rosetta.core.optimization
index
(built-in)

Bindings for core::optimization namespace

 
Modules
       
rosetta.core.optimization.symmetry

 
Classes
       
builtins.object
AtomTreeMinimizer
CartesianMinimizer
ConvergenceTest
DFPMinConvergedAbsolute
DFPMinConvergedFractional
DOF_DataPoint
DOF_Node
DerivCheckDataPoint
DescentDirectionAlgorithm
EItem
GA_Minimizer
JJH_Minimizer
LineMinimizationAlgorithm
ArmijoLineMinimization
BrentLineMinimization
StrongWolfeLineMinimization
Minimizer
MinimizerOptions
Multifunc
AtomTreeMultifunc
SingleResidueMultifunc
CartesianMultifunc
NelderMeadSimplex
NumericalDerivCheckResult
Particle
ParticleSwarmMinimizer
SimpleDerivCheckResult
NumDerivCheckData
func_1d
lbfgs_iteration_data
rosetta.core.kinematics.MinimizerMapBase(builtins.object)
CartesianMinimizerMap
MinimizerMap

 
class ArmijoLineMinimization(LineMinimizationAlgorithm)
    //////////////////////////////////////////////////////
 
 
Method resolution order:
ArmijoLineMinimization
LineMinimizationAlgorithm
builtins.object

Methods defined here:
Armijo(...) from builtins.PyCapsule
Armijo(self : rosetta.core.optimization.ArmijoLineMinimization, init_step : float, func_eval : rosetta.core.optimization.func_1d) -> float
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.ArmijoLineMinimization, curr_pos : rosetta.utility.vector1_double, curr_dir : rosetta.utility.vector1_double) -> float
__init__(...) from builtins.PyCapsule
__init__(self : handle, score_fxn : rosetta.core.optimization.Multifunc, nonmonotone : bool, dim : int) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
provide_stored_derivatives(...) from builtins.PyCapsule
provide_stored_derivatives(rosetta.core.optimization.ArmijoLineMinimization) -> bool

Methods inherited from LineMinimizationAlgorithm:
cubic_interpolation(...) from builtins.PyCapsule
cubic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
fetch_stored_derivatives(...) from builtins.PyCapsule
fetch_stored_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs : rosetta.utility.vector1_double) -> NoneType
nonmonotone(...) from builtins.PyCapsule
nonmonotone(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
quadratic_deriv_interpolation(...) from builtins.PyCapsule
quadratic_deriv_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
quadratic_interpolation(...) from builtins.PyCapsule
quadratic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float) -> float
secant_interpolation(...) from builtins.PyCapsule
secant_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, deriv1 : float, point2 : float, deriv2 : float) -> float
silent(...) from builtins.PyCapsule
silent(*args, **kwargs)
Overloaded function.
 
1. silent(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
 
2. silent(self : rosetta.core.optimization.LineMinimizationAlgorithm, s_in : bool) -> NoneType
store_current_derivatives(...) from builtins.PyCapsule
store_current_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs : rosetta.utility.vector1_double) -> NoneType

 
class AtomTreeMinimizer(builtins.object)
    High-level atom tree minimizer class
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.optimization.AtomTreeMinimizer) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.AtomTreeMinimizer,  : rosetta.core.optimization.AtomTreeMinimizer) -> rosetta.core.optimization.AtomTreeMinimizer
check_setup(...) from builtins.PyCapsule
check_setup(self : rosetta.core.optimization.AtomTreeMinimizer, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap, scorefxn : rosetta.core.scoring.ScoreFunction, options : core::optimization::MinimizerOptions) -> NoneType
 
Do consistency checks for minimizer setup.
deriv_check_result(...) from builtins.PyCapsule
deriv_check_result(rosetta.core.optimization.AtomTreeMinimizer) -> core::optimization::NumericalDerivCheckResult
 
After minimization has concluded, the user may access the deriv-check result,
 assuming that they have run the AtomTreeMinimizer with deriv_check = true;
run(...) from builtins.PyCapsule
run(self : rosetta.core.optimization.AtomTreeMinimizer, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap, scorefxn : rosetta.core.scoring.ScoreFunction, options : core::optimization::MinimizerOptions) -> float
 
run minimization and return the final score at minimization's conclusion.
 Virtual allowing derived classes to mascarade as AtomTreeMinimizers.
 Non-const so that it can modify its deriv_check_result_ object.

 
class AtomTreeMultifunc(Multifunc)
    Atom tree multifunction class
 
 
Method resolution order:
AtomTreeMultifunc
Multifunc
builtins.object

Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double) -> float
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle, rosetta.core.pose.Pose, core::optimization::MinimizerMap, rosetta.core.scoring.ScoreFunction) -> NoneType
 
doc
 
2. __init__(handle, rosetta.core.pose.Pose, core::optimization::MinimizerMap, rosetta.core.scoring.ScoreFunction, bool) -> NoneType
 
doc
 
3. __init__(self : handle, pose_in : rosetta.core.pose.Pose, min_map_in : core::optimization::MinimizerMap, scorefxn_in : rosetta.core.scoring.ScoreFunction, deriv_check_in : bool, deriv_check_verbose_in : bool) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
dfunc(...) from builtins.PyCapsule
dfunc(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double) -> NoneType
dump(...) from builtins.PyCapsule
dump(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double, vars2 : rosetta.utility.vector1_double) -> NoneType
 
Error state reached -- derivative does not match gradient
set_deriv_check_result(...) from builtins.PyCapsule
set_deriv_check_result(self : rosetta.core.optimization.AtomTreeMultifunc, deriv_check_result : core::optimization::NumericalDerivCheckResult) -> NoneType

Methods inherited from Multifunc:
abort_min(...) from builtins.PyCapsule
abort_min(self : rosetta.core.optimization.Multifunc,  : rosetta.utility.vector1_double) -> bool
 
Christophe added the following to allow premature end of minimization
 If you want to abort the minimizer under specific circonstances
 overload this function and return true if you want to stop, false if you want to continue.
 FOR THE MOMENT, ONLY IN DFPMIN!

 
class BrentLineMinimization(LineMinimizationAlgorithm)
    //////////////////////////////////////////////////////
 
 
Method resolution order:
BrentLineMinimization
LineMinimizationAlgorithm
builtins.object

Methods defined here:
BRENT(...) from builtins.PyCapsule
BRENT(self : rosetta.core.optimization.BrentLineMinimization, AX : float, BX : float, CX : float, FA : float, FB : float, FC : float, TOL : float, func_eval : rosetta.core.optimization.func_1d) -> float
MNBRAK(...) from builtins.PyCapsule
MNBRAK(self : rosetta.core.optimization.BrentLineMinimization, AX : float, BX : float, CX : float, FA : float, FB : float, FC : float, func_eval : rosetta.core.optimization.func_1d) -> NoneType
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.BrentLineMinimization, curr_pos : rosetta.utility.vector1_double, curr_dir : rosetta.utility.vector1_double) -> float
__init__(...) from builtins.PyCapsule
__init__(self : handle, score_fxn : rosetta.core.optimization.Multifunc, dim : int) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
set_deriv_cutoff(...) from builtins.PyCapsule
set_deriv_cutoff(self : rosetta.core.optimization.BrentLineMinimization, val : float) -> NoneType

Data descriptors defined here:
deriv_cutoff_

Methods inherited from LineMinimizationAlgorithm:
cubic_interpolation(...) from builtins.PyCapsule
cubic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
fetch_stored_derivatives(...) from builtins.PyCapsule
fetch_stored_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs : rosetta.utility.vector1_double) -> NoneType
nonmonotone(...) from builtins.PyCapsule
nonmonotone(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
provide_stored_derivatives(...) from builtins.PyCapsule
provide_stored_derivatives(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
quadratic_deriv_interpolation(...) from builtins.PyCapsule
quadratic_deriv_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
quadratic_interpolation(...) from builtins.PyCapsule
quadratic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float) -> float
secant_interpolation(...) from builtins.PyCapsule
secant_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, deriv1 : float, point2 : float, deriv2 : float) -> float
silent(...) from builtins.PyCapsule
silent(*args, **kwargs)
Overloaded function.
 
