Appendix A: Command Reference

Python Commands and Syntax	
# I am a comment; Python ignores me.	
"""I am also ignored.	Block comments (doc strings)
Me too!	
<pre>i = 1 # (After the # is ignored.) first_name = "Bob" j = 1.0 i_am_a_boolean = True i_am_an_integer = not i_am_a_boolean k = first_name</pre>	Simple variable assignments (Python is case sensitive.)
<pre>tuple = (1, 2, 3) list = [15, 'X', -1.5, "lion"] 2_D_list[[1, 0], [0, 1]] dict = {"apple": "sour", "days": 24}</pre>	Assignment to various sequences (tuples, lists, and dictionaries)
print i + 2, 3/2, float(3)/2, 3.0/2.0, 2*j, (i + 3)**2	Outputs 3 1 1.5 1.5 2.0 16 to the screen. (Python returns the floor of integer-only calcu-
<pre>print k + " thinks " + str(i) + " = 0."</pre>	lations, so convert at least one to a float if needed.) Outputs Bob thinks 1 = 0. (Python will not concatenate objects of different types, so a function must be used to convert an integer to a string.)
<pre>print list[1], tuple[1:2], k[0:2],</pre>	Outputs 15 (2, 3) Bo 24 0. (Lists, strings, <i>etc.</i> , are indexed starting with 0.)
i += 1 j -= 1 print i, j	Increment and decrement operators. Outputs 2 0.0
tuple[2] = 4 first name[0] = 'R'	Raise errors; tuples and strings are immutable.
<pre>list[3] = "tiger" dict["apple"] = "sweet"</pre>	Lists and dictionaries are mutable.
<pre>list.append(False) dict["new entry"] = 'Z' print list, dict</pre>	<pre>Outputs [15, 'X', -1.5, "tiger", False] {"apple": "sweet", "days": 24, "new entry", 'Z'}</pre>
for i in range(1, 10): print i	The newly defined variable i ranges from 1 up to <i>but not including</i> 10, and the command print i is executed for each value.
for j in ("cats", "dogs", "fish"): print j	Outputs: cats dogs fish
<pre>if x < 0: print "negative" elif x == 0: print "zero" else:</pre>	Conditional statement that executes lines only if Boolean statements are true. elif means "or <u>el</u> se, check <u>if</u> ". Do not mix up = and ==! Use indenting to indicate blocks of code executed
print "positive"	together under the conditional.

if i_am_a_boolean: print "Yes!"	Outputs: Yes!
if not i am an integer:	Yes! No!
print "No!"	NO:
a, b = 1, 1	Outputs:
print a is b	False
print a == b	True
	(a and b contain the same value, but are not two
	names for the same object!)
<pre>while len(list) <= 7:</pre>	Outputs:
list.append("blah")	[15, 'X', -1.5, "tiger", False,
print list	"blah", "blah", "blah"]
· ·	
<pre>def my_func(a, b):</pre>	Defines a function (returns a value) or subroutine
c = a + b	(does not). If a and b were 1 and 2, this function
d = b + c	would return (3, 5, 8)
e = c + d	
return c, d, e returned values = my func(1, 2)	Syntax for using multiple values returned by a
value of c = returned values[0]	function, e.g., value of c is 3.
value of d = returned values[1]	
value of e = returned values[2]	
class MyCircle:	Defines a class with two methods
"""This is a MyCircle class."""	
<pre>definit(): #Code to run when a Circle</pre>	
object is instantiated	
goes here.	
self.radius = 1.0 # Sets	
default value for radius	
<pre>def draw(self, color=0):</pre>	
#Code to draw the circle goes here.	
Pass	
circle = MyCircle()	Constructs a MyCircle object, draws a circle in
circle.draw()	color 0, and then draws a circle in color 1
circle.radius = 1.5	
circle.draw(1)	
<pre>file = open("out.txt", 'w') file.write("hello")</pre>	Opens a new file named out.txt for writing and
<pre>file.write("hello") file.close()</pre>	outputs hello to the file. (Be sure to close your
TITE.CI05e()	files when finished with them.)
import module	Importe and runs the module of module of the tite
	Imports and runs the module module.py so that its functions can be called with
	module.function().
from module import function	Imports the specific function function so that it
The module import function	can be called with simply function ().
from module import *	Imports all of the (public) functions from
TTOW WORKTO TWPOTO	module.py.

