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, r1_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair, r2_atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
finalize_total_energy(...) from builtins.PyCapsule
finalize_total_energy(self : rosetta.core.scoring.electron_density.FastDensEnergy,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
indicate_required_context_graphs(...) from builtins.PyCapsule
indicate_required_context_graphs(self : rosetta.core.scoring.electron_density.FastDensEnergy,  : rosetta.utility.vector1_bool) -> NoneType
long_range_type(...) from builtins.PyCapsule
long_range_type(rosetta.core.scoring.electron_density.FastDensEnergy) -> rosetta.core.scoring.methods.LongRangeEnergyType
 
lr container name
minimize_in_whole_structure_context(...) from builtins.PyCapsule
minimize_in_whole_structure_context(self : rosetta.core.scoring.electron_density.FastDensEnergy,  : rosetta.core.pose.Pose) -> bool
 
use the new minimizer interface
residue_pair_energy(...) from builtins.PyCapsule
residue_pair_energy(self : rosetta.core.scoring.electron_density.FastDensEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
setup_for_derivatives(...) from builtins.PyCapsule
setup_for_derivatives(self : rosetta.core.scoring.electron_density.FastDensEnergy, pose : rosetta.core.pose.Pose, sf : rosetta.core.scoring.ScoreFunction) -> NoneType
 
derivatives
setup_for_scoring(...) from builtins.PyCapsule
setup_for_scoring(self : rosetta.core.scoring.electron_density.FastDensEnergy, pose : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
scoring

Methods inherited from rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy:
method_type(...) from builtins.PyCapsule
method_type(rosetta.core.scoring.methods.ContextIndependentLRTwoBodyEnergy) -> rosetta.core.scoring.methods.EnergyMethodType

Methods inherited from rosetta.core.scoring.methods.TwoBodyEnergy:
backbone_backbone_energy(...) from builtins.PyCapsule
backbone_backbone_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 backbone of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the weighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
backbone_sidechain_energy(...) from builtins.PyCapsule
backbone_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the backbone of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
bump_energy_backbone(...) from builtins.PyCapsule
bump_energy_backbone(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
bump_energy_full(...) from builtins.PyCapsule
bump_energy_full(self : rosetta.core.scoring.methods.TwoBodyEnergy,  : rosetta.core.conformation.Residue,  : rosetta.core.conformation.Residue,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.scoring.EMapVector) -> NoneType
defines_intrares_dof_derivatives(...) from builtins.PyCapsule
defines_intrares_dof_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, p : rosetta.core.pose.Pose) -> bool
 
Use the dof_derivative interface for this energy method when
 calculating derivatives?  It is possible to define both dof_derivatives and
 atom-derivatives; they are not mutually exclusive.
defines_intrares_energy_for_residue(...) from builtins.PyCapsule
defines_intrares_energy_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, res : rosetta.core.conformation.Residue) -> bool
 
If a score function defines no intra-residue scores for a particular
 residue, then it may opt-out of being asked during minimization to evaluate
 the score for this residue.
defines_score_for_residue_pair(...) from builtins.PyCapsule
defines_score_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, res1 : rosetta.core.conformation.Residue, res2 : rosetta.core.conformation.Residue, res_moving_wrt_eachother : bool) -> bool
 
During minimization, energy methods are allowed to decide that they say nothing
 about a particular residue pair (e.g. no non-zero energy) and as a result they will not be queried for
 a derivative or an energy.  The default implementation returns "true" for all residue pairs.
 Context-dependent two-body energies have the option of behaving as if they are context-independent
 by returning "false" for residue pairs that do no move wrt each other.
eval_intrares_derivatives(...) from builtins.PyCapsule
eval_intrares_derivatives(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, weights : rosetta.core.scoring.EMapVector, atom_derivs : rosetta.utility.vector1_core_scoring_DerivVectorPair) -> NoneType
 
