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Workshop	#8:	Loop	Modeling	

Loop modeling is an important step in building homology models, designing enzymes, or 
docking with flexible loops. 

Suggested Readings 

1. A. A. Canutescu & R. L. Dunbrack, “Cyclic coordinate descent: A robotics algorithm 
for protein loop closure,” Protein Sci. 12, 963-972 (2003). 

2. C. Wang, P. Bradley & D. Baker, “Protein-protein docking with backbone flexibility,” 
J. Mol. Biol. 373, 503-519 (2007). 

3. D. J. Mandell,  E. A. Coutsias & T. Kortemme, “Sub-angstrom accuracy in protein loop 
reconstruction by robotics-inspired conformational sampling,” Nature Meth. 6, 551-552 
(2009). 

Fold Tree 

Because we typically want to isolate the conformational changes to the loop region, we need a 
framework to hold the rest of the protein together. This is accomplished — as was the case 
with protein-protein docking — with a fold tree, which is a graph that dictates the propagation 
of conformational changes throughout the Pose. 

For the following exercises, you can use the sample files found in 
PyRosetta4/tests/data. There you will find test_in.pdb and a 3mer fragment file, 
test_in.frag3. 

Load the test_in.pdb structure (116 residues). We want to operate on the first loop, residues 
15–24. For the fold tree, we place the jump anchors two residues outside of the loop range, i.e., 
residues 13–26. In loop modeling, the jump points are set at i-2 and j+2, where i and j are the 
beginning and end residues of the loop, respectively. The relevant fold tree looks like this: 

 

That is, we want a cut between residues 19 and 20, to allow motions in the loop that do not 
propagate through the rest of the protein. To tie the pieces together, we use a jump between 
residues 13 and 26. These residues will stay connected to each other. 

To make such a tree in PyRosetta, first we create a FoldTree object: 

ft = FoldTree() 

1 13  19    20   26                                                  116 
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Then we add the “edges” and the jump. Both edges and jumps are entered using the 
FoldTree’s add_edge(start, end, code) command, with peptide edges coded with a 
“-1” and jumps enumerated with the positive integers. (The first jump is coded “1”, the second 
“2”, etc.) The first edge is from residues 1 to 13: 

ft.add_edge(1, 13, -1) 

Then the second is from 13 to 19. An edge must always start from a residue that has already 
been defined in another edge, thus we use 13 here and not 14. (The one exception is the first 
edge, which starts from the graph’s “root”). 

ft.add_edge(13, 19, -1) 

Next, the jump, which is specified with the integer code 1, tells Rosetta that this is a rigid-body 
connection, not a peptide edge: 

ft.add_edge(13, 26, 1) 

Finally, we add the last two edges, both starting from 26, which is the residue that has been 
previously defined in the tree: 

ft.add_edge(26, 20, -1) 
ft.add_edge(26, 116, -1) 

Print the fold tree and check that this tree is valid: 

print ft 
ft.check_fold_tree() 

The latter command will return False if there are any invalid connections, disconnected parts, 
or undefined residues. 

Finally, we attach this fold tree to the pose, overwriting its default fold tree: 

pose.fold_tree(ft) 

1. Test out your fold tree. Do pose.set_phi(res, 180) for res values of 10, 13, 16, 
23, 26 and 29. View each in PyMOL with the PyMOL mover or viewer. (It may be 
helpful to color the structure by its foldtree using the 
PyMOLMover.send_foldtree() method.) What do you observe in these structures? 
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2. Sketch a fold tree that you could use for modeling a loop from residues 78–83. 
Remember that a loop from residues i to j uses a fold tree with a jump from residues i-2 
to j+2. 

 

 

3. What edges would you use to generate the above fold tree? 

 

 

 

4. Visualize the foldtree that you just sketched above in PyMOL using 
PyMOLMover.view_foldtree_diagram(pose, ft). Does your sketch match 
what is drawn on the screen? _____ 

To save some time and help avoid mistakes, there are a couple functions that will assist in the 
creation of fold trees: 

5. Try each of the following and print the fold tree. What does each of the following do? 

ft.clear() 
ft.simple_tree(116) 
ft.new_jump(76, 85, 80) 

 

 

 

6. Use these FoldTree methods to check your answer to question 3. 

7. Use the above commands to make a fold tree to model both loops (15–24 and 78–83) 
simultaneously. 
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Cyclic Coordination Descent (CCD) Loop Closure 