1. silent(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
 
2. silent(self : rosetta.core.optimization.LineMinimizationAlgorithm, s_in : bool) -> NoneType
store_current_derivatives(...) from builtins.PyCapsule
store_current_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs : rosetta.utility.vector1_double) -> NoneType

 
class CartesianMinimizer(builtins.object)
    High-level atom tree minimizer class
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(handle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.CartesianMinimizer,  : rosetta.core.optimization.CartesianMinimizer) -> rosetta.core.optimization.CartesianMinimizer
deriv_check_result(...) from builtins.PyCapsule
deriv_check_result(rosetta.core.optimization.CartesianMinimizer) -> core::optimization::NumericalDerivCheckResult
 
After minimization has concluded, the user may access the deriv-check result,
 assuming that they have run the CartesianMinimizer with deriv_check = true;
run(...) from builtins.PyCapsule
run(self : rosetta.core.optimization.CartesianMinimizer, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap, scorefxn : rosetta.core.scoring.ScoreFunction, options : core::optimization::MinimizerOptions) -> float
 
run minimization and return the final score at minimization's conclusion.
 Virtual allowing derived classes to mascarade as CartesianMinimizers.
 Non-const so that it can modify its deriv_check_result_ object.

 
class CartesianMinimizerMap(rosetta.core.kinematics.MinimizerMapBase)
    
Method resolution order:
CartesianMinimizerMap
rosetta.core.kinematics.MinimizerMapBase
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.optimization.CartesianMinimizerMap) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_atom(...) from builtins.PyCapsule
add_atom(self : rosetta.core.optimization.CartesianMinimizerMap, AtomID : rosetta.core.id.AtomID, dof_id : rosetta.core.id.DOF_ID) -> NoneType
add_torsion(...) from builtins.PyCapsule
add_torsion(self : rosetta.core.optimization.CartesianMinimizerMap, new_torsion : rosetta.core.id.DOF_ID, parent : rosetta.core.id.DOF_ID) -> NoneType
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.CartesianMinimizerMap,  : rosetta.core.optimization.CartesianMinimizerMap) -> rosetta.core.optimization.CartesianMinimizerMap
atom_derivatives(...) from builtins.PyCapsule
atom_derivatives(self : rosetta.core.optimization.CartesianMinimizerMap, resid : int) -> rosetta.utility.vector1_core_scoring_DerivVectorPair
copy_dofs_from_pose(...) from builtins.PyCapsule
copy_dofs_from_pose(self : rosetta.core.optimization.CartesianMinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
copy_dofs_to_pose(...) from builtins.PyCapsule
copy_dofs_to_pose(self : rosetta.core.optimization.CartesianMinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
domain_map(...) from builtins.PyCapsule
domain_map(rosetta.core.optimization.CartesianMinimizerMap) -> ObjexxFCL::FArray1D<int>
get_TorsionID(...) from builtins.PyCapsule
get_TorsionID(self : rosetta.core.optimization.CartesianMinimizerMap, n : int) -> rosetta.core.id.TorsionID
get_atom(...) from builtins.PyCapsule
get_atom(self : rosetta.core.optimization.CartesianMinimizerMap, n : int) -> rosetta.core.id.AtomID
get_atom_index(...) from builtins.PyCapsule
get_atom_index(self : rosetta.core.optimization.CartesianMinimizerMap, x : rosetta.core.id.AtomID) -> int
get_dof_id(...) from builtins.PyCapsule
get_dof_id(self : rosetta.core.optimization.CartesianMinimizerMap, n : int) -> rosetta.core.id.DOF_ID
natoms(...) from builtins.PyCapsule
natoms(rosetta.core.optimization.CartesianMinimizerMap) -> int
ndofs(...) from builtins.PyCapsule
ndofs(rosetta.core.optimization.CartesianMinimizerMap) -> int
ntorsions(...) from builtins.PyCapsule
ntorsions(rosetta.core.optimization.CartesianMinimizerMap) -> int
reset(...) from builtins.PyCapsule
reset(self : rosetta.core.optimization.CartesianMinimizerMap, pose : rosetta.core.pose.Pose) -> NoneType
 
clears old data+dimensions dof_node_pointer using size data from the pose
setup(...) from builtins.PyCapsule
setup(self : rosetta.core.optimization.CartesianMinimizerMap, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap) -> NoneType
zero_stored_derivs(...) from builtins.PyCapsule
zero_stored_derivs(rosetta.core.optimization.CartesianMinimizerMap) -> NoneType

 
class CartesianMultifunc(Multifunc)
    Atom tree multifunction class
 
 
Method resolution order:
CartesianMultifunc
Multifunc
builtins.object

Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.CartesianMultifunc, vars : rosetta.utility.vector1_double) -> float
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle, rosetta.core.pose.Pose, rosetta.core.optimization.CartesianMinimizerMap, rosetta.core.scoring.ScoreFunction) -> NoneType
 
doc
 
2. __init__(handle, rosetta.core.pose.Pose, rosetta.core.optimization.CartesianMinimizerMap, rosetta.core.scoring.ScoreFunction, bool) -> NoneType
 
doc
 
3. __init__(self : handle, pose_in : rosetta.core.pose.Pose, min_map_in : rosetta.core.optimization.CartesianMinimizerMap, scorefxn_in : rosetta.core.scoring.ScoreFunction, deriv_check_in : bool, deriv_check_verbose_in : bool) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
dfunc(...) from builtins.PyCapsule
dfunc(self : rosetta.core.optimization.CartesianMultifunc, vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double) -> NoneType
dump(...) from builtins.PyCapsule
dump(self : rosetta.core.optimization.CartesianMultifunc, vars : rosetta.utility.vector1_double, vars2 : rosetta.utility.vector1_double) -> NoneType
 
Error state reached -- derivative does not match gradient
set_deriv_check_result(...) from builtins.PyCapsule
set_deriv_check_result(self : rosetta.core.optimization.CartesianMultifunc, deriv_check_result : core::optimization::NumericalDerivCheckResult) -> NoneType

Methods inherited from Multifunc:
abort_min(...) from builtins.PyCapsule
abort_min(self : rosetta.core.optimization.Multifunc,  : rosetta.utility.vector1_double) -> bool
 
Christophe added the following to allow premature end of minimization
 If you want to abort the minimizer under specific circonstances
 overload this function and return true if you want to stop, false if you want to continue.
 FOR THE MOMENT, ONLY IN DFPMIN!

 
class ConvergenceTest(builtins.object)
    ************************************************
 
 Rough outline of how to structure this:
 
 Make a base 'minimizer' class
 
 Sub-class into univariate and multivariate minimizers
 -> actually, could we treat linmin as an instance of multivariate
   minimization, with a single pass of steepest descent
 
 The trick is how to mix and match convergence criteria, descent
 direction generation, and line minimization schemes
 
 convergence criteria could be a function or a functor.  Descent
 direction algorithms probably need to be functors, since they
 have different storage needs.
 
