| |
- builtins.object
-
- AtomTreeMinimizer
- CartesianMinimizer
- ConvergenceTest
-
- DFPMinConvergedAbsolute
- DFPMinConvergedFractional
- DOF_DataPoint
- DOF_Node
- DerivCheckDataPoint
- DescentDirectionAlgorithm
- EItem
- GA_Minimizer
- JJH_Minimizer
- LineMinimizationAlgorithm
-
- ArmijoLineMinimization
- BrentLineMinimization
- StrongWolfeLineMinimization
- Minimizer
- MinimizerOptions
- Multifunc
-
- AtomTreeMultifunc
-
- SingleResidueMultifunc
- CartesianMultifunc
- NelderMeadSimplex
- NumericalDerivCheckResult
- Particle
- ParticleSwarmMinimizer
- SimpleDerivCheckResult
-
- NumDerivCheckData
- func_1d
- lbfgs_iteration_data
- rosetta.core.kinematics.MinimizerMapBase(builtins.object)
-
- CartesianMinimizerMap
- MinimizerMap
class ArmijoLineMinimization(LineMinimizationAlgorithm) |
|
////////////////////////////////////////////////////// |
|
- Method resolution order:
- ArmijoLineMinimization
- LineMinimizationAlgorithm
- builtins.object
Methods defined here:
- Armijo(...) from builtins.PyCapsule
- Armijo(self : rosetta.core.optimization.ArmijoLineMinimization, init_step : float, func_eval : rosetta.core.optimization.func_1d) -> float
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.ArmijoLineMinimization, curr_pos : rosetta.utility.vector1_double, curr_dir : rosetta.utility.vector1_double) -> float
- __init__(...) from builtins.PyCapsule
- __init__(self : handle, score_fxn : rosetta.core.optimization.Multifunc, nonmonotone : bool, dim : int) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- provide_stored_derivatives(...) from builtins.PyCapsule
- provide_stored_derivatives(rosetta.core.optimization.ArmijoLineMinimization) -> bool
Methods inherited from LineMinimizationAlgorithm:
- cubic_interpolation(...) from builtins.PyCapsule
- cubic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
- fetch_stored_derivatives(...) from builtins.PyCapsule
- fetch_stored_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs : rosetta.utility.vector1_double) -> NoneType
- nonmonotone(...) from builtins.PyCapsule
- nonmonotone(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
- quadratic_deriv_interpolation(...) from builtins.PyCapsule
- quadratic_deriv_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
- quadratic_interpolation(...) from builtins.PyCapsule
- quadratic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float) -> float
- secant_interpolation(...) from builtins.PyCapsule
- secant_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, deriv1 : float, point2 : float, deriv2 : float) -> float
- silent(...) from builtins.PyCapsule
- silent(*args, **kwargs)
Overloaded function.
1. silent(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
2. silent(self : rosetta.core.optimization.LineMinimizationAlgorithm, s_in : bool) -> NoneType
- store_current_derivatives(...) from builtins.PyCapsule
- store_current_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs : rosetta.utility.vector1_double) -> NoneType
|
class AtomTreeMinimizer(builtins.object) |
|
High-level atom tree minimizer class |
|
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(handle) -> NoneType
2. __init__(handle, rosetta.core.optimization.AtomTreeMinimizer) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.AtomTreeMinimizer, : rosetta.core.optimization.AtomTreeMinimizer) -> rosetta.core.optimization.AtomTreeMinimizer
- check_setup(...) from builtins.PyCapsule
- check_setup(self : rosetta.core.optimization.AtomTreeMinimizer, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap, scorefxn : rosetta.core.scoring.ScoreFunction, options : core::optimization::MinimizerOptions) -> NoneType
Do consistency checks for minimizer setup.
- deriv_check_result(...) from builtins.PyCapsule
- deriv_check_result(rosetta.core.optimization.AtomTreeMinimizer) -> core::optimization::NumericalDerivCheckResult
After minimization has concluded, the user may access the deriv-check result,
assuming that they have run the AtomTreeMinimizer with deriv_check = true;
- run(...) from builtins.PyCapsule
- run(self : rosetta.core.optimization.AtomTreeMinimizer, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap, scorefxn : rosetta.core.scoring.ScoreFunction, options : core::optimization::MinimizerOptions) -> float
run minimization and return the final score at minimization's conclusion.
Virtual allowing derived classes to mascarade as AtomTreeMinimizers.
Non-const so that it can modify its deriv_check_result_ object.
|
class AtomTreeMultifunc(Multifunc) |
|
Atom tree multifunction class |
|
- Method resolution order:
- AtomTreeMultifunc
- Multifunc
- builtins.object
Methods defined here:
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double) -> float
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(handle, rosetta.core.pose.Pose, core::optimization::MinimizerMap, rosetta.core.scoring.ScoreFunction) -> NoneType
doc
2. __init__(handle, rosetta.core.pose.Pose, core::optimization::MinimizerMap, rosetta.core.scoring.ScoreFunction, bool) -> NoneType
doc
3. __init__(self : handle, pose_in : rosetta.core.pose.Pose, min_map_in : core::optimization::MinimizerMap, scorefxn_in : rosetta.core.scoring.ScoreFunction, deriv_check_in : bool, deriv_check_verbose_in : bool) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- dfunc(...) from builtins.PyCapsule
- dfunc(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double) -> NoneType
- dump(...) from builtins.PyCapsule
- dump(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double, vars2 : rosetta.utility.vector1_double) -> NoneType
Error state reached -- derivative does not match gradient
- set_deriv_check_result(...) from builtins.PyCapsule
- set_deriv_check_result(self : rosetta.core.optimization.AtomTreeMultifunc, deriv_check_result : core::optimization::NumericalDerivCheckResult) -> NoneType
Methods inherited from Multifunc:
- abort_min(...) from builtins.PyCapsule
- abort_min(self : rosetta.core.optimization.Multifunc, : rosetta.utility.vector1_double) -> bool
Christophe added the following to allow premature end of minimization
If you want to abort the minimizer under specific circonstances
overload this function and return true if you want to stop, false if you want to continue.