Python Math	
<pre>math.exp(5)</pre>	Returns the value of e^5
math.pi	Returns the value of π
<pre>math.sin(theta)</pre>	Returns the value of sin θ , where θ is in radians
math.acos(x)	Returns the value of arcos x in radians
<pre>math.degrees(rad)</pre>	Converts radians to degrees
meth.radians(deg)	Converts degrees to radians
random.random()	Returns a random floating point number between 0.0 and 1.0
random.randint(5, 10)	Returns a random integer between 5 and 10 (inclusive)
random.gauss(10, 2)	Returns a random number from a Gaussian distribution with a mean of 10 and a standard deviation of 2

Rosetta: Vector Calculus	
<pre>v = numeric.xyzVector_float(x, y, z)</pre>	Creates a displacement vector with floating point precision from Cartesian coordinates
print v print v.x, v.y, v.z	Outputs ${\rm v}$ and its elements
v - v2	Returns the displacement vector between v and $v2$
v.norm	Returns the vector norm of v
v.dot(v2)	Returns the dot product of v and v2
v.cross(v2)	Returns the cross product of v and $v2$

Rosetta: Toolbox Methods	
<pre>cleanATOM("1YY8.pdb")</pre>	Creates a "cleaned" pdb file with all non-ATOM
	lines of a pdb file removed
<pre>cleanCRYS("1YY8.pdb", 2)</pre>	Creates a "cleaned" crystal structure that removes redundant crystal contacts and isolates a monomer.
<pre>pose = pose_from_rcsb("1YY8")</pre>	Loads pdb 1YY8 from the Internet
<pre>generate_resfile_from_pdb("input.pdb",</pre>	Generate a resfile from a pdb file or a pose, respectively
<pre>mutate_residue(pose, 49, 'E')</pre>	Replaces residue 49 of pose with a glutamate (E) residue (does not optimize rotamers)
get_secstruct(pose)	Assigns secondary structure information to $pose$ and outputs it to the screen
<pre>hbond_set = get_hbonds(pose)</pre>	Instantiates and fills an H-bond set with hydrogen-bonding data

Rosetta: Pose Object		
pose = Pose()		
	Instantiates an empty pose object from the Pose class	
<pre>pose = pose_from_pdb("input_file.pdb")</pre>	Loads a pdb file from the working directory into a new pose object	
<pre>pose = pose_from_rcsb("1YY8")</pre>	Loads pdb 1YY8 from the Internet	
<pre>pose = pose_from_sequence("AAAAAA",</pre>	Creates a new pose from the given sequence	
"fa_standard")	using standard, full-atom residue type templates	
print pose	Displays information about the pose object: pdb filename, sequence, and fold tree	
pose.sequence()	Returns the sequence of the pose structure	
get_secstruct(pose)	Assigns secondary structure information to pose and outputs it to the screen	
pose.assign(other_pose)	Copies other_pose onto pose. You cannot simply type pose = other_pose, as that will only point pose to other_pose and not actually copy it.	
<pre>pose.dump pdb("output file.pdb")</pre>	Creates a pdb file named output file.pdb	
	in the working directory using information from pose object.	
<pre>pose.is_fullatom()</pre>	Returns True if the pose contains a full-atom	
	representation of a structure	
<pre>pose.total_residue()</pre>	Returns total number of residues in the pose	
pose.phi(5)	Returns the φ, ψ, ω, or χ_2 angles (in degrees) of	
pose.psi(5)	the 5 th residue in the pose	
pose.omega(5)		
pose.chi(2, 5)	-	
pose.set_phi(5, 60.0)	Sets the φ, ψ, ω, or χ_2 angles of the 5 th residue in	
pose.set_psi(5, 60.0)	the pose to 60.0°	
<pre>pose.set_omega(5, 60.0) pose.set_chi(2, 5, 60.0)</pre>		
pose.see_en1(2, 3, 00.0)		
print pose.residue(5)	Outputs the amino acid details of residue 5	
<pre>pose.residue(5).name()</pre>	Returns the 3-letter residue name for residue 5	
<pre>pose.residue(5).is polar()</pre>	Return True if the 5 th residue is of the queried	
<pre>pose.residue(5).is_aromatic()</pre>	type	
<pre>pose.residue(5).is_charged()</pre>	_	
pose.residue(5).xyz("CA")	Return the displacement vector of the α carbon	
pose.residue(5).xyz(2)	(CA) of residue 5, which is the 2 nd atom listed for that residue in the pose and a standard pdb file	
<pre>pose.residue(5).atom_index("CA")</pre>	Returns 2	
<pre>for i in range (1, pose.total_residue()</pre>	Loops through all residues in the pose and outputs the 3-letter name of each (Unlike Python, Rosetta indexes residues starting with 1.)	
<pre>atom = pose.residue(5).atom("CA")</pre>	Constructs an atom object for the α carbon (CA) of residue 5	
a + a = 1 + a = TD (1 - E)	Construct unique stars identificant instants	
<pre>atom1 = AtomID(1, 5) atom2 = AtomID(2, 5) atom3 = AtomID(3, 5)</pre>	Construct unique atom <i>identifier</i> objects for the 1 st , 2 nd , and 3 rd , atoms of <i>any</i> residue 5, respectively (This is not the same as the above command!)	