Evaluate the derivative for the intra-residue component of this energy method
 for all the atoms in a residue in the context of a particular pose,
 and increment the F1 and F2 vectors held in the atom_derivs vector1.
 This base class provides a default noop implementation
 of this function. The calling function must guarantee that this EnergyMethod has had the
 opportunity to update the input ResSingleMinimizationData object for the given residue
 in a call to prepare_for_minimization before this function is invoked.
 The calling function must also guarantee that there are at least as many entries
 in the atom_derivs vector1 as there are atoms in the input rsd.
eval_intrares_energy_ext(...) from builtins.PyCapsule
eval_intrares_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, data_cache : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the intra-residue energy for a given residue using the data held within the
 ResSingleMinimizationData object.  This function should be invoked only on derived instances
 of this class if they return "true" in a call to their use_extended_intrares_energy_interface
 method.  This base class provides a noop implementation for classes that do not implement this
 interface, or that do not define intrares energies.
eval_intraresidue_dof_derivative(...) from builtins.PyCapsule
eval_intraresidue_dof_derivative(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResSingleMinimizationData, dof_id : rosetta.core.id.DOF_ID, torsion_id : rosetta.core.id.TorsionID, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector) -> float
 
Evaluate the DOF derivative for a particular residue.  The Pose merely serves as context,
 and the input residue is not required to be a member of the Pose.
evaluate_rotamer_background_energies(...) from builtins.PyCapsule
evaluate_rotamer_background_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_vector : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_background_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_background_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, residue : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer/background energies.  Need not be overriden
 in derived class -- by default, iterates over all rotamers in the set, and calls
 derived class's residue_pair_energy method for each one against the background rotamr
evaluate_rotamer_intrares_energies(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, energies : rosetta.utility.vector1_float) -> NoneType
 
Batch computation of rotamer intrares energies.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_intrares_energy_maps(...) from builtins.PyCapsule
evaluate_rotamer_intrares_energy_maps(self : rosetta.core.scoring.methods.TwoBodyEnergy, set : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emaps : rosetta.utility.vector1_core_scoring_EMapVector) -> NoneType
 
Batch computation of rotamer intrares energy map.  Need not be overriden in
 derived class -- by default, iterates over all rotamers,
 and calls derived class's intrares _energy method.
evaluate_rotamer_pair_energies(...) from builtins.PyCapsule
evaluate_rotamer_pair_energies(self : rosetta.core.scoring.methods.TwoBodyEnergy, set1 : rosetta.core.conformation.RotamerSetBase, set2 : rosetta.core.conformation.RotamerSetBase, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, weights : rosetta.core.scoring.EMapVector, energy_table : ObjexxFCL::FArray2D<float>) -> NoneType
 
Batch computation of rotamer pair energies.  Need not be overriden in
 derived class -- by default, iterates over all pairs of rotamers,
 and calls the derived class's residue_pair_energy method.
requires_a_setup_for_derivatives_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_derivatives_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_derivatives_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before derivative evaluation begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine the residue before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residues that are uninterested
 in doing so.
requires_a_setup_for_scoring_for_residue_pair_opportunity(...) from builtins.PyCapsule
requires_a_setup_for_scoring_for_residue_pair_opportunity(self : rosetta.core.scoring.methods.TwoBodyEnergy, pose : rosetta.core.pose.Pose) -> bool
 