FOR THE MOMENT, ONLY IN DFPMIN!
|
class BrentLineMinimization(LineMinimizationAlgorithm) |
|
////////////////////////////////////////////////////// |
|
- Method resolution order:
- BrentLineMinimization
- LineMinimizationAlgorithm
- builtins.object
Methods defined here:
- BRENT(...) from builtins.PyCapsule
- BRENT(self : rosetta.core.optimization.BrentLineMinimization, AX : float, BX : float, CX : float, FA : float, FB : float, FC : float, TOL : float, func_eval : rosetta.core.optimization.func_1d) -> float
- MNBRAK(...) from builtins.PyCapsule
- MNBRAK(self : rosetta.core.optimization.BrentLineMinimization, AX : float, BX : float, CX : float, FA : float, FB : float, FC : float, func_eval : rosetta.core.optimization.func_1d) -> NoneType
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.BrentLineMinimization, curr_pos : rosetta.utility.vector1_double, curr_dir : rosetta.utility.vector1_double) -> float
- __init__(...) from builtins.PyCapsule
- __init__(self : handle, score_fxn : rosetta.core.optimization.Multifunc, dim : int) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- set_deriv_cutoff(...) from builtins.PyCapsule
- set_deriv_cutoff(self : rosetta.core.optimization.BrentLineMinimization, val : float) -> NoneType
Data descriptors defined here:
- deriv_cutoff_
Methods inherited from LineMinimizationAlgorithm:
- cubic_interpolation(...) from builtins.PyCapsule
- cubic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
- fetch_stored_derivatives(...) from builtins.PyCapsule
- fetch_stored_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs : rosetta.utility.vector1_double) -> NoneType
- nonmonotone(...) from builtins.PyCapsule
- nonmonotone(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
- provide_stored_derivatives(...) from builtins.PyCapsule
- provide_stored_derivatives(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
- quadratic_deriv_interpolation(...) from builtins.PyCapsule
- quadratic_deriv_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
- quadratic_interpolation(...) from builtins.PyCapsule
- quadratic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float) -> float
- secant_interpolation(...) from builtins.PyCapsule
- secant_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, deriv1 : float, point2 : float, deriv2 : float) -> float
- silent(...) from builtins.PyCapsule
- silent(*args, **kwargs)
Overloaded function.
1. silent(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
2. silent(self : rosetta.core.optimization.LineMinimizationAlgorithm, s_in : bool) -> NoneType
- store_current_derivatives(...) from builtins.PyCapsule
- store_current_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs : rosetta.utility.vector1_double) -> NoneType
|
class CartesianMinimizerMap(rosetta.core.kinematics.MinimizerMapBase) |
| |
- Method resolution order:
- CartesianMinimizerMap
- rosetta.core.kinematics.MinimizerMapBase
- builtins.object
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(handle) -> NoneType
2. __init__(handle, rosetta.core.optimization.CartesianMinimizerMap) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- add_atom(...) from builtins.PyCapsule
- add_atom(self : rosetta.core.optimization.CartesianMinimizerMap, AtomID : rosetta.core.id.AtomID, dof_id : rosetta.core.id.DOF_ID) -> NoneType
- add_torsion(...) from builtins.PyCapsule
- add_torsion(self : rosetta.core.optimization.CartesianMinimizerMap, new_torsion : rosetta.core.id.DOF_ID, parent : rosetta.core.id.DOF_ID) -> NoneType
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.CartesianMinimizerMap, : rosetta.core.optimization.CartesianMinimizerMap) -> rosetta.core.optimization.CartesianMinimizerMap
- atom_derivatives(...) from builtins.PyCapsule
- atom_derivatives(self : rosetta.core.optimization.CartesianMinimizerMap, resid : int) -> rosetta.utility.vector1_core_scoring_DerivVectorPair
- copy_dofs_from_pose(...) from builtins.PyCapsule
- copy_dofs_from_pose(self : rosetta.core.optimization.CartesianMinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
- copy_dofs_to_pose(...) from builtins.PyCapsule
- copy_dofs_to_pose(self : rosetta.core.optimization.CartesianMinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
- domain_map(...) from builtins.PyCapsule
- domain_map(rosetta.core.optimization.CartesianMinimizerMap) -> ObjexxFCL::FArray1D<int>
- get_TorsionID(...) from builtins.PyCapsule
- get_TorsionID(self : rosetta.core.optimization.CartesianMinimizerMap, n : int) -> rosetta.core.id.TorsionID
- get_atom(...) from builtins.PyCapsule
- get_atom(self : rosetta.core.optimization.CartesianMinimizerMap, n : int) -> rosetta.core.id.AtomID
- get_atom_index(...) from builtins.PyCapsule
- get_atom_index(self : rosetta.core.optimization.CartesianMinimizerMap, x : rosetta.core.id.AtomID) -> int
- get_dof_id(...) from builtins.PyCapsule
- get_dof_id(self : rosetta.core.optimization.CartesianMinimizerMap, n : int) -> rosetta.core.id.DOF_ID
- natoms(...) from builtins.PyCapsule
- natoms(rosetta.core.optimization.CartesianMinimizerMap) -> int
- ndofs(...) from builtins.PyCapsule
- ndofs(rosetta.core.optimization.CartesianMinimizerMap) -> int
- ntorsions(...) from builtins.PyCapsule
- ntorsions(rosetta.core.optimization.CartesianMinimizerMap) -> int
- reset(...) from builtins.PyCapsule
- reset(self : rosetta.core.optimization.CartesianMinimizerMap, pose : rosetta.core.pose.Pose) -> NoneType
clears old data+dimensions dof_node_pointer using size data from the pose
- setup(...) from builtins.PyCapsule
- setup(self : rosetta.core.optimization.CartesianMinimizerMap, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap) -> NoneType
- zero_stored_derivs(...) from builtins.PyCapsule
- zero_stored_derivs(rosetta.core.optimization.CartesianMinimizerMap) -> NoneType
|
class CartesianMultifunc(Multifunc) |
|
Atom tree multifunction class |
|
- Method resolution order:
- CartesianMultifunc
- Multifunc
- builtins.object
Methods defined here:
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.CartesianMultifunc, vars : rosetta.utility.vector1_double) -> float
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(handle, rosetta.core.pose.Pose, rosetta.core.optimization.CartesianMinimizerMap, rosetta.core.scoring.ScoreFunction) -> NoneType
doc
2. __init__(handle, rosetta.core.pose.Pose, rosetta.core.optimization.CartesianMinimizerMap, rosetta.core.scoring.ScoreFunction, bool) -> NoneType
doc
3. __init__(self : handle, pose_in : rosetta.core.pose.Pose, min_map_in : rosetta.core.optimization.CartesianMinimizerMap, scorefxn_in : rosetta.core.scoring.ScoreFunction, deriv_check_in : bool, deriv_check_verbose_in : bool) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- dfunc(...) from builtins.PyCapsule
- dfunc(self : rosetta.core.optimization.CartesianMultifunc, vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double) -> NoneType
- dump(...) from builtins.PyCapsule
- dump(self : rosetta.core.optimization.CartesianMultifunc, vars : rosetta.utility.vector1_double, vars2 : rosetta.utility.vector1_double) -> NoneType
Error state reached -- derivative does not match gradient
- set_deriv_check_result(...) from builtins.PyCapsule
- set_deriv_check_result(self : rosetta.core.optimization.CartesianMultifunc, deriv_check_result : core::optimization::NumericalDerivCheckResult) -> NoneType
Methods inherited from Multifunc:
- abort_min(...) from builtins.PyCapsule
- abort_min(self : rosetta.core.optimization.Multifunc, : rosetta.utility.vector1_double) -> bool
Christophe added the following to allow premature end of minimization
If you want to abort the minimizer under specific circonstances
overload this function and return true if you want to stop, false if you want to continue.