<pre>pose.conformation().bond_length(atom1,</pre>	Returns the bond length (if stored in the conformation object) between atom1 and atom2
<pre>pose.conformation().bond_angle(atom1,</pre>	Returns the bond angle in radians (if stored in the conformation object) of atom1, atom2 and atom3
<pre>pose.conformation().set_bond_length(</pre>	Sets the bond length between atom1 and atom2 to 1.5 Å
<pre>pose.conformation().set_bond_angle(atom1, atom2, atom3, 0.666666 * math.pi)</pre>	Sets the bond angle of atom1, atom2, and atom3 to ~120°
<pre>print pose.pdb_info()</pre>	Displays a table comparing the sequence numbering range in the pose with that of the pdb file from which the pose was generated
<pre>pose.pdb_info().name()</pre>	Returns the filename of the pdb file from which the pose was generated
<pre>pose.pdb_info().number(5)</pre>	Returns the pdb number of pose residue 5
<pre>pose.pdb_info().chain(5)</pre>	Returns the pdb chain label of pose residue 5
<pre>pose.pdb_info().pdb2pose("A", 100)</pre>	Returns which residue in the pose corresponds to residue 100 of chain A in the pdb file
<pre>pose.pdb_info().pose2pdb(25)</pre>	Returns a string containing the residue and chair label in the pdb file corresponding to residue 25 of the pose
CA_rmsd(pose1, pose2)	Returns the root-mean-squared deviation of the location of C_{α} atoms between the two poses

Rosetta Scoring Terms		
fa_atr	FA	van der Waals net attractive energy
fa_rep	FA	
hbond_sr_bb, hbond_lr_bb	FA/CEN	Hydrogen-bonding energies, short and long-range, backbone–backbone
hbond_bb_sc, hbond_sc	FA	Hydrogen-bonding energies, backbone-side-chain and side-chain-side-chain
fa_sol	FA	Solvation energies (Lazaridis–Karplus)
fa_dun	FA	Dunbrack rotamer probability
fa_pair	FA	Statistical residue–residue pair potential
fa_intra_rep	FA	Intraresidue repulsive Van der Waals energy
fa_elec	FA	Distance-dependent dielectric electrostatics
pro_close	FA	Proline ring closing energy
<pre>dslf_ss_dst, dslf_cs_ang, dslf_ss_dih, dslf_ca_dih</pre>	FA	Disulfide statistical energies (S–S distance, etc.)
Ref	FA/CEN	Amino acid reference energy of unfolded state
p_aa_pp	FA/CEN	Propensity of amino acid in (ϕ, ψ) bin, P(aa ϕ, ψ)
Rama	FA/CEN	Ramachandran propensities
Vdw	CEN	van der Waals "bumps" (repulsive only)
Env	CEN	Residue environment score (statistical)
Pair	CEN	Residue–residue pair score (statistical)
Cbeta	CEN	β-carbon score