********************************************
 
  Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.ConvergenceTest, Fnew : float, Fold : float) -> bool
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.optimization.ConvergenceTest) -> NoneType
 
2. __init__(rosetta.core.optimization.ConvergenceTest, rosetta.core.optimization.ConvergenceTest) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.ConvergenceTest,  : rosetta.core.optimization.ConvergenceTest) -> rosetta.core.optimization.ConvergenceTest

 
class DFPMinConvergedAbsolute(ConvergenceTest)
    
Method resolution order:
DFPMinConvergedAbsolute
ConvergenceTest
builtins.object

Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.DFPMinConvergedAbsolute, Fnew : float, Fold : float) -> bool
__init__(...) from builtins.PyCapsule
__init__(self : handle, _tol : float) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.DFPMinConvergedAbsolute,  : rosetta.core.optimization.DFPMinConvergedAbsolute) -> rosetta.core.optimization.DFPMinConvergedAbsolute

 
class DFPMinConvergedFractional(ConvergenceTest)
    
Method resolution order:
DFPMinConvergedFractional
ConvergenceTest
builtins.object

Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.DFPMinConvergedFractional, Fnew : float, Fold : float) -> bool
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle, float) -> NoneType
 
doc
 
2. __init__(self : handle, _tol : float, _eps : float) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.DFPMinConvergedFractional,  : rosetta.core.optimization.DFPMinConvergedFractional) -> rosetta.core.optimization.DFPMinConvergedFractional

 
class DOF_DataPoint(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.optimization.DOF_DataPoint) -> NoneType
 
2. __init__(self : rosetta.core.optimization.DOF_DataPoint, dof_id : rosetta.core.id.DOF_ID, parent_id : rosetta.core.id.DOF_ID, natoms : int, num_deriv : float, ana_deriv : float, ratio : float, f11 : float, f00 : float, f22 : float, dof_val : float) -> NoneType
 
3. __init__(self : rosetta.core.optimization.DOF_DataPoint,  : rosetta.core.optimization.DOF_DataPoint) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
ana_deriv(...) from builtins.PyCapsule
ana_deriv(rosetta.core.optimization.DOF_DataPoint) -> float
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.DOF_DataPoint,  : rosetta.core.optimization.DOF_DataPoint) -> rosetta.core.optimization.DOF_DataPoint
dof_id(...) from builtins.PyCapsule
dof_id(rosetta.core.optimization.DOF_DataPoint) -> rosetta.core.id.DOF_ID
dof_val(...) from builtins.PyCapsule
dof_val(rosetta.core.optimization.DOF_DataPoint) -> float
f00(...) from builtins.PyCapsule
f00(rosetta.core.optimization.DOF_DataPoint) -> float
f11(...) from builtins.PyCapsule
f11(rosetta.core.optimization.DOF_DataPoint) -> float
f22(...) from builtins.PyCapsule
f22(rosetta.core.optimization.DOF_DataPoint) -> float
natoms(...) from builtins.PyCapsule
natoms(rosetta.core.optimization.DOF_DataPoint) -> int
num_deriv(...) from builtins.PyCapsule
num_deriv(rosetta.core.optimization.DOF_DataPoint) -> float
parent_id(...) from builtins.PyCapsule
parent_id(rosetta.core.optimization.DOF_DataPoint) -> rosetta.core.id.DOF_ID
ratio(...) from builtins.PyCapsule
ratio(rosetta.core.optimization.DOF_DataPoint) -> float

 
class DOF_Node(builtins.object)
     Methods defined here:
F1(...) from builtins.PyCapsule
F1(*args, **kwargs)
Overloaded function.
 
1. F1(rosetta.core.optimization.DOF_Node) -> rosetta.numeric.xyzVector_double_t
 
2. F1(rosetta.core.optimization.DOF_Node) -> rosetta.numeric.xyzVector_double_t
F2(...) from builtins.PyCapsule
F2(*args, **kwargs)
Overloaded function.
 
1. F2(rosetta.core.optimization.DOF_Node) -> rosetta.numeric.xyzVector_double_t
 
2. F2(rosetta.core.optimization.DOF_Node) -> rosetta.numeric.xyzVector_double_t
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.optimization.DOF_Node, id_in : rosetta.core.id.DOF_ID, parent_in : rosetta.core.optimization.DOF_Node) -> NoneType
 
2. __init__(self : rosetta.core.optimization.DOF_Node,  : rosetta.core.optimization.DOF_Node) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_atom(...) from builtins.PyCapsule
add_atom(self : rosetta.core.optimization.DOF_Node, atom : rosetta.core.id.AtomID) -> NoneType
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.DOF_Node,  : rosetta.core.optimization.DOF_Node) -> rosetta.core.optimization.DOF_Node
atom_id(...) from builtins.PyCapsule
atom_id(rosetta.core.optimization.DOF_Node) -> rosetta.core.id.AtomID
atomno(...) from builtins.PyCapsule
atomno(rosetta.core.optimization.DOF_Node) -> int
atoms(...) from builtins.PyCapsule
atoms(rosetta.core.optimization.DOF_Node) -> rosetta.utility.vector1_core_id_AtomID
clear_atoms(...) from builtins.PyCapsule
clear_atoms(rosetta.core.optimization.DOF_Node) -> NoneType
dependent(...) from builtins.PyCapsule
dependent(*args, **kwargs)
Overloaded function.
 
1. dependent(rosetta.core.optimization.DOF_Node) -> bool
 
2. dependent(self : rosetta.core.optimization.DOF_Node, setting : bool) -> NoneType
depth(...) from builtins.PyCapsule
depth(rosetta.core.optimization.DOF_Node) -> int
dof_id(...) from builtins.PyCapsule
dof_id(rosetta.core.optimization.DOF_Node) -> rosetta.core.id.DOF_ID
link_vectors(...) from builtins.PyCapsule
link_vectors(rosetta.core.optimization.DOF_Node) -> NoneType
 
sum derivative contributions down the tree
parent(...) from builtins.PyCapsule
parent(rosetta.core.optimization.DOF_Node) -> rosetta.core.optimization.DOF_Node
rsd(...) from builtins.PyCapsule
rsd(rosetta.core.optimization.DOF_Node) -> int
set_id(...) from builtins.PyCapsule
set_id(self : rosetta.core.optimization.DOF_Node, setting : rosetta.core.id.DOF_ID) -> NoneType
set_parent(...) from builtins.PyCapsule
set_parent(self : rosetta.core.optimization.DOF_Node, setting : rosetta.core.optimization.DOF_Node) -> NoneType
to_string(...) from builtins.PyCapsule
to_string(rosetta.core.optimization.DOF_Node) -> str
torsion_id(...) from builtins.PyCapsule
torsion_id(*args, **kwargs)
Overloaded function.
 