FOR THE MOMENT, ONLY IN DFPMIN!
|
class ConvergenceTest(builtins.object) |
|
************************************************
Rough outline of how to structure this:
Make a base 'minimizer' class
Sub-class into univariate and multivariate minimizers
-> actually, could we treat linmin as an instance of multivariate
minimization, with a single pass of steepest descent
The trick is how to mix and match convergence criteria, descent
direction generation, and line minimization schemes
convergence criteria could be a function or a functor. Descent
direction algorithms probably need to be functors, since they
have different storage needs.
******************************************** |
|
Methods defined here:
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.ConvergenceTest, Fnew : float, Fold : float) -> bool
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(rosetta.core.optimization.ConvergenceTest) -> NoneType
2. __init__(rosetta.core.optimization.ConvergenceTest, rosetta.core.optimization.ConvergenceTest) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.ConvergenceTest, : rosetta.core.optimization.ConvergenceTest) -> rosetta.core.optimization.ConvergenceTest
|
class DOF_DataPoint(builtins.object) |
| |
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(rosetta.core.optimization.DOF_DataPoint) -> NoneType
2. __init__(self : rosetta.core.optimization.DOF_DataPoint, dof_id : rosetta.core.id.DOF_ID, parent_id : rosetta.core.id.DOF_ID, natoms : int, num_deriv : float, ana_deriv : float, ratio : float, f11 : float, f00 : float, f22 : float, dof_val : float) -> NoneType
3. __init__(self : rosetta.core.optimization.DOF_DataPoint, : rosetta.core.optimization.DOF_DataPoint) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- ana_deriv(...) from builtins.PyCapsule
- ana_deriv(rosetta.core.optimization.DOF_DataPoint) -> float
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.DOF_DataPoint, : rosetta.core.optimization.DOF_DataPoint) -> rosetta.core.optimization.DOF_DataPoint
- dof_id(...) from builtins.PyCapsule
- dof_id(rosetta.core.optimization.DOF_DataPoint) -> rosetta.core.id.DOF_ID
- dof_val(...) from builtins.PyCapsule
- dof_val(rosetta.core.optimization.DOF_DataPoint) -> float
- f00(...) from builtins.PyCapsule
- f00(rosetta.core.optimization.DOF_DataPoint) -> float
- f11(...) from builtins.PyCapsule
- f11(rosetta.core.optimization.DOF_DataPoint) -> float
- f22(...) from builtins.PyCapsule
- f22(rosetta.core.optimization.DOF_DataPoint) -> float
- natoms(...) from builtins.PyCapsule
- natoms(rosetta.core.optimization.DOF_DataPoint) -> int
- num_deriv(...) from builtins.PyCapsule
- num_deriv(rosetta.core.optimization.DOF_DataPoint) -> float
- parent_id(...) from builtins.PyCapsule
- parent_id(rosetta.core.optimization.DOF_DataPoint) -> rosetta.core.id.DOF_ID
- ratio(...) from builtins.PyCapsule
- ratio(rosetta.core.optimization.DOF_DataPoint) -> float
|
class DOF_Node(builtins.object) |
| |
Methods defined here:
- F1(...) from builtins.PyCapsule
- F1(*args, **kwargs)
Overloaded function.
1. F1(rosetta.core.optimization.DOF_Node) -> rosetta.numeric.xyzVector_double_t
2. F1(rosetta.core.optimization.DOF_Node) -> rosetta.numeric.xyzVector_double_t
- F2(...) from builtins.PyCapsule
- F2(*args, **kwargs)
Overloaded function.
1. F2(rosetta.core.optimization.DOF_Node) -> rosetta.numeric.xyzVector_double_t
2. F2(rosetta.core.optimization.DOF_Node) -> rosetta.numeric.xyzVector_double_t
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self : rosetta.core.optimization.DOF_Node, id_in : rosetta.core.id.DOF_ID, parent_in : rosetta.core.optimization.DOF_Node) -> NoneType
2. __init__(self : rosetta.core.optimization.DOF_Node, : rosetta.core.optimization.DOF_Node) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- add_atom(...) from builtins.PyCapsule
- add_atom(self : rosetta.core.optimization.DOF_Node, atom : rosetta.core.id.AtomID) -> NoneType
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.DOF_Node, : rosetta.core.optimization.DOF_Node) -> rosetta.core.optimization.DOF_Node
- atom_id(...) from builtins.PyCapsule
- atom_id(rosetta.core.optimization.DOF_Node) -> rosetta.core.id.AtomID
- atomno(...) from builtins.PyCapsule
- atomno(rosetta.core.optimization.DOF_Node) -> int
- atoms(...) from builtins.PyCapsule
- atoms(rosetta.core.optimization.DOF_Node) -> rosetta.utility.vector1_core_id_AtomID
- clear_atoms(...) from builtins.PyCapsule
- clear_atoms(rosetta.core.optimization.DOF_Node) -> NoneType
- dependent(...) from builtins.PyCapsule
- dependent(*args, **kwargs)
Overloaded function.