Rosetta: Scoring sf = ScoreFunction() Instantiates an empty scorefxn object from the ScoreFunction class sf = get_fa_scorefxn() Constructs a score function with temes and weights sf = create_score_function("my_fxn") Constructs a score function with temes and weights from the my_fxn weights file sf = create_score_function_ws_patch("my_fxn", "docking") Constructs a score function from the my_fxn weights file with a patch for docking simulations sf.set_weight(fa_atr, 1.0) Sets the weight of the fa_atr term of the scoring function sf(pose) Returns the score of pose with the defined function scorefxn and stores the results in the energies object within pose sf.show(pose) Returns the breakdown of all energies (except backbone hydrogen-bonding energies)().show() pose.energies().show(5) Shows the breakdown of all energy contributions (except backbone hydrogen-bonding energies)().total_energies()[fa_atr]] pose.energies().total_energies()[fa_atr] Returns the fa_atr contribution to the total energy contributions to the foal energy contributions the fa_atr contribution from residue 5 etable_atom_pair_energies().total_energies()[fa_atr] Returns the fa_atr contributions from residue 5 pose.energies().total_energies() Returns the fa_atr contributions from residue 5<
sf = get_fa_scorefxn()Constructs a score function with the default Rosetta full-atom energy terms and weightssf = create_score_function("my_fxn")Constructs a score function with terms and weights from the my_fxn weights filesf = create_score_function_ws_patch("my_fxn", "docking")Constructs a score function from the my_fxn weights filesf.set_weight(fa_atr, 1.0)Sets the weight of the fa_atr term of the scoring functionsf.get_weight(fa_atr)Gets the weight of the fa_atr term of the scoring functionprint sfShow score function weights and details n the energies object within posesf.show(pose)Returns the score of pose with the defined function scoref xn and stores the results in the energies object within posepose.energies().show()Shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residue scoref xn)pose.energies().total_energies()[fa_atr]Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDSI)pose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
Rosetta full-atom energy terms and weightssf = create_score_function("my_fxn")Constructs a score function with terms and weights from the my_fxn weights filesf = create_score_function_ws_patch("my_fxn", "docking")Constructs a score function from the my_fxn weights file with a patch for docking simulationssf.set_weight(fa_atr, 1.0)Sets the weight of the fa_atr term of the scoring functionsf.get_weight(fa_atr)Gets the weight of the fa_atr term of the scoring functionprint sfShows score function score of pose with the defined function score of pose with the defined function score for and stores the results in the energies object within posesf.show(pose)Returns a table of weights and raw &
sf = create_score_function("my_fxn")Constructs a score function with terms and weights from the my_fxn weights filesf = create_score_function_ws_patch("my_fxn", "docking")Constructs a score function with terms and weights file with a patch for docking simulationssf.set_weight(fa_atr, 1.0)Sets the weight of the fa_atr term of the scoring functionsf.get_weight(fa_atr)Gets the weight of the fa_atr term of the scoring functionprint sfShows score function weights and details f(pose)sf.show(pose)Returns a table of weights and raw & weighted scores broken down by termpose.energies().show()Shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().residue_total_energies(5)Returns the fa_atr contribution to the total energypose.energies().residue_total_energies(5)Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
<pre>weights from the my_fxn weights file sf = create_score_function_ws_patch("my_fxn", "docking") sf.set_weight(fa_atr, 1.0) sf.get_weight(fa_atr, 1.0) sf.get_weight(fa_atr) sf.show(pose) sf.show(pose) Returns a table of weights and details in the energies object within pose sf.show(pose) Returns a table of weights and raw & weighted scores broken down by term pose.energies().show() scorefxn and stores the results in the pose by residue pose.energies().show(5) shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residue pose.energies().show(5) shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5 etable_atom_pair_energies(atom1, atom2, scorefxn) pose.energies().total_energies()[fa_atr] pose.energies().total_energies()[fa_atr] pose.energies().residue_total_energies(5) Returns the fa_atr contribution to the total energy pose.energies().residue_total_energies(5) Returns the fa_atr contributions from residue 5 hbond_set = hbonds.HBondSet() Instantiates an empty set for storing</pre>
<pre>"my_fxn", "docking") my_fxn weights file with a patch for docking simulations sf.set_weight(fa_atr, 1.0) sf.get_weight(fa_atr) for the scoring function sf.get_weight(fa_atr) for the score for the score for the scoring function sf.get_weight(fa_atr) for the score for the score</pre>
docking simulationssf.set_weight (fa_atr, 1.0)sf.get_weight (fa_atr, 1.0)sf.get_weight (fa_atr)Gets the weight of the fa_atr term of the scoring functionprint sfsf(pose)Returns the score of pose with the defined function scorefxn and stores the results in the energies object within posesf.show (pose)Pose.energies ().show ()Shows the breakdown of all energy contributions (except backbone hydrogen-bonding energies) in the pose by residuepose.energies ().show (5)etable_atom_pair_energies (atom1, atom2, scorefxn)pose.energies ().total_energies ()[fa_atr]pose.energies ().total_energies ()[fa_atr]pose.energies ().residue_total_energies (5) [fa_atr]pose.energies ().residue_total_energies (5) [fa_atr]hbond_set = hbonds.HBondSet ()Instantiates an empty set for storing
scoring functionsf.get_weight(fa_atr)print sfsf(pose)get_weight(pose)sf.show(pose)sf.show(pose)pose.energies().show()pose.energies().show(5)scorefxn)scorefxn)scorefxn)pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().total_energies()[fa_atr]pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue_total_energies()pose.energies().residue
sf.get_weight(fa_atr)Gets the weight of the fa_atr term of the scoring functionprint sfShows score function weights and details Returns the score of pose with the defined function scorefxn and stores the results in the energies object within posesf.show(pose)Returns a table of weights and raw & weighted scores broken down by termpose.energies().show()Shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residuepose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
print sfShows score function weights and detailssf (pose)Returns the score of pose with the defined function scorefxn and stores the results in the energies object within posesf.show(pose)Returns a table of weights and raw & weighted scores broken down by termpose.energies().show()Shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residuepose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
sf (pose)Returns the score of pose with the defined function scorefxn and stores the results in the energies object within posesf.show(pose)Returns a table of weights and raw & weighted scores broken down by termpose.energies().show()Shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residuepose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contributions from residue 5pose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
function scorefxn and stores the results in the energies object within posesf.show(pose)Returns a table of weights and raw & weighted scores broken down by termpose.energies().show()Shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residuepose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contributions from residue 5pose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
sf.show(pose)Returns a table of weights and raw & weighted scores broken down by termpose.energies().show()Shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residuepose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDS!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contribution to the total energypose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
weighted scores broken down by termpose.energies().show()Shows the breakdown of all energies (except backbone hydrogen-bonding energies) in the pose by residuepose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contributions from residue 5pose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
(except backbone hydrogen-bonding energies) in the pose by residuepose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contribution to the total energypose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
(except backbone hydrogen-bonding energies) in the pose by residuepose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contribution to the total energypose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
pose.energies().show(5)Shows the breakdown of all energy contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contribution to the total energypose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
contributions (except backbone hydrogen- bonding energies) from residue 5etable_atom_pair_energies(atom1, atom2, scorefxn)Returns a tuple of the attractive, repulsive, and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contribution to the total energypose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
<pre>etable_atom_pair_energies(atom1, atom2,</pre>
scorefxn)and solvation score components of a pair of Atom obects (not AtomIDs!)pose.energies().total_energies()[fa_atr]Returns the fa_atr contribution to the total energypose.energies().residue_total_energies(5) [fa_atr]Returns the fa_atr contributions from residue 5hbond_set = hbonds.HBondSet()Instantiates an empty set for storing
<pre>pose.energies().total_energies()[fa_atr] Returns the fa_atr contribution to the total energy pose.energies().residue_total_energies(5) [fa_atr] Returns the fa_atr contributions from residue 5</pre>
<pre>pose.energies().residue_total_energies(5) [fa_atr] hbond_set = hbonds.HBondSet() </pre> Returns the fa_atr contributions from residue 5
hbond_set = hbonds.HBondSet() Instantiates an empty set for storing
pose.update_residue_neighbors() Updates the Energies object within pose
hbonds.fill_hbond_set(pose, False, based on neighboring residues and fills
hbond_set) hbond set with this data (The option
False is to forgo calculating a derivative.)
hbond_set = get_hbonds (pose) Combines the steps above to instantiate and fill a set with hydrogen-bonding data
hbond_set.show(pose) Shows a listing of all hydrogen bonds and their energies in a given pose
hbond_set.show(pose, 5) Shows a listing of the hydrogen bonds and
their energies from residue 5 of pose
emap = EMapVector() Instantiates an energy map object to store a vector of scores
scorefxn.eval_ci_2b(5, 6, pose, emap) Evaluates context-independent two-body
energies between pose residues 5 and 6
and stores the energies in the energy map
emap[fa_atr] Returns the fa atr term from the map