1. torsion_id(rosetta.core.optimization.DOF_Node) -> rosetta.core.id.TorsionID
 
get the rosetta torsion id for this DOF
 
        This may not exist, of course. But it's useful to know what it
        is when calculating derivatives of terms like rama/dunbrack/paa
 
2. torsion_id(self : rosetta.core.optimization.DOF_Node, id_in : rosetta.core.id.TorsionID) -> NoneType
 
set the rosetta torsion id for this DOF
 
        This may not exist, of course. But it's useful to know what it
        is when calculating derivatives of terms like rama/dunbrack/paa
type(...) from builtins.PyCapsule
type(rosetta.core.optimization.DOF_Node) -> rosetta.core.id.DOF_Type

 
class DerivCheckDataPoint(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.optimization.DerivCheckDataPoint) -> NoneType
 
2. __init__(self : rosetta.core.optimization.DerivCheckDataPoint, num_deriv : float, ana_deriv : float, ratio : float, f11 : float, f00 : float, f22 : float, dof_val : float) -> NoneType
 
3. __init__(self : rosetta.core.optimization.DerivCheckDataPoint,  : rosetta.core.optimization.DerivCheckDataPoint) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
ana_deriv(...) from builtins.PyCapsule
ana_deriv(rosetta.core.optimization.DerivCheckDataPoint) -> float
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.DerivCheckDataPoint,  : rosetta.core.optimization.DerivCheckDataPoint) -> rosetta.core.optimization.DerivCheckDataPoint
dof_val(...) from builtins.PyCapsule
dof_val(rosetta.core.optimization.DerivCheckDataPoint) -> float
f00(...) from builtins.PyCapsule
f00(rosetta.core.optimization.DerivCheckDataPoint) -> float
f11(...) from builtins.PyCapsule
f11(rosetta.core.optimization.DerivCheckDataPoint) -> float
f22(...) from builtins.PyCapsule
f22(rosetta.core.optimization.DerivCheckDataPoint) -> float
num_deriv(...) from builtins.PyCapsule
num_deriv(rosetta.core.optimization.DerivCheckDataPoint) -> float
ratio(...) from builtins.PyCapsule
ratio(rosetta.core.optimization.DerivCheckDataPoint) -> float

 
class DescentDirectionAlgorithm(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(self : rosetta.core.optimization.DescentDirectionAlgorithm,  : rosetta.core.optimization.Multifunc) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
initialize(...) from builtins.PyCapsule
initialize(rosetta.core.optimization.DescentDirectionAlgorithm) -> NoneType

 
class EItem(builtins.object)
    Inner class for Genetic Algorithm, hold one population with some additional info
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.optimization.EItem) -> NoneType
 
2. __init__(self : rosetta.core.optimization.EItem, vn : rosetta.utility.vector1_double) -> NoneType
 
3. __init__(self : rosetta.core.optimization.EItem,  : rosetta.core.optimization.EItem) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
sort_R_function(...) from builtins.PyCapsule
sort_R_function(e1 : rosetta.core.optimization.EItem, e2 : rosetta.core.optimization.EItem) -> bool

Data descriptors defined here:
r
tag
v

 
class GA_Minimizer(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(self : rosetta.core.optimization.GA_Minimizer, func_in : rosetta.core.optimization.Multifunc, options : rosetta.core.optimization.MinimizerOptions) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
run(...) from builtins.PyCapsule
run(self : rosetta.core.optimization.GA_Minimizer, phipsi_inout : rosetta.utility.vector1_double, max_time : int) -> float

 
class JJH_Minimizer(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(self : rosetta.core.optimization.JJH_Minimizer, score_fxn : rosetta.core.optimization.Multifunc, line_min_alg : rosetta.core.optimization.LineMinimizationAlgorithm, converge_test : rosetta.core.optimization.ConvergenceTest, desc_dir : rosetta.core.optimization.DescentDirectionAlgorithm) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
run(...) from builtins.PyCapsule
run(self : rosetta.core.optimization.JJH_Minimizer, angles : rosetta.utility.vector1_double) -> float

 
class LineMinimizationAlgorithm(builtins.object)
    //////////////////////////////////////////////////////
 
  Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.LineMinimizationAlgorithm,  : rosetta.utility.vector1_double,  : rosetta.utility.vector1_double) -> float
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : handle, score_fxn : rosetta.core.optimization.Multifunc, dimension : int) -> NoneType
 
2. __init__(handle, rosetta.core.optimization.LineMinimizationAlgorithm) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
cubic_interpolation(...) from builtins.PyCapsule
cubic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
fetch_stored_derivatives(...) from builtins.PyCapsule
fetch_stored_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs : rosetta.utility.vector1_double) -> NoneType
nonmonotone(...) from builtins.PyCapsule
nonmonotone(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
provide_stored_derivatives(...) from builtins.PyCapsule
provide_stored_derivatives(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
quadratic_deriv_interpolation(...) from builtins.PyCapsule
quadratic_deriv_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
quadratic_interpolation(...) from builtins.PyCapsule
quadratic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float) -> float
secant_interpolation(...) from builtins.PyCapsule
secant_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, deriv1 : float, point2 : float, deriv2 : float) -> float
silent(...) from builtins.PyCapsule
silent(*args, **kwargs)
Overloaded function.
 
1. silent(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
 
2. silent(self : rosetta.core.optimization.LineMinimizationAlgorithm, s_in : bool) -> NoneType
store_current_derivatives(...) from builtins.PyCapsule
store_current_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs : rosetta.utility.vector1_double) -> NoneType

 
class Minimizer(builtins.object)
    Simple low-level minimizer class
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.optimization.Minimizer, func_in : rosetta.core.optimization.Multifunc, options_in : rosetta.core.optimization.MinimizerOptions) -> NoneType
 
2. __init__(self : rosetta.core.optimization.Minimizer,  : rosetta.core.optimization.Minimizer) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
run(...) from builtins.PyCapsule
run(self : rosetta.core.optimization.Minimizer, phipsi_inout : rosetta.utility.vector1_double) -> float

 
class MinimizerMap(rosetta.core.kinematics.MinimizerMapBase)
    
Method resolution order:
MinimizerMap
rosetta.core.kinematics.MinimizerMapBase
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle) -> NoneType
 
2. __init__(handle, rosetta.core.optimization.MinimizerMap) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_atom(...) from builtins.PyCapsule
add_atom(self : rosetta.core.optimization.MinimizerMap, atom_id : rosetta.core.id.AtomID, dof_id : rosetta.core.id.DOF_ID) -> NoneType
add_torsion(...) from builtins.PyCapsule
add_torsion(self : rosetta.core.optimization.MinimizerMap, new_torsion : rosetta.core.id.DOF_ID, parent : rosetta.core.id.DOF_ID) -> NoneType
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.MinimizerMap,  : rosetta.core.optimization.MinimizerMap) -> rosetta.core.optimization.MinimizerMap
atom_derivatives(...) from builtins.PyCapsule
atom_derivatives(self : rosetta.core.optimization.MinimizerMap, resid : int) -> rosetta.utility.vector1_core_scoring_DerivVectorPair
begin(...) from builtins.PyCapsule
begin(*args, **kwargs)
Overloaded function.
 
1. begin(rosetta.core.optimization.MinimizerMap) -> std::_List_const_iterator<std::shared_ptr<core::optimization::DOF_Node> >
 
2. begin(rosetta.core.optimization.MinimizerMap) -> std::_List_iterator<std::shared_ptr<core::optimization::DOF_Node> >
copy_dofs_from_pose(...) from builtins.PyCapsule
copy_dofs_from_pose(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
copy_dofs_to_pose(...) from builtins.PyCapsule
copy_dofs_to_pose(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
dof_node_from_id(...) from builtins.PyCapsule
dof_node_from_id(self : rosetta.core.optimization.MinimizerMap, id : rosetta.core.id.DOF_ID) -> rosetta.core.optimization.DOF_Node
 
get a dof_node by its dof_id
dof_nodes(...) from builtins.PyCapsule
dof_nodes(*args, **kwargs)
Overloaded function.
 