1. dependent(rosetta.core.optimization.DOF_Node) -> bool
2. dependent(self : rosetta.core.optimization.DOF_Node, setting : bool) -> NoneType
- depth(...) from builtins.PyCapsule
- depth(rosetta.core.optimization.DOF_Node) -> int
- dof_id(...) from builtins.PyCapsule
- dof_id(rosetta.core.optimization.DOF_Node) -> rosetta.core.id.DOF_ID
- link_vectors(...) from builtins.PyCapsule
- link_vectors(rosetta.core.optimization.DOF_Node) -> NoneType
sum derivative contributions down the tree
- parent(...) from builtins.PyCapsule
- parent(rosetta.core.optimization.DOF_Node) -> rosetta.core.optimization.DOF_Node
- rsd(...) from builtins.PyCapsule
- rsd(rosetta.core.optimization.DOF_Node) -> int
- set_id(...) from builtins.PyCapsule
- set_id(self : rosetta.core.optimization.DOF_Node, setting : rosetta.core.id.DOF_ID) -> NoneType
- set_parent(...) from builtins.PyCapsule
- set_parent(self : rosetta.core.optimization.DOF_Node, setting : rosetta.core.optimization.DOF_Node) -> NoneType
- to_string(...) from builtins.PyCapsule
- to_string(rosetta.core.optimization.DOF_Node) -> str
- torsion_id(...) from builtins.PyCapsule
- torsion_id(*args, **kwargs)
Overloaded function.
1. torsion_id(rosetta.core.optimization.DOF_Node) -> rosetta.core.id.TorsionID
get the rosetta torsion id for this DOF
This may not exist, of course. But it's useful to know what it
is when calculating derivatives of terms like rama/dunbrack/paa
2. torsion_id(self : rosetta.core.optimization.DOF_Node, id_in : rosetta.core.id.TorsionID) -> NoneType
set the rosetta torsion id for this DOF
This may not exist, of course. But it's useful to know what it
is when calculating derivatives of terms like rama/dunbrack/paa
- type(...) from builtins.PyCapsule
- type(rosetta.core.optimization.DOF_Node) -> rosetta.core.id.DOF_Type
|
class DerivCheckDataPoint(builtins.object) |
| |
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(rosetta.core.optimization.DerivCheckDataPoint) -> NoneType
2. __init__(self : rosetta.core.optimization.DerivCheckDataPoint, num_deriv : float, ana_deriv : float, ratio : float, f11 : float, f00 : float, f22 : float, dof_val : float) -> NoneType
3. __init__(self : rosetta.core.optimization.DerivCheckDataPoint, : rosetta.core.optimization.DerivCheckDataPoint) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- ana_deriv(...) from builtins.PyCapsule
- ana_deriv(rosetta.core.optimization.DerivCheckDataPoint) -> float
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.DerivCheckDataPoint, : rosetta.core.optimization.DerivCheckDataPoint) -> rosetta.core.optimization.DerivCheckDataPoint
- dof_val(...) from builtins.PyCapsule
- dof_val(rosetta.core.optimization.DerivCheckDataPoint) -> float
- f00(...) from builtins.PyCapsule
- f00(rosetta.core.optimization.DerivCheckDataPoint) -> float
- f11(...) from builtins.PyCapsule
- f11(rosetta.core.optimization.DerivCheckDataPoint) -> float
- f22(...) from builtins.PyCapsule
- f22(rosetta.core.optimization.DerivCheckDataPoint) -> float
- num_deriv(...) from builtins.PyCapsule
- num_deriv(rosetta.core.optimization.DerivCheckDataPoint) -> float
- ratio(...) from builtins.PyCapsule
- ratio(rosetta.core.optimization.DerivCheckDataPoint) -> float
|
class EItem(builtins.object) |
|
Inner class for Genetic Algorithm, hold one population with some additional info |
|
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(rosetta.core.optimization.EItem) -> NoneType
2. __init__(self : rosetta.core.optimization.EItem, vn : rosetta.utility.vector1_double) -> NoneType
3. __init__(self : rosetta.core.optimization.EItem, : rosetta.core.optimization.EItem) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- sort_R_function(...) from builtins.PyCapsule
- sort_R_function(e1 : rosetta.core.optimization.EItem, e2 : rosetta.core.optimization.EItem) -> bool
Data descriptors defined here:
- r
- tag
- v
|
class LineMinimizationAlgorithm(builtins.object) |
|
////////////////////////////////////////////////////// |
|
Methods defined here:
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.LineMinimizationAlgorithm, : rosetta.utility.vector1_double, : rosetta.utility.vector1_double) -> float
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self : handle, score_fxn : rosetta.core.optimization.Multifunc, dimension : int) -> NoneType
2. __init__(handle, rosetta.core.optimization.LineMinimizationAlgorithm) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- cubic_interpolation(...) from builtins.PyCapsule
- cubic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
- fetch_stored_derivatives(...) from builtins.PyCapsule
- fetch_stored_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs : rosetta.utility.vector1_double) -> NoneType
- nonmonotone(...) from builtins.PyCapsule
- nonmonotone(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
- provide_stored_derivatives(...) from builtins.PyCapsule
- provide_stored_derivatives(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
- quadratic_deriv_interpolation(...) from builtins.PyCapsule
- quadratic_deriv_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
- quadratic_interpolation(...) from builtins.PyCapsule
- quadratic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float) -> float
- secant_interpolation(...) from builtins.PyCapsule
- secant_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, deriv1 : float, point2 : float, deriv2 : float) -> float
- silent(...) from builtins.PyCapsule
- silent(*args, **kwargs)
Overloaded function.
1. silent(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
2. silent(self : rosetta.core.optimization.LineMinimizationAlgorithm, s_in : bool) -> NoneType
- store_current_derivatives(...) from builtins.PyCapsule
- store_current_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs : rosetta.utility.vector1_double) -> NoneType
|
class MinimizerMap(rosetta.core.kinematics.MinimizerMapBase) |
| |
- Method resolution order:
- MinimizerMap
- rosetta.core.kinematics.MinimizerMapBase
- builtins.object
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(handle) -> NoneType
2. __init__(handle, rosetta.core.optimization.MinimizerMap) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- add_atom(...) from builtins.PyCapsule
- add_atom(self : rosetta.core.optimization.MinimizerMap, atom_id : rosetta.core.id.AtomID, dof_id : rosetta.core.id.DOF_ID) -> NoneType
- add_torsion(...) from builtins.PyCapsule
- add_torsion(self : rosetta.core.optimization.MinimizerMap, new_torsion : rosetta.core.id.DOF_ID, parent : rosetta.core.id.DOF_ID) -> NoneType
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.MinimizerMap, : rosetta.core.optimization.MinimizerMap) -> rosetta.core.optimization.MinimizerMap
- atom_derivatives(...) from builtins.PyCapsule
- atom_derivatives(self : rosetta.core.optimization.MinimizerMap, resid : int) -> rosetta.utility.vector1_core_scoring_DerivVectorPair
- begin(...) from builtins.PyCapsule
- begin(*args, **kwargs)
Overloaded function.