PyMOL Mover		
pmm = PyMOLMover()	Instantiates the PyMOL mover	
pmm.apply(pose)	Sends the pose coordinates to PyMOL for viewing	
pmm.send_energy(pose)	Instructs PyMOL to color the pose by its total energy	
pmm.send_energy(pose,	Instructs PyMOL to color the pose by its total energy and	
label=True)	label each $C\alpha$ with the value.	
<pre>pmm.send_energy(pose, "fa_atr")</pre>	Instructs PyMOL to color the pose by its fa_atr contribution	
<pre>pmm.label_energy(pose)</pre>	Instructs PyMOL to label each $C\alpha$ with the value of its	
	total energy contribution	
<pre>pmm.energy_type(fa_atr)</pre>	Sets the PyMOL mover to color by fa_atr every time the	
pmm.update_energy(True)	<pre>pose is updated with pmm.apply(pose)</pre>	
pmm.keep_history(True)	Instructs PyMOL to store all pose conformations in	
	separate frames	
colors = {1:"red", 2:"blue"}	Instructs PyMOL to color residue 1 red, 2 blue, and all	
<pre>pmm.send_colors(pose, colors,</pre>	others gray	
pmm.send_hbonds(pose)	Instructs PyMOL to display distance lines for every hydrogen bond	
pmm.send_ss(pose)	Uses DSSP to reassign secondary-structure and instructs	
num cond polars (poso)	PyMOL to display it as a cartoon	
<pre>pmm.send_polars(pose)</pre>	Instructs PyMOL to color polar residues red and nonpolar residues blue	
<pre>pmm.send_movemap(pose, mm)</pre>	Instructs PyMOL to color movable regions of the pose	
num coul foldture (core)	green and non-movable regions red	
pmm.send_foldtree(pose)	Instructs PyMOL to color cutpoints red, jump points	
observer =	orange, and loop regions a unique color Updates PyMOL anytime a change is made to pose and	
AddPyMOLObserver(pose,	keeps a history	
<u>TRUE)</u>	Reeps a mistory	