Does this EnergyMethod require the opportunity to examine each residue pair before scoring begins?  Not
 all energy methods would.  The ScoreFunction will not ask energy methods to examine residue pairs that are uninterested
 in doing so.
residue_pair_energy_ext(...) from builtins.PyCapsule
residue_pair_energy_ext(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, min_data : rosetta.core.scoring.ResPairMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the two-body energies for a particular residue, in the context of a
 given Pose, and with the help of a piece of cached data for minimization, increment those
 two body energies into the input EnergyMap.  The calling function must guarantee that this
 EnergyMethod has had the opportunity to update the input ResPairMinimizationData object
 for the given residues in a call to setup_for_minimizing_for_residue_pair before this function is
 invoked. This function should not be called unless the use_extended_residue_pair_energy_interface()
 method returns "true".  Default implementation provided by this base class calls
 utility::exit().
setup_for_derivatives_for_residue(...) from builtins.PyCapsule
setup_for_derivatives_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue
setup_for_derivatives_for_residue_pair(...) from builtins.PyCapsule
setup_for_derivatives_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work necessary before evaluating the derivatives for this residue pair
setup_for_minimizing_for_residue(...) from builtins.PyCapsule
setup_for_minimizing_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res_data_cache : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_minimizing_for_residue_pair(...) from builtins.PyCapsule
setup_for_minimizing_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, minmap : rosetta.core.kinematics.MinimizerMapBase, res1_data_cache : rosetta.core.scoring.ResSingleMinimizationData, res2_data_cache : rosetta.core.scoring.ResSingleMinimizationData, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Called at the beginning of minimization, allowing this energy method to cache data
 pertinent for a single residue in the the ResPairMinimizationData that is used for a
 particular residue in the context of a particular Pose.  This base class provides a noop
 implementation for this function if there is nothing that the derived class needs to perform
 in this setup phase.
setup_for_scoring_for_residue(...) from builtins.PyCapsule
setup_for_scoring_for_residue(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, min_data : rosetta.core.scoring.ResSingleMinimizationData) -> NoneType
 
Do any setup work should the coordinates of this residue (who is still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called) have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed.
 This function is used for both intra-residue setup and pre-inter-residue setup
setup_for_scoring_for_residue_pair(...) from builtins.PyCapsule
setup_for_scoring_for_residue_pair(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, minsingle_data1 : rosetta.core.scoring.ResSingleMinimizationData, minsingle_data2 : rosetta.core.scoring.ResSingleMinimizationData, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, data_cache : rosetta.core.scoring.ResPairMinimizationData) -> NoneType
 
Do any setup work should the coordinates of a pair of residues, who are still guaranteed to be
 of the same residue type as when setup_for_minimizing_for_residue was called, have changed so dramatically
 as to possibly require some amount of setup work before scoring should proceed
sidechain_sidechain_energy(...) from builtins.PyCapsule
sidechain_sidechain_energy(self : rosetta.core.scoring.methods.TwoBodyEnergy, rsd1 : rosetta.core.conformation.Residue, rsd2 : rosetta.core.conformation.Residue, pose : rosetta.core.pose.Pose, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector) -> NoneType
 
Evaluate the interaction between the sidechain of rsd1 and the
 sidechain of rsd2 and accumulate the unweighted energies.  The sum
 bb_bb(r1,r2) + bb_sc(r1,r2) + bb_sc(r2,r1) + sc_sc( r1,r2) must
 equal the unweighted result of a call to residue_pair_energy.
 By default, bb_bb & bb_sc return 0 and sc_sc returns
 residue pair energy.
use_extended_intrares_energy_interface(...) from builtins.PyCapsule
use_extended_intrares_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Derived classes wishing to invoke the alternate, extended interface for eval_intrares_energy
 during minimization routines should return "true" when this function is invoked on them.  This
 class provides a default "return false" implementation so that classes not desiring to take advantage
 of this alternate interface need to do nothing.
use_extended_residue_pair_energy_interface(...) from builtins.PyCapsule
use_extended_residue_pair_energy_interface(rosetta.core.scoring.methods.TwoBodyEnergy) -> bool
 
Rely on the extended version of the residue_pair_energy function during score-function
 evaluation in minimization? The extended version (below) takes a ResPairMinimizationData in which
 the derived base class has (or should have) cached a piece of data that will make residue-pair
 energy evaluation faster than its absense (e.g. a neighbor list). Derived energy methods should
 return 'true' from this function to use the extended interface. The default method implemented
 in this class returns 'false'

Methods inherited from rosetta.core.scoring.methods.EnergyMethod:
defines_high_order_terms(...) from builtins.PyCapsule
defines_high_order_terms(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose) -> bool
 