1. begin(rosetta.core.optimization.MinimizerMap) -> std::_List_const_iterator<std::shared_ptr<core::optimization::DOF_Node> >
2. begin(rosetta.core.optimization.MinimizerMap) -> std::_List_iterator<std::shared_ptr<core::optimization::DOF_Node> >
- copy_dofs_from_pose(...) from builtins.PyCapsule
- copy_dofs_from_pose(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
- copy_dofs_to_pose(...) from builtins.PyCapsule
- copy_dofs_to_pose(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
- dof_node_from_id(...) from builtins.PyCapsule
- dof_node_from_id(self : rosetta.core.optimization.MinimizerMap, id : rosetta.core.id.DOF_ID) -> rosetta.core.optimization.DOF_Node
get a dof_node by its dof_id
- dof_nodes(...) from builtins.PyCapsule
- dof_nodes(*args, **kwargs)
Overloaded function.
1. dof_nodes(rosetta.core.optimization.MinimizerMap) -> rosetta.std.list_std_shared_ptr_core_optimization_DOF_Node_std_allocator_std_shared_ptr_core_optimization_DOF_Node_t
2. dof_nodes(rosetta.core.optimization.MinimizerMap) -> rosetta.std.list_std_shared_ptr_core_optimization_DOF_Node_std_allocator_std_shared_ptr_core_optimization_DOF_Node_t
- domain_map(...) from builtins.PyCapsule
- domain_map(rosetta.core.optimization.MinimizerMap) -> ObjexxFCL::FArray1D<int>
- end(...) from builtins.PyCapsule
- end(*args, **kwargs)
Overloaded function.
1. end(rosetta.core.optimization.MinimizerMap) -> std::_List_const_iterator<std::shared_ptr<core::optimization::DOF_Node> >
2. end(rosetta.core.optimization.MinimizerMap) -> std::_List_iterator<std::shared_ptr<core::optimization::DOF_Node> >
- link_torsion_vectors(...) from builtins.PyCapsule
- link_torsion_vectors(rosetta.core.optimization.MinimizerMap) -> NoneType
this will only work if DOF_nodes are sorted!
- nangles(...) from builtins.PyCapsule
- nangles(rosetta.core.optimization.MinimizerMap) -> int
- reset(...) from builtins.PyCapsule
- reset(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose) -> NoneType
clears old data+dimensions dof_node_pointer using size data from the pose
- reset_jump_rb_deltas(...) from builtins.PyCapsule
- reset_jump_rb_deltas(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose, dofs : rosetta.utility.vector1_double) -> NoneType
- setup(...) from builtins.PyCapsule
- setup(self : rosetta.core.optimization.MinimizerMap, pose : rosetta.core.pose.Pose, move_map : rosetta.core.kinematics.MoveMap) -> NoneType
- torsion_scale_factor(...) from builtins.PyCapsule
- torsion_scale_factor(self : rosetta.core.optimization.MinimizerMap, tor : rosetta.core.optimization.DOF_Node) -> float
- zero_torsion_vectors(...) from builtins.PyCapsule
- zero_torsion_vectors(rosetta.core.optimization.MinimizerMap) -> NoneType
|
class MinimizerOptions(builtins.object) |
| |
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(rosetta.core.optimization.MinimizerOptions, str, float, bool) -> NoneType
doc
2. __init__(rosetta.core.optimization.MinimizerOptions, str, float, bool, bool) -> NoneType
doc
3. __init__(self : rosetta.core.optimization.MinimizerOptions, min_type_in : str, minimize_tolerance_in : float, use_nblist_in : bool, deriv_check_in : bool, deriv_check_verbose_in : bool) -> NoneType
4. __init__(self : rosetta.core.optimization.MinimizerOptions, : rosetta.core.optimization.MinimizerOptions) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.MinimizerOptions, : rosetta.core.optimization.MinimizerOptions) -> rosetta.core.optimization.MinimizerOptions
- ax_init(...) from builtins.PyCapsule
- ax_init(rosetta.core.optimization.MinimizerOptions) -> float
//////////////////////////////////////////////////////////////////////////
- brent_abs_tolerance(...) from builtins.PyCapsule
- brent_abs_tolerance(rosetta.core.optimization.MinimizerOptions) -> float
- bx_init(...) from builtins.PyCapsule
- bx_init(rosetta.core.optimization.MinimizerOptions) -> float
- clone(...) from builtins.PyCapsule
- clone(rosetta.core.optimization.MinimizerOptions) -> rosetta.core.optimization.MinimizerOptions
- deriv_check(...) from builtins.PyCapsule
- deriv_check(*args, **kwargs)
Overloaded function.
1. deriv_check(self : rosetta.core.optimization.MinimizerOptions, deriv_check_in : bool) -> NoneType
2. deriv_check(rosetta.core.optimization.MinimizerOptions) -> bool
- deriv_check_to_stdout(...) from builtins.PyCapsule
- deriv_check_to_stdout(*args, **kwargs)
Overloaded function.
1. deriv_check_to_stdout(self : rosetta.core.optimization.MinimizerOptions, setting : bool) -> NoneType
2. deriv_check_to_stdout(rosetta.core.optimization.MinimizerOptions) -> bool
- deriv_check_verbose(...) from builtins.PyCapsule
- deriv_check_verbose(rosetta.core.optimization.MinimizerOptions) -> bool
- ga_mutation_probability(...) from builtins.PyCapsule
- ga_mutation_probability(*args, **kwargs)
Overloaded function.
1. ga_mutation_probability(rosetta.core.optimization.MinimizerOptions) -> float
2. ga_mutation_probability(self : rosetta.core.optimization.MinimizerOptions, p : float) -> NoneType
- gmax_cutoff_for_convergence(...) from builtins.PyCapsule
- gmax_cutoff_for_convergence(*args, **kwargs)
Overloaded function.