Residue Type Set Movers	
<pre>switch = SwitchResidueTypeSetMover("centroid")</pre>	Instantiates a mover object that will change poses to the centroid residue type set ("fa_standard" is also available.)
switch.apply(pose)	Changes pose to the centroid residue type set
<pre>recover_sidechains =</pre>	Instantiates a mover object that will return the side chains and rotamers from an initial full-atom pose to a centroid version of the same peptide
recover_sidechains.apply(pose)	Changes pose to a full-atom type set and sets the rotamers to those found in initial_fa_pose

80 | Appendix B: Residue Parameter Files

MoveMap	
<pre>movemap = MoveMap()</pre>	Instantiates a movemap object from the MoveMap
	class
movemap.show(5)	Displays the movemap settings for residues 1 to 5
movemap.set_bb(True)	Allows all backbone torsion angles to vary
movemap.set_chi(True)	Allows all side-chain torsion angles (χ) to vary
<pre>movemap.set_bb(10, False)</pre>	Forbid the backbone and side-chain torsion angles of
<pre>movemap.set_chi(10, False)</pre>	residue 10 from varying
<pre>movemap.set_bb_true_range(10, 20)</pre>	Allow backbone and side-chain torsion angles to vary
<pre>movemap.set_chi_true_range(10, 20)</pre>	in residues 10 to 20, inclusive
<pre>movemap.set_jump(1, True)</pre>	Allows jump #1 to be flexible

Fragment Movers		
<pre>fragset = ConstantLengthFragSet(3) fragset.read_fragment_file("fragfile")</pre>	Constructs a 3-mer fragment set object Loads data from the file fragfile into fragset (A fragment file must be downloaded from the Robetta server.)	
<pre>mover_3mer = ClassicFragmentMover(fragset, movemap)</pre>	Constructs a fragment mover using the fragment set and the movemap	
<pre>mover_3mer.apply(pose)</pre>	Replaces the angles in pose with those from a random 3-mer fragment from fragset, only in positions allowed by movemap	
<pre>smoothmover = SmoothFragmentMover(fragset, movemap)</pre>	Constructs a "smooth" fragment mover (Fragment "insertions" are followed by a second, downstream fragment insertion chosen to minimize global disruption.)	

Small and Shear Movers		
kT = 1.0	Variable simulating the product of the Boltzmann constant and temperature (1.0 approximates room temperature.)	
<pre>smallmover = SmallMover(movemap, kT, 5) shearmover = ShearMover(movemap, kT, 5)</pre>	Constuct a small or shear mover with a movemap, a temperature, and 5 moves	
<pre>smallmover.angle_max("H", 15) shearmover.angle_max("H", 15)</pre>	Set the maximum change in dihedral angle within helix residues to 15° ("E" sets the max- imum for sheet residues; "L" loop residues.)	
<pre>smallmover.apply(pose) shearmover.apply(pose)</pre>	Apply the movers	

Minimize Mover		
<pre>minmover = MinMover()</pre>	Consructs a minimize mover with default arguments	
<pre>minmover = MinMover(movemap,</pre>	Construct a steepest descent minimize mover with a particular MoveMap and	
True)	ScoreFunction and a score tolerance of 0.01	
minmover.movemap(movemap)	Sets a movemap	
<pre>minmover.score_function(scorefxn)</pre>	Sets a score function	
<pre>minmover.min_type("linmin")</pre>	Sets a the minimization type to a line minimization (one direction in space), <i>i.e.</i> , "steepest descent"	
<pre>minmover.min_type("dfpmin")</pre>	Sets a the minimization type to a David–Fletcher– Powell minimization (multiple iterations of "linmin" in conjugate directions)	
<pre>minmover.tolerance(0.5)</pre>	Sets the mover to iterate until within 0.5 score points of the minimum	
<pre>minmover.apply(pose)</pre>	Minimizes the pose	