1. dof_nodes(rosetta.core.optimization.MinimizerMap) -> rosetta.std.list_std_shared_ptr_core_optimization_DOF_Node_std_allocator_std_shared_ptr_core_optimization_DOF_Node_t
 
2. dof_nodes(rosetta.core.optimization.MinimizerMap) -> rosetta.std.list_std_shared_ptr_core_optimization_DOF_Node_std_allocator_std_shared_ptr_core_optimization_DOF_Node_t
domain_map(...) from builtins.PyCapsule
domain_map(rosetta.core.optimization.MinimizerMap) -> ObjexxFCL::FArray1D<int>
end(...) from builtins.PyCapsule
end(*args, **kwargs)
Overloaded function.
 
1. end(rosetta.core.optimization.MinimizerMap) -> std::_List_const_iterator<std::shared_ptr<core::optimization::DOF_Node> >
 
2. end(rosetta.core.optimization.MinimizerMap) -> std::_List_iterator<std::shared_ptr<core::optimization::DOF_Node> >
link_torsion_vectors(...) from builtins.PyCapsule
link_torsion_vectors(rosetta.core.optimization.MinimizerMap) -> NoneType
 
this will only work if DOF_nodes are sorted!
nangles(...) from builtins.PyCapsule
nangles(rosetta.core.optimization.MinimizerMap) -> int
reset(...) from builtins.PyCapsule
reset(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose) -> NoneType
 
clears old data+dimensions dof_node_pointer using size data from the pose
reset_jump_rb_deltas(...) from builtins.PyCapsule
reset_jump_rb_deltas(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
setup(...) from builtins.PyCapsule
setup(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap) -> NoneType
torsion_scale_factor(...) from builtins.PyCapsule
torsion_scale_factor(self : rosetta.core.optimization.MinimizerMap, tor : rosetta.core.optimization.DOF_Node) -> float
zero_torsion_vectors(...) from builtins.PyCapsule
zero_torsion_vectors(rosetta.core.optimization.MinimizerMap) -> NoneType

 
class MinimizerOptions(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(rosetta.core.optimization.MinimizerOptions, str, float, bool) -> NoneType
 
doc
 
2. __init__(rosetta.core.optimization.MinimizerOptions, str, float, bool, bool) -> NoneType
 
doc
 
3. __init__(self : rosetta.core.optimization.MinimizerOptions, min_type_in : str, minimize_tolerance_in : float, use_nblist_in : bool, deriv_check_in : bool, deriv_check_verbose_in : bool) -> NoneType
 
4. __init__(self : rosetta.core.optimization.MinimizerOptions,  : rosetta.core.optimization.MinimizerOptions) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.MinimizerOptions,  : rosetta.core.optimization.MinimizerOptions) -> rosetta.core.optimization.MinimizerOptions
ax_init(...) from builtins.PyCapsule
ax_init(rosetta.core.optimization.MinimizerOptions) -> float
 
//////////////////////////////////////////////////////////////////////////
brent_abs_tolerance(...) from builtins.PyCapsule
brent_abs_tolerance(rosetta.core.optimization.MinimizerOptions) -> float
bx_init(...) from builtins.PyCapsule
bx_init(rosetta.core.optimization.MinimizerOptions) -> float
clone(...) from builtins.PyCapsule
clone(rosetta.core.optimization.MinimizerOptions) -> rosetta.core.optimization.MinimizerOptions
deriv_check(...) from builtins.PyCapsule
deriv_check(*args, **kwargs)
Overloaded function.
 
1. deriv_check(self : rosetta.core.optimization.MinimizerOptions, deriv_check_in : bool) -> NoneType
 
2. deriv_check(rosetta.core.optimization.MinimizerOptions) -> bool
deriv_check_to_stdout(...) from builtins.PyCapsule
deriv_check_to_stdout(*args, **kwargs)
Overloaded function.
 
1. deriv_check_to_stdout(self : rosetta.core.optimization.MinimizerOptions, setting : bool) -> NoneType
 
2. deriv_check_to_stdout(rosetta.core.optimization.MinimizerOptions) -> bool
deriv_check_verbose(...) from builtins.PyCapsule
deriv_check_verbose(rosetta.core.optimization.MinimizerOptions) -> bool
ga_mutation_probability(...) from builtins.PyCapsule
ga_mutation_probability(*args, **kwargs)
Overloaded function.
 
1. ga_mutation_probability(rosetta.core.optimization.MinimizerOptions) -> float
 
2. ga_mutation_probability(self : rosetta.core.optimization.MinimizerOptions, p : float) -> NoneType
gmax_cutoff_for_convergence(...) from builtins.PyCapsule
gmax_cutoff_for_convergence(*args, **kwargs)
Overloaded function.
 
1. gmax_cutoff_for_convergence(rosetta.core.optimization.MinimizerOptions) -> float
 
2. gmax_cutoff_for_convergence(self : rosetta.core.optimization.MinimizerOptions, gmax_in : float) -> NoneType
linmin_deriv_cutoff(...) from builtins.PyCapsule
linmin_deriv_cutoff(*args, **kwargs)
Overloaded function.
 
1. linmin_deriv_cutoff(rosetta.core.optimization.MinimizerOptions) -> float
 
The derivative cutoff used for Brent.
 
2. linmin_deriv_cutoff(self : rosetta.core.optimization.MinimizerOptions, val : float) -> NoneType
 
Set the derivative cutoff used for Brent.
max_iter(...) from builtins.PyCapsule
max_iter(*args, **kwargs)
Overloaded function.
 
1. max_iter(rosetta.core.optimization.MinimizerOptions) -> int
 
2. max_iter(self : rosetta.core.optimization.MinimizerOptions, n : int) -> NoneType
min_type(...) from builtins.PyCapsule
min_type(*args, **kwargs)
Overloaded function.
 
1. min_type(rosetta.core.optimization.MinimizerOptions) -> str
 
//////////////////////////////////////////////////////////////////////////
 
2. min_type(self : rosetta.core.optimization.MinimizerOptions, min_type_in : str) -> NoneType
 
3. min_type(rosetta.core.optimization.MinimizerOptions) -> str
minimize_tolerance(...) from builtins.PyCapsule
minimize_tolerance(*args, **kwargs)
Overloaded function.
 
1. minimize_tolerance(rosetta.core.optimization.MinimizerOptions) -> float
 
2. minimize_tolerance(rosetta.core.optimization.MinimizerOptions) -> float
 
3. minimize_tolerance(self : rosetta.core.optimization.MinimizerOptions, minimize_tolerance_in : float) -> NoneType
nblist_auto_update(...) from builtins.PyCapsule
nblist_auto_update(*args, **kwargs)
Overloaded function.
 
1. nblist_auto_update(rosetta.core.optimization.MinimizerOptions) -> bool
 
2. nblist_auto_update(self : rosetta.core.optimization.MinimizerOptions, setting : bool) -> NoneType
silent(...) from builtins.PyCapsule
silent(*args, **kwargs)
Overloaded function.
 
1. silent(rosetta.core.optimization.MinimizerOptions) -> bool
 
2. silent(self : rosetta.core.optimization.MinimizerOptions, silent_in : bool) -> NoneType
use_nblist(...) from builtins.PyCapsule
use_nblist(*args, **kwargs)
Overloaded function.
 