1. gmax_cutoff_for_convergence(rosetta.core.optimization.MinimizerOptions) -> float
2. gmax_cutoff_for_convergence(self : rosetta.core.optimization.MinimizerOptions, gmax_in : float) -> NoneType
- linmin_deriv_cutoff(...) from builtins.PyCapsule
- linmin_deriv_cutoff(*args, **kwargs)
Overloaded function.
1. linmin_deriv_cutoff(rosetta.core.optimization.MinimizerOptions) -> float
The derivative cutoff used for Brent.
2. linmin_deriv_cutoff(self : rosetta.core.optimization.MinimizerOptions, val : float) -> NoneType
Set the derivative cutoff used for Brent.
- max_iter(...) from builtins.PyCapsule
- max_iter(*args, **kwargs)
Overloaded function.
1. max_iter(rosetta.core.optimization.MinimizerOptions) -> int
2. max_iter(self : rosetta.core.optimization.MinimizerOptions, n : int) -> NoneType
- min_type(...) from builtins.PyCapsule
- min_type(*args, **kwargs)
Overloaded function.
1. min_type(rosetta.core.optimization.MinimizerOptions) -> str
//////////////////////////////////////////////////////////////////////////
2. min_type(self : rosetta.core.optimization.MinimizerOptions, min_type_in : str) -> NoneType
3. min_type(rosetta.core.optimization.MinimizerOptions) -> str
- minimize_tolerance(...) from builtins.PyCapsule
- minimize_tolerance(*args, **kwargs)
Overloaded function.
1. minimize_tolerance(rosetta.core.optimization.MinimizerOptions) -> float
2. minimize_tolerance(rosetta.core.optimization.MinimizerOptions) -> float
3. minimize_tolerance(self : rosetta.core.optimization.MinimizerOptions, minimize_tolerance_in : float) -> NoneType
- nblist_auto_update(...) from builtins.PyCapsule
- nblist_auto_update(*args, **kwargs)
Overloaded function.
1. nblist_auto_update(rosetta.core.optimization.MinimizerOptions) -> bool
2. nblist_auto_update(self : rosetta.core.optimization.MinimizerOptions, setting : bool) -> NoneType
- silent(...) from builtins.PyCapsule
- silent(*args, **kwargs)
Overloaded function.
1. silent(rosetta.core.optimization.MinimizerOptions) -> bool
2. silent(self : rosetta.core.optimization.MinimizerOptions, silent_in : bool) -> NoneType
- use_nblist(...) from builtins.PyCapsule
- use_nblist(*args, **kwargs)
Overloaded function.
1. use_nblist(rosetta.core.optimization.MinimizerOptions) -> bool
Indicate whether or not a handful of optimizations regarding the
neighbor list have been enabled.
use_nblist()
2. use_nblist(self : rosetta.core.optimization.MinimizerOptions, use_nblist_in : bool) -> NoneType
Indicate whether or not a handful of optimizations regarding the
neighbor list should be enabled.
The neighbor list is based on the move map. It includes any
atoms that can be moved by the minimizer plus their neighbors. This list
is not updated during minimization. All scores for atoms and atom pairs
outside the neighbor list are held fixed. All scores for atoms and atom
pairs within the list are not cached (usually they would be), since it
assumed that they will be changing rapidly. These optimizations are
effective when a large number of small moves are being made. You may
prefer to enable this option when minimizing in fullatom mode, and to
disable it in centroid mode.
I wrote this docstring after I reading through a bunch of code to
figure out what this option meant, but I don't have any expertise with
the minimizer. So the above represents my understanding of this option,
but there could very well be errors or misstatements.
core::scoring::AtomNeighbor
- xx_init(...) from builtins.PyCapsule
- xx_init(rosetta.core.optimization.MinimizerOptions) -> float
|
class Multifunc(builtins.object) |
|
Multifunction interface class |
|
Methods defined here:
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.Multifunc, phipsi : rosetta.utility.vector1_double) -> float
- __init__(self, /, *args, **kwargs)
- Initialize self. See help(type(self)) for accurate signature.
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- abort_min(...) from builtins.PyCapsule
- abort_min(self : rosetta.core.optimization.Multifunc, : rosetta.utility.vector1_double) -> bool
Christophe added the following to allow premature end of minimization
If you want to abort the minimizer under specific circonstances
overload this function and return true if you want to stop, false if you want to continue.
FOR THE MOMENT, ONLY IN DFPMIN!
- dfunc(...) from builtins.PyCapsule
- dfunc(self : rosetta.core.optimization.Multifunc, phipsi : rosetta.utility.vector1_double, dE_dphipsi : rosetta.utility.vector1_double) -> NoneType
- dump(...) from builtins.PyCapsule
- dump(self : rosetta.core.optimization.Multifunc, : rosetta.utility.vector1_double, : rosetta.utility.vector1_double) -> NoneType
Error state reached -- derivative does not match gradient
Derived classes have the oportunity to now output and or analyze the two
vars assignments vars, vars+delta where the derivatives are incorrect.
|
class NumDerivCheckData(SimpleDerivCheckResult) |
| |
- Method resolution order:
- NumDerivCheckData
- SimpleDerivCheckResult
- builtins.object
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(self : rosetta.core.optimization.NumDerivCheckData, nangles : int, nsteps : int) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.NumDerivCheckData, : rosetta.core.optimization.NumDerivCheckData) -> rosetta.core.optimization.NumDerivCheckData
- dof_step_data(...) from builtins.PyCapsule
- dof_step_data(*args, **kwargs)
Overloaded function.
1. dof_step_data(self : rosetta.core.optimization.NumDerivCheckData, dof_ind : int, step_ind : int, dofdp : rosetta.core.optimization.DOF_DataPoint) -> NoneType
2. dof_step_data(self : rosetta.core.optimization.NumDerivCheckData, dof_ind : int, step_ind : int) -> rosetta.core.optimization.DOF_DataPoint
Methods inherited from SimpleDerivCheckResult:
- abs_deriv_dev(...) from builtins.PyCapsule
- abs_deriv_dev(*args, **kwargs)
Overloaded function.
1. abs_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, val : float) -> NoneType
2. abs_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int) -> float
- best_abs_log_norm_ratio(...) from builtins.PyCapsule
- best_abs_log_norm_ratio(*args, **kwargs)
Overloaded function.