Monte Carlo Object		
<pre>mc = MonteCarlo(pose, scorefxn,</pre>	Constructs a MonteCarlo object for a given pose and	
kT)	score function at a temperature of $\ensuremath{\Bbbk \mathbb{T}}$	
<pre>mc.set_temperature(1.0)</pre>	Sets the temperature in the MonteCarlo object	
<pre>mc.boltzmann(pose)</pre>	Accepts or rejects the current pose, compared to the last pose, according to the standard Metropolis criterion	
<pre>mc.show_scores()</pre>	Shows stored scores, counts of moves	
<pre>mc.show_counters()</pre>	accepted/rejected, or both, respectively.	
<pre>mc.show_state()</pre>		
<pre>mc.recover_low(pose)</pre>	Sets the pose to the lowest-energy configuration ever encountered during the search	
mc.reset(new_pose)	Resets all counters and sets the lowest and last pose stored to new_pose.	

Trial Mover		
<pre>smalltrial = TrialMover(smallmover, mc)</pre>	Constructs a combination mover that will apply the small mover, then call the MonteCarlo object mc to accept or reject the new pose	
<pre>smalltrial.num_accepts()</pre>	Returns the number of times the move was accepted	
<pre>smalltrial.acceptance_rate()</pre>	Returns the acceptance rate of the moves	

82 | Appendix B: Residue Parameter Files

Sequence Movers and Repeat Movers		
<pre>seqmover = SequenceMover() seqmover.addmover(smallmover) seqmover.addmover(shearmover) seqmover.addmover(minmover)</pre>	Construct a combination mover that will call a series of other movers in sequence	
<pre>repeatmover = RepeatMover(fragmover, 10)</pre>	Constructs a combination mover that will call fragmover 10 times	
<pre>randommover = RandomMover() randmover.addmover(smallmover) randmover.addmover(shearmover) randmover.addmover(minmover)</pre>	Construct a combination mover that will randomly apply one of a set of movers each time it is applied	

Classic Relax Protocol		
<pre>relax = ClassicRelax()</pre>	Instantiates an object that encompasses the entire standard Rosetta refinement protocol as presented in Bradley, Misura, & Baker 2005	
relax.set_scorefxn(scorefxn)	Sets the score function	
relax.apply(pose)	Applies the whole protocol	

Packer Task Obje	ect
<pre>task = standard_packer_task(pose)</pre>	Constructs a packer task object with instructions to repack all residues in pose using default rotamer library options, without repacking disulfide bonds
<pre>task = TaskFactory.create_packer_task(pose)</pre>	Constructs a default packer task object without any extra rotamer options
<pre>task.restrict_to_repacking()</pre>	Restricts all residues to repacking only (no design/"mutations")
<pre>task.temporarily_fix_everything()</pre>	Fixes/locks all residues' rotamers (no repacking)
<pre>task.temporarily_set_pack_residue(5, True)</pre>	Sets residue 5 to allow repacking
<pre>generate_resfile_from_pdb("input.pdb",</pre>	Generate a resfile from a pdb file or a pose, respectively
<pre>parse_resfile(pose, task, "file.resfile")</pre>	Sets packer task for pose based on instructions in resfile

Resfile Codes		
NATRO	Use the native amino acid residue and <u>nat</u> ive <u>ro</u> tamer (do not repack)	
NATAA	Use the <u>native amino acid residue but allow repacking to other rotamers</u>	
PIKAA ILV	Pick from amino acid residues IIe, Leu, and Val and allow repacking	
ALLAA	Use <u>all</u> <u>a</u> mino <u>a</u> cid residues and allow repacking	

Side Chain Packing Mover		
<pre>pack_mover = Constructs a mover that will use instructions PackRotamersMover(scorefxn, task) constructs a mover that will use instructions from the packer task to optimize or "mutate" side chain conformations in the pose</pre>		
	•	

Simple Point Mutation			
<pre>mutate_residue(pose,</pre>	49,	'E')	Replaces residue 49 of pose with a glutamate
			(E) residue (does not optimize rotamers)