Should this EnergyMethod have score and derivative evaluation
 evaluated both in the context of the whole Pose and in the context
 of residue or residue-pairs?  This covers scoring terms like env-smooth
 wherein the CBeta's get derivatives for increasing the neighbor counts
 for surrounding residues, and terms like constraints, which are definable
 on arbitrary number of residues (e.g. more than 2); both of these terms
 could be used in RTMin, and both should use the residue and residue-pair
 evaluation scheme with the MinimizationGraph for the majority of the
 work they do.  (Now, high-order constraints (3-body or above) will not
 be properly evaluated within RTMin.).  The default implementation
 returns "false".
eval_atom_derivative(...) from builtins.PyCapsule
eval_atom_derivative(self : rosetta.core.scoring.methods.EnergyMethod, id : rosetta.core.id.AtomID, pose : rosetta.core.pose.Pose, domain_map : ObjexxFCL::FArray1D<int>, sfxn : rosetta.core.scoring.ScoreFunction, emap : rosetta.core.scoring.EMapVector, F1 : rosetta.numeric.xyzVector_double_t, F2 : rosetta.numeric.xyzVector_double_t) -> NoneType
 
Evaluate the XYZ derivative for an atom in the pose.
 Called during the atomtree derivative calculation, atom_tree_minimize.cc,
 through the ScoreFunction::eval_atom_derivative intermediary.
 F1 and F2 should not zeroed, rather, this class should accumulate its contribution
 from this atom's XYZ derivative
 
 
 The derivative scheme is based on that of Abe, Braun, Noguti and Go (1984)
 "Rapid Calculation of First and Second Derivatives of Conformational Energy with
 Respect to Dihedral Angles for Proteins. General Recurrent Equations"
 Computers & Chemistry 8(4) pp. 239-247. F1 and F2 correspond roughly to Fa and Ga,
 respectively, of equations 7a & 7b in that paper.
finalize_after_derivatives(...) from builtins.PyCapsule
finalize_after_derivatives(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction) -> NoneType
 
called at the end of derivatives evaluation
prepare_rotamers_for_packing(...) from builtins.PyCapsule
prepare_rotamers_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.conformation.RotamerSetBase) -> NoneType
 
If an energy method needs to cache data in a packing::RotamerSet object before
 rotamer energies are calculated, it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
score_types(...) from builtins.PyCapsule
score_types(rosetta.core.scoring.methods.EnergyMethod) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Returns the score types that this energy method computes.
setup_for_minimizing(...) from builtins.PyCapsule
setup_for_minimizing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.core.scoring.ScoreFunction,  : rosetta.core.kinematics.MinimizerMapBase) -> NoneType
 
Called at the beginning of atom tree minimization, this method
 allows the derived class the opportunity to initialize pertinent data
 that will be used during minimization.  During minimzation, the chemical
 structure of the pose is constant, so assumptions on the number of atoms
 per residue and their identities are safe so long as the pose's Energies
 object's "use_nblist()" method returns true.
setup_for_packing(...) from builtins.PyCapsule
setup_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose,  : rosetta.utility.vector1_bool,  : rosetta.utility.vector1_bool) -> NoneType
 
if an energy method needs to cache data in the Energies object,
 before packing begins, then it does so during this function. The packer
 must ensure this function is called. The default behavior is to do nothing.
update_residue_for_packing(...) from builtins.PyCapsule
update_residue_for_packing(self : rosetta.core.scoring.methods.EnergyMethod,  : rosetta.core.pose.Pose, resid : int) -> NoneType
 
If the pose changes in the middle of a packing (as happens in rotamer trials) and if
 an energy method needs to cache data in the pose that corresponds to its current state,
 then the method must update that data when this function is called.  The packer must
 ensure this function gets called.  The default behavior is to do nothing.
version(...) from builtins.PyCapsule
version(rosetta.core.scoring.methods.EnergyMethod) -> int
 
Return the version of the energy method

 
class FastDensEnergyCreator(rosetta.core.scoring.methods.EnergyMethodCreator)
    