1. best_abs_log_norm_ratio(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
2. best_abs_log_norm_ratio(rosetta.core.optimization.SimpleDerivCheckResult) -> float
- best_cos_theta(...) from builtins.PyCapsule
- best_cos_theta(*args, **kwargs)
Overloaded function.
1. best_cos_theta(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
2. best_cos_theta(rosetta.core.optimization.SimpleDerivCheckResult) -> float
- best_norm_analytic(...) from builtins.PyCapsule
- best_norm_analytic(*args, **kwargs)
Overloaded function.
1. best_norm_analytic(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
2. best_norm_analytic(rosetta.core.optimization.SimpleDerivCheckResult) -> float
- best_norm_numeric(...) from builtins.PyCapsule
- best_norm_numeric(*args, **kwargs)
Overloaded function.
1. best_norm_numeric(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
2. best_norm_numeric(rosetta.core.optimization.SimpleDerivCheckResult) -> float
- nangles(...) from builtins.PyCapsule
- nangles(rosetta.core.optimization.SimpleDerivCheckResult) -> int
- nsteps(...) from builtins.PyCapsule
- nsteps(rosetta.core.optimization.SimpleDerivCheckResult) -> int
- rel_deriv_dev(...) from builtins.PyCapsule
- rel_deriv_dev(*args, **kwargs)
Overloaded function.
1. rel_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, val : float) -> NoneType
2. rel_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int) -> float
- step_data(...) from builtins.PyCapsule
- step_data(*args, **kwargs)
Overloaded function.
1. step_data(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, step_ind : int, dp : rosetta.core.optimization.DerivCheckDataPoint) -> NoneType
2. step_data(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, step_ind : int) -> rosetta.core.optimization.DerivCheckDataPoint
|
class Particle(builtins.object) |
|
Simple data container for PSO algorithm. |
|
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self : rosetta.core.optimization.Particle, size : int) -> NoneType
2. __init__(self : rosetta.core.optimization.Particle, p_in : rosetta.utility.vector1_double) -> NoneType
3. __init__(self : rosetta.core.optimization.Particle, : rosetta.core.optimization.Particle) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- __str__(...) from builtins.PyCapsule
- __str__(rosetta.core.optimization.Particle) -> str
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.Particle, : rosetta.core.optimization.Particle) -> rosetta.core.optimization.Particle
- ensure_size(...) from builtins.PyCapsule
- ensure_size(self : rosetta.core.optimization.Particle, minsize : int) -> NoneType
Make sure that all arrays are large enough -- prevents index-out-of-bound errors.
- fitness_pbest(...) from builtins.PyCapsule
- fitness_pbest(rosetta.core.optimization.Particle) -> float
- pbest(...) from builtins.PyCapsule
- pbest(rosetta.core.optimization.Particle) -> rosetta.utility.vector1_double
This is why data should be private: you get to ensure it's valid when you read it.
- score(...) from builtins.PyCapsule
- score(self : rosetta.core.optimization.Particle, f : rosetta.core.optimization.Multifunc) -> float
- set_score(...) from builtins.PyCapsule
- set_score(self : rosetta.core.optimization.Particle, new_score : float) -> float
Data descriptors defined here:
- fitness_
- p_
- v_
|
class ParticleSwarmMinimizer(builtins.object) |
|
Particle Swarm Optimization engine.
Algorithm details based heavily on
Chen, Liu, Huang, Hwang, Ho (2006).
"SODOCK: Swarm Optimization for Highly Flexible Protein-Ligand Docking"
J Comput Chem 28: 612-623, 2007
Also on
http://en.wikipedia.org/wiki/Particle_swarm_optimization
http://www.swarmintelligence.org/
One can imagine writing another version that distributed the work via MPI... |
|
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self : rosetta.core.optimization.ParticleSwarmMinimizer, p_min : rosetta.utility.vector1_double, p_max : rosetta.utility.vector1_double) -> NoneType
2. __init__(self : rosetta.core.optimization.ParticleSwarmMinimizer, : rosetta.core.optimization.ParticleSwarmMinimizer) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.ParticleSwarmMinimizer, : rosetta.core.optimization.ParticleSwarmMinimizer) -> rosetta.core.optimization.ParticleSwarmMinimizer
|
class SimpleDerivCheckResult(builtins.object) |
| |
Methods defined here:
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self : rosetta.core.optimization.SimpleDerivCheckResult, nangles : int, nsteps : int) -> NoneType
2. __init__(self : rosetta.core.optimization.SimpleDerivCheckResult, : rosetta.core.optimization.SimpleDerivCheckResult) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- abs_deriv_dev(...) from builtins.PyCapsule
- abs_deriv_dev(*args, **kwargs)
Overloaded function.
1. abs_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, val : float) -> NoneType
2. abs_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int) -> float
- assign(...) from builtins.PyCapsule
- assign(self : rosetta.core.optimization.SimpleDerivCheckResult, : rosetta.core.optimization.SimpleDerivCheckResult) -> rosetta.core.optimization.SimpleDerivCheckResult
- best_abs_log_norm_ratio(...) from builtins.PyCapsule
- best_abs_log_norm_ratio(*args, **kwargs)
Overloaded function.
1. best_abs_log_norm_ratio(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
2. best_abs_log_norm_ratio(rosetta.core.optimization.SimpleDerivCheckResult) -> float
- best_cos_theta(...) from builtins.PyCapsule
- best_cos_theta(*args, **kwargs)
Overloaded function.
1. best_cos_theta(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
2. best_cos_theta(rosetta.core.optimization.SimpleDerivCheckResult) -> float
- best_norm_analytic(...) from builtins.PyCapsule
- best_norm_analytic(*args, **kwargs)
Overloaded function.
1. best_norm_analytic(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
2. best_norm_analytic(rosetta.core.optimization.SimpleDerivCheckResult) -> float
- best_norm_numeric(...) from builtins.PyCapsule
- best_norm_numeric(*args, **kwargs)
Overloaded function.
1. best_norm_numeric(self : rosetta.core.optimization.SimpleDerivCheckResult, val : float) -> NoneType
2. best_norm_numeric(rosetta.core.optimization.SimpleDerivCheckResult) -> float
- nangles(...) from builtins.PyCapsule
- nangles(rosetta.core.optimization.SimpleDerivCheckResult) -> int
- nsteps(...) from builtins.PyCapsule
- nsteps(rosetta.core.optimization.SimpleDerivCheckResult) -> int
- rel_deriv_dev(...) from builtins.PyCapsule
- rel_deriv_dev(*args, **kwargs)
Overloaded function.