Fold Tree	
<pre>ft = FoldTree()</pre>	Constructs an empty fold tree
<pre>ft = pose.fold_tree()</pre>	Extracts the current fold tree from the pose
<pre>pose.fold_tree(ft)</pre>	Attaches the fold tree ft to the pose
ft.add_edge(1, 30, -1)	Creates a peptide edge (code -1) from residues 1 to 30 (This edge will build N-to-C)
ft.add_edge(100, 31, -1)	Creates a peptide edge from residues 100 to 31 (This edge will build C-to-N.)
ft.add_edge(30, 100, 1)	Creates a jump (rigid-body connection) between residues 30 and 100 (The jump number is 1; each jump needs a unique, sequential jump number.)
<pre>ft.check_fold_tree()</pre>	Returns True only for valid trees
print ft	Prints the fold tree
<pre>ft.simple_tree(100)</pre>	Creates a single-peptide-edge tree for a 100-residue protein
ft.new_jump(40, 60, 50)	Creates a jump from residue 40 to 60, a cutpoint between 50 and 51, and splits up the original edges to finish the tree
<pre>ft.clear()</pre>	Deletes all edges in the fold tree
<pre>setup_foldtree(pose, "A_B", Vector1([1])</pre>	Creates a fold tree for pose with jump #1 between the centers of mass of chains A and B
<pre>set_single_loop_fold_tree(pose,</pre>	Creates a fold tree for pose with jump points and a cutpoint defined by a Loop object, and splits up the original edges to finish the tree (See below for the Loop object.)

Jump Object		
<pre>pose.jump(1).get_rotation()</pre>	Returns the rotation matrix for the jump	
<pre>pose.jump(1).get_translation()</pre>	Returns the translation vector for the jump	

Rigid Body N	lovers
<pre>pert_mover = RigidBodyPerturbMover(1, 8,</pre>	Constructs a mover that will make a random rigid-body move of the downstream partner across jump #1 (Rotations and translations are chosen from a Gaussian with a mean of 8° and 3 Å, respectively.)
<pre>trans_mover = RigidBodyTransMover(pose,</pre>	Constructs a mover that will translate two partners, defined by jump_num, along an axis defined by vector a by 5 Å
<pre>spin_mover =</pre>	Constructs a mover that will spin the chain downstream of jump_num around a spin axis and rotation center by 45° (No specified angle size randomizes the spin.)
<pre>random_mover = RigidBodyRandomizeMover(pose, 1, partner_upstream) random_mover = RigidBodyRandomizeMover(pose, 1, partner_downstream)</pre>	Construct a mover that will rotate one of the partners across jump #1 randomly about its geometric center (partner_upstream and partner_downstream are predefined constants, not variables.)
<pre>slide = DockingSlideIntoContact(1) slide = FADockingSlideIntoContact(1)</pre>	Construct movers to translate two centroid or full-atom chains across jump #1 into contact, respectively

Docking Protocols		
<pre>dock_lowres = DockingLowRes(scorefxn_low,</pre>	Constructs a low-resolution, centroid- based Monte Carlo search protocol (50 rigid-body perturbations with adaptable step sizes)	
<pre>dock_hires = DockMCMProtocol(scorefxn_high,</pre>	Constructs a high-resolution, full-atom– based <u>Monte Carlo search protocol with</u> rigid-body moves, side-chain packing, and <u>minimization</u>	

Loop Objects		
loop = Loop(15, 24, 20)	Defines a loop with stems at residues 15 and 24, and a cutpoint at residue 20	
loops = Loops()	Constructs an object to contain a set of loops	
<pre>loops.add_loop(loop1)</pre>	Adds a Loop object to loops	

Loop Movers		
<pre>ccd = CCDLoopClosureMover(loop1,</pre>	Creates a mover which performs Canutescu & Dunbrack's cyclic coordinate descent loop closure algorithm	
<pre>loop_refine = LoopMover_Refine_CCD(loops)</pre>	Creates a high-resolution refinement protocol consisting of cycles of small and shear moves, side-chain packing, CCD loop closure, and minimization.	

RMSD-Calculating Functions		
CA_rmsd(pose1, pose2)	Returns the RMSD between the $C\alpha$ atoms of	
	pose1 and pose2	
<pre>calc_Lrmsd(pose1, pose2, Vector([1]))</pre>	Return the ligand RMSD between <code>pose1</code> and	
	pose2	
<pre>loop_rmsd(pose, ref_pose, loops, True)</pre>	Returns the RMSD of all loops in the reference frame of the fixed protein structure	

Job Distributor		
jd = PyJobDistributor("output", 10, scorefxn)	Constructs a job distributor that will create 10 model structures named output_1.pdb to output_9.pdb and a file containing a table of scores	
jd.native_pose = native_pose	Sets the native pose for RMSD comparisons	
jd.job_complete	Returns True if all decoys have been output	
jd.output_decoy(pose)	Outputs pose to a file and increments the decoy number	
<pre>while not jd.job_complete: # Code for creating decoys jd.output_decoy(pose)</pre>	Loop to create decoys until all have been output	
jd.additional_decoy_info = "Created by Andy"	Sets a string to be output to the pdb files	