1. use_nblist(rosetta.core.optimization.MinimizerOptions) -> bool
 
Indicate whether or not a handful of optimizations regarding the
 neighbor list have been enabled.
  use_nblist()
 
2. use_nblist(self : rosetta.core.optimization.MinimizerOptions, use_nblist_in : bool) -> NoneType
 
Indicate whether or not a handful of optimizations regarding the
 neighbor list should be enabled.
 
 
 The neighbor list is based on the move map.  It includes any
 atoms that can be moved by the minimizer plus their neighbors.  This list
 is not updated during minimization.  All scores for atoms and atom pairs
 outside the neighbor list are held fixed.  All scores for atoms and atom
 pairs within the list are not cached (usually they would be), since it
 assumed that they will be changing rapidly.  These optimizations are
 effective when a large number of small moves are being made.  You may
 prefer to enable this option when minimizing in fullatom mode, and to
 disable it in centroid mode.
 
 
 I wrote this docstring after I reading through a bunch of code to
 figure out what this option meant, but I don't have any expertise with
 the minimizer.  So the above represents my understanding of this option,
 but there could very well be errors or misstatements.
 
 
 core::scoring::AtomNeighbor
xx_init(...) from builtins.PyCapsule
xx_init(rosetta.core.optimization.MinimizerOptions) -> float

 
class Multifunc(builtins.object)
    Multifunction interface class
 
  Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.Multifunc, phipsi : rosetta.utility.vector1_double) -> float
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
abort_min(...) from builtins.PyCapsule
abort_min(self : rosetta.core.optimization.Multifunc,  : rosetta.utility.vector1_double) -> bool
 
Christophe added the following to allow premature end of minimization
 If you want to abort the minimizer under specific circonstances
 overload this function and return true if you want to stop, false if you want to continue.
 FOR THE MOMENT, ONLY IN DFPMIN!
dfunc(...) from builtins.PyCapsule
dfunc(self : rosetta.core.optimization.Multifunc, phipsi : rosetta.utility.vector1_double, dE_dphipsi : rosetta.utility.vector1_double) -> NoneType
dump(...) from builtins.PyCapsule
dump(self : rosetta.core.optimization.Multifunc,  : rosetta.utility.vector1_double,  : rosetta.utility.vector1_double) -> NoneType
 
Error state reached -- derivative does not match gradient
 Derived classes have the oportunity to now output and or analyze the two
 vars assignments vars, vars+delta where the derivatives are incorrect.

 
class NelderMeadSimplex(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.optimization.NelderMeadSimplex, func_in : rosetta.core.optimization.Multifunc, options_in : rosetta.core.optimization.MinimizerOptions) -> NoneType
 
2. __init__(self : rosetta.core.optimization.NelderMeadSimplex,  : rosetta.core.optimization.NelderMeadSimplex) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
run(...) from builtins.PyCapsule
run(self : rosetta.core.optimization.NelderMeadSimplex, phipsi_inout : rosetta.utility.vector1_double, upperbound : rosetta.utility.vector1_double) -> float

Data descriptors defined here:
options_

 
class NumDerivCheckData(SimpleDerivCheckResult)
    
Method resolution order:
NumDerivCheckData
SimpleDerivCheckResult
builtins.object

Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(self : rosetta.core.optimization.NumDerivCheckData, nangles : int, nsteps : int) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.NumDerivCheckData,  : rosetta.core.optimization.NumDerivCheckData) -> rosetta.core.optimization.NumDerivCheckData
dof_step_data(...) from builtins.PyCapsule
dof_step_data(*args, **kwargs)
Overloaded function.
 
1. dof_step_data(self : rosetta.core.optimization.NumDerivCheckData, dof_ind : int, step_ind : int, dofdp : rosetta.core.optimization.DOF_DataPoint) -> NoneType
 
2. dof_step_data(self : rosetta.core.optimization.NumDerivCheckData, dof_ind : int, step_ind : int) -> rosetta.core.optimization.DOF_DataPoint

Methods inherited from SimpleDerivCheckResult:
abs_deriv_dev(...) from builtins.PyCapsule
abs_deriv_dev(*args, **kwargs)
Overloaded function.
 
1. abs_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, val : float) -> NoneType
 
2. abs_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int) -> float
best_abs_log_norm_ratio(...) from builtins.PyCapsule
best_abs_log_norm_ratio(*args, **kwargs)
Overloaded function.
 
1. best_abs_log_norm_ratio(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
 
2. best_abs_log_norm_ratio(rosetta.core.optimization.SimpleDerivCheckResult) -> float
best_cos_theta(...) from builtins.PyCapsule
best_cos_theta(*args, **kwargs)
Overloaded function.
 
1. best_cos_theta(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
 
2. best_cos_theta(rosetta.core.optimization.SimpleDerivCheckResult) -> float
best_norm_analytic(...) from builtins.PyCapsule
best_norm_analytic(*args, **kwargs)
Overloaded function.
 
1. best_norm_analytic(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
 
2. best_norm_analytic(rosetta.core.optimization.SimpleDerivCheckResult) -> float
best_norm_numeric(...) from builtins.PyCapsule
best_norm_numeric(*args, **kwargs)
Overloaded function.
 
1. best_norm_numeric(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
 
2. best_norm_numeric(rosetta.core.optimization.SimpleDerivCheckResult) -> float
nangles(...) from builtins.PyCapsule
nangles(rosetta.core.optimization.SimpleDerivCheckResult) -> int
nsteps(...) from builtins.PyCapsule
nsteps(rosetta.core.optimization.SimpleDerivCheckResult) -> int
rel_deriv_dev(...) from builtins.PyCapsule
rel_deriv_dev(*args, **kwargs)
Overloaded function.
 
1. rel_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, val : float) -> NoneType
 
2. rel_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int) -> float
step_data(...) from builtins.PyCapsule
step_data(*args, **kwargs)
Overloaded function.
 
1. step_data(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, step_ind : int, dp : rosetta.core.optimization.DerivCheckDataPoint) -> NoneType
 
2. step_data(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, step_ind : int) -> rosetta.core.optimization.DerivCheckDataPoint

 
class NumericalDerivCheckResult(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(rosetta.core.optimization.NumericalDerivCheckResult) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
add_deriv_data(...) from builtins.PyCapsule
add_deriv_data(self : rosetta.core.optimization.NumericalDerivCheckResult, deriv_check_data : rosetta.core.optimization.NumDerivCheckData) -> NoneType
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.NumericalDerivCheckResult,  : rosetta.core.optimization.NumericalDerivCheckResult) -> rosetta.core.optimization.NumericalDerivCheckResult
deriv_check_result(...) from builtins.PyCapsule
deriv_check_result(self : rosetta.core.optimization.NumericalDerivCheckResult, ind : int) -> rosetta.core.optimization.NumDerivCheckData
n_deriv_check_results(...) from builtins.PyCapsule
n_deriv_check_results(rosetta.core.optimization.NumericalDerivCheckResult) -> int
send_to_stdout(...) from builtins.PyCapsule
send_to_stdout(*args, **kwargs)
Overloaded function.
 