Method resolution order:
FastDensEnergyCreator
rosetta.core.scoring.methods.EnergyMethodCreator
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.FastDensEnergyCreator,  : rosetta.core.scoring.electron_density.FastDensEnergyCreator) -> rosetta.core.scoring.electron_density.FastDensEnergyCreator
create_energy_method(...) from builtins.PyCapsule
create_energy_method(self : rosetta.core.scoring.electron_density.FastDensEnergyCreator,  : rosetta.core.scoring.methods.EnergyMethodOptions) -> rosetta.core.scoring.methods.EnergyMethod
 
Instantiate a new FastDensEnergy
score_types_for_method(...) from builtins.PyCapsule
score_types_for_method(rosetta.core.scoring.electron_density.FastDensEnergyCreator) -> rosetta.utility.vector1_core_scoring_ScoreType
 
Return the set of score types claimed by the EnergyMethod
 this EnergyMethodCreator creates in its create_energy_method() function

 
class KromerMann(builtins.object)
    /////////
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.electron_density.KromerMann) -> NoneType
 
2. __init__(self : rosetta.core.scoring.electron_density.KromerMann, c : float, a1 : float, a2 : float, a3 : float, a4 : float, b1 : float, b2 : float, b3 : float, b4 : float) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
f0(...) from builtins.PyCapsule
f0(self : rosetta.core.scoring.electron_density.KromerMann, S2 : float) -> float

 
class OneGaussianScattering(builtins.object)
    /////////
 
  Methods defined here:
B(...) from builtins.PyCapsule
B(self : rosetta.core.scoring.electron_density.OneGaussianScattering, k : float) -> float
C(...) from builtins.PyCapsule
C(self : rosetta.core.scoring.electron_density.OneGaussianScattering, k : float) -> float
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.electron_density.OneGaussianScattering) -> NoneType
 
2. __init__(self : rosetta.core.scoring.electron_density.OneGaussianScattering, w : float, s : float) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
a(...) from builtins.PyCapsule
a(rosetta.core.scoring.electron_density.OneGaussianScattering) -> int
dk(...) from builtins.PyCapsule
dk(*args, **kwargs)
Overloaded function.
 
1. dk(self : rosetta.core.scoring.electron_density.OneGaussianScattering, B : float) -> float
 
2. dk(self : rosetta.core.scoring.electron_density.OneGaussianScattering, B : float, lim : float) -> float
k(...) from builtins.PyCapsule
k(*args, **kwargs)
Overloaded function.
 
1. k(self : rosetta.core.scoring.electron_density.OneGaussianScattering, B : float) -> float
 
2. k(self : rosetta.core.scoring.electron_density.OneGaussianScattering, B : float, lim : float) -> float

 
class poseCoord(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.scoring.electron_density.poseCoord) -> NoneType
 
2. __init__(self : rosetta.core.scoring.electron_density.poseCoord,  : rosetta.core.scoring.electron_density.poseCoord) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.scoring.electron_density.poseCoord,  : rosetta.core.scoring.electron_density.poseCoord) -> rosetta.core.scoring.electron_density.poseCoord

Data descriptors defined here:
B_
elt_
x_

 
Functions
       
add_dens_scores_from_cmdline_to_scorefxn(...) method of builtins.PyCapsule instance
add_dens_scores_from_cmdline_to_scorefxn(scorefxn_ : rosetta.core.scoring.ScoreFunction) -> NoneType
 
update scorefxn with density scores from commandline
conj_map_times(...) method of builtins.PyCapsule instance
conj_map_times(map_product : ObjexxFCL::FArray3D<std::complex<double> >, mapA : ObjexxFCL::FArray3D<std::complex<double> >, mapB : ObjexxFCL::FArray3D<std::complex<double> >) -> NoneType
convolute_maps(...) method of builtins.PyCapsule instance
convolute_maps(mapA : ObjexxFCL::FArray3D<double>, mapB : ObjexxFCL::FArray3D<double>) -> ObjexxFCL::FArray3D<double>
factorsLTE19(...) method of builtins.PyCapsule instance
factorsLTE19(X : int) -> bool
factorsLTE5(...) method of builtins.PyCapsule instance
factorsLTE5(X : int) -> bool
findSampling(...) method of builtins.PyCapsule instance
findSampling(MINSMP : float, NMUL : int) -> int
findSampling5(...) method of builtins.PyCapsule instance
findSampling5(MINSMP : float, NMUL : int) -> int
getDensityMap(...) method of builtins.PyCapsule instance
getDensityMap(*args, **kwargs)
Overloaded function.
 