1. rel_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, val : float) -> NoneType
2. rel_deriv_dev(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int) -> float
- step_data(...) from builtins.PyCapsule
- step_data(*args, **kwargs)
Overloaded function.
1. step_data(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, step_ind : int, dp : rosetta.core.optimization.DerivCheckDataPoint) -> NoneType
2. step_data(self : rosetta.core.optimization.SimpleDerivCheckResult, dof_ind : int, step_ind : int) -> rosetta.core.optimization.DerivCheckDataPoint
|
class SingleResidueMultifunc(AtomTreeMultifunc) |
|
A streamlined AtomTreeMultifunc designed specifically for RTMIN.
Evaluates only the energies between the specified residue and the rest
of the Pose, assuming the nbr_atoms do not move (as in rotamer trials and repacking).
Could probably be sped up further with a customized dfunc().
DFPMIN seems to spend most of its time in func() rather than dfunc(),
so there's not as much to gain there anyway. |
|
- Method resolution order:
- SingleResidueMultifunc
- AtomTreeMultifunc
- Multifunc
- builtins.object
Methods defined here:
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.SingleResidueMultifunc, vars : rosetta.utility.vector1_double) -> float
- __init__(...) from builtins.PyCapsule
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(handle, rosetta.core.pose.Pose, int, rosetta.core.optimization.MinimizerMap, rosetta.core.scoring.ScoreFunction, rosetta.core.graph.Graph) -> NoneType
doc
2. __init__(handle, rosetta.core.pose.Pose, int, rosetta.core.optimization.MinimizerMap, rosetta.core.scoring.ScoreFunction, rosetta.core.graph.Graph, bool) -> NoneType
doc
3. __init__(self : handle, pose_in : rosetta.core.pose.Pose, rsd_id_in : int, min_map_in : rosetta.core.optimization.MinimizerMap, scorefxn_in : rosetta.core.scoring.ScoreFunction, packer_neighbor_graph_in : rosetta.core.graph.Graph, deriv_check_in : bool, deriv_check_verbose_in : bool) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
Methods inherited from AtomTreeMultifunc:
- dfunc(...) from builtins.PyCapsule
- dfunc(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double, dE_dvars : rosetta.utility.vector1_double) -> NoneType
- dump(...) from builtins.PyCapsule
- dump(self : rosetta.core.optimization.AtomTreeMultifunc, vars : rosetta.utility.vector1_double, vars2 : rosetta.utility.vector1_double) -> NoneType
Error state reached -- derivative does not match gradient
- set_deriv_check_result(...) from builtins.PyCapsule
- set_deriv_check_result(self : rosetta.core.optimization.AtomTreeMultifunc, deriv_check_result : core::optimization::NumericalDerivCheckResult) -> NoneType
Methods inherited from Multifunc:
- abort_min(...) from builtins.PyCapsule
- abort_min(self : rosetta.core.optimization.Multifunc, : rosetta.utility.vector1_double) -> bool
Christophe added the following to allow premature end of minimization
If you want to abort the minimizer under specific circonstances
overload this function and return true if you want to stop, false if you want to continue.
FOR THE MOMENT, ONLY IN DFPMIN!
|
class StrongWolfeLineMinimization(LineMinimizationAlgorithm) |
|
////////////////////////////////////////////////////// |
|
- Method resolution order:
- StrongWolfeLineMinimization
- LineMinimizationAlgorithm
- builtins.object
Methods defined here:
- StrongWolfe(...) from builtins.PyCapsule
- StrongWolfe(self : rosetta.core.optimization.StrongWolfeLineMinimization, init_step : float, func_eval : rosetta.core.optimization.func_1d) -> float
- __call__(...) from builtins.PyCapsule
- __call__(self : rosetta.core.optimization.StrongWolfeLineMinimization, curr_pos : rosetta.utility.vector1_double, curr_dir : rosetta.utility.vector1_double) -> float
- __init__(...) from builtins.PyCapsule
- __init__(self : handle, score_fxn : rosetta.core.optimization.Multifunc, nonmonotone : bool, dim : int) -> NoneType
- __new__(*args, **kwargs) from builtins.type
- Create and return a new object. See help(type) for accurate signature.
- provide_stored_derivatives(...) from builtins.PyCapsule
- provide_stored_derivatives(rosetta.core.optimization.StrongWolfeLineMinimization) -> bool
- zoom(...) from builtins.PyCapsule
- zoom(self : rosetta.core.optimization.StrongWolfeLineMinimization, alpha_low : float, func_low : float, deriv_low : float, alpha_high : float, func_high : float, deriv_high : float, func_zero : float, deriv_zero : float, func_return : float, func_eval : rosetta.core.optimization.func_1d) -> float
Methods inherited from LineMinimizationAlgorithm:
- cubic_interpolation(...) from builtins.PyCapsule
- cubic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
- fetch_stored_derivatives(...) from builtins.PyCapsule
- fetch_stored_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, get_derivs : rosetta.utility.vector1_double) -> NoneType
- nonmonotone(...) from builtins.PyCapsule
- nonmonotone(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
- quadratic_deriv_interpolation(...) from builtins.PyCapsule
- quadratic_deriv_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float, deriv2 : float) -> float
- quadratic_interpolation(...) from builtins.PyCapsule
- quadratic_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, func1 : float, deriv1 : float, point2 : float, func2 : float) -> float
- secant_interpolation(...) from builtins.PyCapsule
- secant_interpolation(self : rosetta.core.optimization.LineMinimizationAlgorithm, point1 : float, deriv1 : float, point2 : float, deriv2 : float) -> float
- silent(...) from builtins.PyCapsule
- silent(*args, **kwargs)
Overloaded function.
1. silent(rosetta.core.optimization.LineMinimizationAlgorithm) -> bool
2. silent(self : rosetta.core.optimization.LineMinimizationAlgorithm, s_in : bool) -> NoneType
- store_current_derivatives(...) from builtins.PyCapsule
- store_current_derivatives(self : rosetta.core.optimization.LineMinimizationAlgorithm, curr_derivs : rosetta.utility.vector1_double) -> NoneType
|
|