1. send_to_stdout(self : rosetta.core.optimization.NumericalDerivCheckResult, setting : bool) -> NoneType
 
2. send_to_stdout(rosetta.core.optimization.NumericalDerivCheckResult) -> bool

 
class Particle(builtins.object)
    Simple data container for PSO algorithm.
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.optimization.Particle, size : int) -> NoneType
 
2. __init__(self : rosetta.core.optimization.Particle, p_in : rosetta.utility.vector1_double) -> NoneType
 
3. __init__(self : rosetta.core.optimization.Particle,  : rosetta.core.optimization.Particle) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
__str__(...) from builtins.PyCapsule
__str__(rosetta.core.optimization.Particle) -> str
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.Particle,  : rosetta.core.optimization.Particle) -> rosetta.core.optimization.Particle
ensure_size(...) from builtins.PyCapsule
ensure_size(self : rosetta.core.optimization.Particle, minsize : int) -> NoneType
 
Make sure that all arrays are large enough -- prevents index-out-of-bound errors.
fitness_pbest(...) from builtins.PyCapsule
fitness_pbest(rosetta.core.optimization.Particle) -> float
pbest(...) from builtins.PyCapsule
pbest(rosetta.core.optimization.Particle) -> rosetta.utility.vector1_double
 
This is why data should be private: you get to ensure it's valid when you read it.
score(...) from builtins.PyCapsule
score(self : rosetta.core.optimization.Particle, f : rosetta.core.optimization.Multifunc) -> float
set_score(...) from builtins.PyCapsule
set_score(self : rosetta.core.optimization.Particle, new_score : float) -> float

Data descriptors defined here:
fitness_
p_
v_

 
class ParticleSwarmMinimizer(builtins.object)
    Particle Swarm Optimization engine.
 
 
Algorithm details based heavily on
 
    Chen, Liu, Huang, Hwang, Ho (2006).
    "SODOCK:  Swarm Optimization for Highly Flexible Protein-Ligand Docking"
    J Comput Chem 28: 612-623, 2007
 
Also on
    http://en.wikipedia.org/wiki/Particle_swarm_optimization
    http://www.swarmintelligence.org/
 
One can imagine writing another version that distributed the work via MPI...
 
  Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.optimization.ParticleSwarmMinimizer, p_min : rosetta.utility.vector1_double, p_max : rosetta.utility.vector1_double) -> NoneType
 
2. __init__(self : rosetta.core.optimization.ParticleSwarmMinimizer,  : rosetta.core.optimization.ParticleSwarmMinimizer) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.ParticleSwarmMinimizer,  : rosetta.core.optimization.ParticleSwarmMinimizer) -> rosetta.core.optimization.ParticleSwarmMinimizer

 
class SimpleDerivCheckResult(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self : rosetta.core.optimization.SimpleDerivCheckResult, nangles : int, nsteps : int) -> NoneType
 
2. __init__(self : rosetta.core.optimization.SimpleDerivCheckResult,  : rosetta.core.optimization.SimpleDerivCheckResult) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
abs_deriv_dev(...) from builtins.PyCapsule
abs_deriv_dev(*args, **kwargs)
Overloaded function.
 
1. abs_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, val : float) -> NoneType
 
2. abs_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int) -> float
assign(...) from builtins.PyCapsule
assign(self : rosetta.core.optimization.SimpleDerivCheckResult,  : rosetta.core.optimization.SimpleDerivCheckResult) -> rosetta.core.optimization.SimpleDerivCheckResult
best_abs_log_norm_ratio(...) from builtins.PyCapsule
best_abs_log_norm_ratio(*args, **kwargs)
Overloaded function.
 
1. best_abs_log_norm_ratio(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
 
2. best_abs_log_norm_ratio(rosetta.core.optimization.SimpleDerivCheckResult) -> float
best_cos_theta(...) from builtins.PyCapsule
best_cos_theta(*args, **kwargs)
Overloaded function.
 
1. best_cos_theta(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
 
2. best_cos_theta(rosetta.core.optimization.SimpleDerivCheckResult) -> float
best_norm_analytic(...) from builtins.PyCapsule
best_norm_analytic(*args, **kwargs)
Overloaded function.
 
1. best_norm_analytic(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
 
2. best_norm_analytic(rosetta.core.optimization.SimpleDerivCheckResult) -> float
best_norm_numeric(...) from builtins.PyCapsule
best_norm_numeric(*args, **kwargs)
Overloaded function.
 
1. best_norm_numeric(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
 
2. best_norm_numeric(rosetta.core.optimization.SimpleDerivCheckResult) -> float
nangles(...) from builtins.PyCapsule
nangles(rosetta.core.optimization.SimpleDerivCheckResult) -> int
nsteps(...) from builtins.PyCapsule
nsteps(rosetta.core.optimization.SimpleDerivCheckResult) -> int
rel_deriv_dev(...) from builtins.PyCapsule
rel_deriv_dev(*args, **kwargs)
Overloaded function.
 
1. rel_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, val : float) -> NoneType
 
2. rel_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int) -> float
step_data(...) from builtins.PyCapsule
step_data(*args, **kwargs)
Overloaded function.
 
1. step_data(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, step_ind : int, dp : rosetta.core.optimization.DerivCheckDataPoint) -> NoneType
 
2. step_data(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, step_ind : int) -> rosetta.core.optimization.DerivCheckDataPoint

 
class SingleResidueMultifunc(AtomTreeMultifunc)
    A streamlined AtomTreeMultifunc designed specifically for RTMIN.
 
 
Evaluates only the energies between the specified residue and the rest
of the Pose, assuming the nbr_atoms do not move (as in rotamer trials and repacking).
Could probably be sped up further with a customized dfunc().
DFPMIN seems to spend most of its time in func() rather than dfunc(),
so there's not as much to gain there anyway.
 
 
Method resolution order:
SingleResidueMultifunc
AtomTreeMultifunc
Multifunc
builtins.object

Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.SingleResidueMultifunc, vars : rosetta.utility.vector1_double) -> float
__init__(...) from builtins.PyCapsule
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(handle, rosetta.core.pose.Pose, int, rosetta.core.optimization.MinimizerMap, rosetta.core.scoring.ScoreFunction, rosetta.core.graph.Graph) -> NoneType
 
doc
 
2. __init__(handle, rosetta.core.pose.Pose, int, rosetta.core.optimization.MinimizerMap, rosetta.core.scoring.ScoreFunction, rosetta.core.graph.Graph, bool) -> NoneType
 
doc
 
3. __init__(self : handle, pose_in : rosetta.core.pose.Pose, rsd_id_in : int, min_map_in : rosetta.core.optimization.MinimizerMap, scorefxn_in : rosetta.core.scoring.ScoreFunction, packer_neighbor_graph_in : rosetta.core.graph.Graph, deriv_check_in : bool, deriv_check_verbose_in : bool) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.