1. getDensityMap() -> rosetta.core.scoring.electron_density.ElectronDensity
 
The EDM instance
 
2. getDensityMap(filename : str) -> rosetta.core.scoring.electron_density.ElectronDensity
 
The EDM instance
 
3. getDensityMap(filename : str, force_reload : bool) -> rosetta.core.scoring.electron_density.ElectronDensity
 
The EDM instance
getDensityMap_legacy(...) method of builtins.PyCapsule instance
getDensityMap_legacy(*args, **kwargs)
Overloaded function.
 
1. getDensityMap_legacy() -> rosetta.core.scoring.electron_density.ElectronDensity
 
The EDM instance
 
2. getDensityMap_legacy(filename : str) -> rosetta.core.scoring.electron_density.ElectronDensity
 
The EDM instance
 
3. getDensityMap_legacy(filename : str, force_reload : bool) -> rosetta.core.scoring.electron_density.ElectronDensity
 
The EDM instance
get_A(...) method of builtins.PyCapsule instance
get_A(elt : str) -> rosetta.core.scoring.electron_density.OneGaussianScattering
get_km(...) method of builtins.PyCapsule instance
get_km(elt : str) -> rosetta.core.scoring.electron_density.KromerMann
interp_dspline(...) method of builtins.PyCapsule instance
interp_dspline(*args, **kwargs)
Overloaded function.
 
1. interp_dspline(coeffs : ObjexxFCL::FArray3D<double>, idxX : rosetta.numeric.xyzVector_double_t) -> rosetta.numeric.xyzVector_double_t
 
2. interp_dspline(coeffs : ObjexxFCL::FArray4D<double>, idxX : rosetta.numeric.xyzVector_double_t, slab : float, gradX : rosetta.numeric.xyzVector_double_t, gradSlab : float) -> NoneType
interp_spline(...) method of builtins.PyCapsule instance
interp_spline(*args, **kwargs)
Overloaded function.
 
1. interp_spline(coeffs : ObjexxFCL::FArray3D<double>, idxX : rosetta.numeric.xyzVector_double_t) -> float
 
spline interpolation with periodic boundaries
 
2. interp_spline(coeffs : ObjexxFCL::FArray4D<double>, slab : float, idxX : rosetta.numeric.xyzVector_double_t) -> float
 
4d interpolants
pos_mod(...) method of builtins.PyCapsule instance
pos_mod(*args, **kwargs)
Overloaded function.
 
1. pos_mod(x : float, y : float) -> float
 
2. pos_mod(x : int, y : int) -> int
 
3. pos_mod(x : float, y : float) -> float
pose_has_nonzero_Bs(...) method of builtins.PyCapsule instance
pose_has_nonzero_Bs(pose : rosetta.core.pose.Pose) -> bool
 
helper function quickly guesses if a pose has non-zero B factors
spline_coeffs(...) method of builtins.PyCapsule instance
spline_coeffs(*args, **kwargs)
Overloaded function.
 
1. spline_coeffs(data : ObjexxFCL::FArray3D<double>, coeffs : ObjexxFCL::FArray3D<double>) -> NoneType
 
precompute spline coefficients (float array => double coeffs)
 
2. spline_coeffs(data : ObjexxFCL::FArray3D<float>, coeffs : ObjexxFCL::FArray3D<double>) -> NoneType
 
precompute spline coefficients (double array => double coeffs)
 
3. spline_coeffs(data : ObjexxFCL::FArray4D<double>, coeffs : ObjexxFCL::FArray4D<double>) -> NoneType