Methods inherited from AtomTreeMultifunc:
dfunc(...) from builtins.PyCapsule
dfunc(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double) -> NoneType
dump(...) from builtins.PyCapsule
dump(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double, vars2 : rosetta.utility.vector1_double) -> NoneType
 
Error state reached -- derivative does not match gradient
set_deriv_check_result(...) from builtins.PyCapsule
set_deriv_check_result(self : rosetta.core.optimization.AtomTreeMultifunc, deriv_check_result : core::optimization::NumericalDerivCheckResult) -> NoneType

Methods inherited from Multifunc:
abort_min(...) from builtins.PyCapsule
abort_min(self : rosetta.core.optimization.Multifunc,  : rosetta.utility.vector1_double) -> bool
 
Christophe added the following to allow premature end of minimization
 If you want to abort the minimizer under specific circonstances
 overload this function and return true if you want to stop, false if you want to continue.
 FOR THE MOMENT, ONLY IN DFPMIN!

 
class StrongWolfeLineMinimization(LineMinimizationAlgorithm)
    //////////////////////////////////////////////////////
 
 
Method resolution order:
StrongWolfeLineMinimization
LineMinimizationAlgorithm
builtins.object

Methods defined here:
StrongWolfe(...) from builtins.PyCapsule
StrongWolfe(self : rosetta.core.optimization.StrongWolfeLineMinimization, init_step : float, func_eval : rosetta.core.optimization.func_1d) -> float
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.StrongWolfeLineMinimization, curr_pos : rosetta.utility.vector1_double, curr_dir : rosetta.utility.vector1_double) -> float
__init__(...) from builtins.PyCapsule
__init__(self : handle, score_fxn : rosetta.core.optimization.Multifunc, nonmonotone : bool, dim : int) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
provide_stored_derivatives(...) from builtins.PyCapsule
provide_stored_derivatives(rosetta.core.optimization.StrongWolfeLineMinimization) -> bool
zoom(...) from builtins.PyCapsule
zoom(self : rosetta.core.optimization.StrongWolfeLineMinimization, alpha_low : float, func_low : float, deriv_low : float, alpha_high : float, func_high : float, deriv_high : float, func_zero : float, deriv_zero : float, func_return : float, func_eval : rosetta.core.optimization.func_1d) -> float

Methods inherited from LineMinimizationAlgorithm:
cubic_interpolation(...) from builtins.PyCapsule
cubic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
fetch_stored_derivatives(...) from builtins.PyCapsule
fetch_stored_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs : rosetta.utility.vector1_double) -> NoneType
nonmonotone(...) from builtins.PyCapsule
nonmonotone(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
quadratic_deriv_interpolation(...) from builtins.PyCapsule
quadratic_deriv_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
quadratic_interpolation(...) from builtins.PyCapsule
quadratic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float) -> float
secant_interpolation(...) from builtins.PyCapsule
secant_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, deriv1 : float, point2 : float, deriv2 : float) -> float
silent(...) from builtins.PyCapsule
silent(*args, **kwargs)
Overloaded function.
 
1. silent(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
 
2. silent(self : rosetta.core.optimization.LineMinimizationAlgorithm, s_in : bool) -> NoneType
store_current_derivatives(...) from builtins.PyCapsule
store_current_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs : rosetta.utility.vector1_double) -> NoneType

 
class func_1d(builtins.object)
     Methods defined here:
__call__(...) from builtins.PyCapsule
__call__(self : rosetta.core.optimization.func_1d, displacement : float) -> float
__init__(...) from builtins.PyCapsule
__init__(self : rosetta.core.optimization.func_1d, start : rosetta.utility.vector1_double, dir : rosetta.utility.vector1_double, score_fxn : rosetta.core.optimization.Multifunc) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.
dfunc(...) from builtins.PyCapsule
dfunc(self : rosetta.core.optimization.func_1d, displacement : float) -> float
dump(...) from builtins.PyCapsule
dump(self : rosetta.core.optimization.func_1d, displacement : float) -> NoneType
 
Error condition wherein the computed gradient does not match the actual gradient;
 invokes the Multifunc::dump( vars, vars2 ) method.
get_deriv_count(...) from builtins.PyCapsule
get_deriv_count(rosetta.core.optimization.func_1d) -> int
get_eval_count(...) from builtins.PyCapsule
get_eval_count(rosetta.core.optimization.func_1d) -> int
reset_eval_count(...) from builtins.PyCapsule
reset_eval_count(rosetta.core.optimization.func_1d) -> NoneType

 
class lbfgs_iteration_data(builtins.object)
     Methods defined here:
__init__(...) from builtins.PyCapsule
__init__(rosetta.core.optimization.lbfgs_iteration_data) -> NoneType
__new__(*args, **kwargs) from builtins.type
Create and return a new object.  See help(type) for accurate signature.

Data descriptors defined here:
alpha
s
y
ys

 
Functions
       
atom_tree_dfunc(...) method of builtins.PyCapsule instance
atom_tree_dfunc(pose : rosetta.core.pose.Pose, min_map : rosetta.core.optimization.MinimizerMap, scorefxn : rosetta.core.scoring.ScoreFunction, vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double) -> NoneType
atom_tree_get_atompairE_deriv(...) method of builtins.PyCapsule instance
atom_tree_get_atompairE_deriv(pose : rosetta.core.pose.Pose, min_map : rosetta.core.optimization.MinimizerMap, scorefxn : rosetta.core.scoring.ScoreFunction) -> NoneType
cart_numerical_derivative_check(...) method of builtins.PyCapsule instance
cart_numerical_derivative_check(min_map : rosetta.core.optimization.CartesianMinimizerMap, func : rosetta.core.optimization.CartesianMultifunc, start_vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double, deriv_check_result : rosetta.core.optimization.NumericalDerivCheckResult, verbose : bool) -> NoneType
cartesian_collect_atompairE_deriv(...) method of builtins.PyCapsule instance
cartesian_collect_atompairE_deriv(pose : rosetta.core.pose.Pose, min_map : rosetta.core.optimization.CartesianMinimizerMap, scorefxn : rosetta.core.scoring.ScoreFunction, dE_dvars : rosetta.utility.vector1_double, scale : float) -> NoneType
cartesian_collect_torsional_deriv(...) method of builtins.PyCapsule instance
cartesian_collect_torsional_deriv(pose : rosetta.core.pose.Pose, min_map : rosetta.core.optimization.CartesianMinimizerMap, scorefxn : rosetta.core.scoring.ScoreFunction, dE_dvars : rosetta.utility.vector1_double, scale : float) -> NoneType
cartesian_dfunc(...) method of builtins.PyCapsule instance
cartesian_dfunc(pose : rosetta.core.pose.Pose, min_map : rosetta.core.optimization.CartesianMinimizerMap, scorefxn : rosetta.core.scoring.ScoreFunction, vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double) -> NoneType
numerical_derivative_check(...) method of builtins.PyCapsule instance
numerical_derivative_check(min_map : rosetta.core.optimization.MinimizerMap, func : rosetta.core.optimization.Multifunc, start_vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double, deriv_check_result : rosetta.core.optimization.NumericalDerivCheckResult, verbose : bool) -> NoneType
simple_numeric_deriv_check(...) method of builtins.PyCapsule instance
simple_numeric_deriv_check(*args, **kwargs)
Overloaded function.
 
1. simple_numeric_deriv_check(func : rosetta.core.optimization.Multifunc, start_vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double, send_to_stdout : bool, verbose : bool) -> rosetta.core.optimization.SimpleDerivCheckResult
 
Numeric deriv check for Multifuncs other than the AtomTreeMultifunc.
 
2. simple_numeric_deriv_check(func : rosetta.core.optimization.Multifunc, start_vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double, send_to_stdout : bool, verbose : bool, nsteps : int) -> rosetta.core.optimization.SimpleDerivCheckResult
 
Numeric deriv check for Multifuncs other than the AtomTreeMultifunc.
torsional_derivative_from_cartesian_derivatives(...) method of builtins.PyCapsule instance
torsional_derivative_from_cartesian_derivatives(atom : rosetta.core.kinematics.tree.Atom, dof_node : rosetta.core.optimization.DOF_Node, dof_deriv : float, torsion_scale_factor : float) -> float