Canutescu & Dunbrack’s CCD routine is implemented as a Mover. It first requires that the 
loop is defined using the Loop class. You will also need to create a MoveMap with the loop 
residues marked as flexible (both backbone and side-chain torsion angles). Like many specialty 
objects in Rosetta, the CCD mover is located in its own namespace and is not loaded in by 
default when the rest of Rosetta is imported into Python. You can either import the module or 
refer to its namespace when calling it. Here we show the module import. 

from rosetta.protocols.loops.loop_closure.ccd import * 
 
loop1 = Loop(15, 24, 19) 
ccd = CCDLoopClosureMover(loop1, movemap) 

Before running the CCD algorithm, it is important to convert the residues around the cut site of 
the loop to “cut-point variants”: 

add_single_cutpoint_variant(pose, loop1) 

8. Open the loop using set_phi, and run the CCD Mover. Does it close the loop? _____ 
Is the bond across the cut point protein-like? _____ 

Note also that if you have a loop defined in a Loop object, you can set your fold tree with the 
command: 

set_single_loop_fold_tree(pose, loop) 

Multiple Loops 

Multiple loops can be stored in a Loops object. We can create a loop2 object for the 78–83 
loop and then create a loops object: 

loops = Loops() 
loops.add_loop(loop1) 
loops.add_loop(loop2) 

To use CCD on all loops, we have to iterate over each one. 

Loop Building 

The MoveMap and the FoldTree work together. By using a MoveMap, you can ensure that a 
Mover will only operate inside the loop region. 
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9. At this point, you should be able to write your own loop protocol that will build the 
loop at low-resolution using fragments. Some tips: 

• Create a MoveMap that will allow motions only in the two loop regions defined in 
our MoveMap above. 

• Create a ClassicFragmentMover using your MoveMap and the 3-residue 
fragment file provided, test_in.frag3.  

• Use the cen_std score function, but add the chainbreak score component with a 
weight of 1. 

• Do 100 fragment insertions. 
• After each fragment insertion, close the loop with CCD, then use a MonteCarlo 

object to accept or reject the combination move. 
• Bonus: use SequenceMover and TrialMover to tighten up your code. 
• Further bonus: use the JobDistributor to allow your program to make multiple 

structures. 

Loop RMSD is typically measured in a fixed reference frame of the whole protein, and it can 
be computed on Cα atoms or all backbone atoms. PyRosetta has a built-in function for 
calculating deviation of all the loops, and its output can be added as additional info in the 
JobDistributor: 

lrms = loop_rmsd(pose, reference_pose, loops, True) 
jd.additional_decoy_info = " LRMSD: " + str(lrms) 

(The fourth argument in loop_rmsd() tells whether or not the RMSD is calculated for Cα 
atoms only.) 

10. If you first perturb the loop residues by setting all the residues to extended 
conformations (φ=ψ=180°), can your code close the two loops and find reasonable 
conformations? _____ What is the loop RMS? _________ 

High-Resolution Loop Protocol 

In high-resolution, loop optimization needs smaller perturbations such as that from small and 
shear moves. The classic Rosetta loop refinement protocol is available as a Mover and is 
located in the rosetta.protocols.loops.loop_mover.refine namespace: 

from rosetta.protocols.loops.loop_mover.refine import * 
loop_refine = LoopMover_Refine_CCD(loops) 

The mover uses its own default, high-resolution score function, and it will generate its own 
MoveMap based on the definition of the loops. 

11. Apply this mover to a few of your low-resolution loop models after switching them to 
full atom versions. How far does refinement move the loops? _______ Do the loops 
remain closed? _____ 
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Kinematic Closure (KIC) Protocols 

The kinematic loop closure methods of Mandell et al. are also available in several prepared 
movers and protocols. 

A single closure of a loop using the direct mathematical solution using polynomial resultants 
can be performed by applying the KinematicMover. Rather than using a Loop object, this 
mover is set up by specifying the three “pivot” residues. The kinematic mover determines new 
torsion angles for the pivot residues by solving the closure equations. 

from rosetta.protocols.loops.loop_closure.kinematic_closure 
import * 

kic_mover = KinematicMover() 
kic_mover.set_pivots(16, 20, 24) 
kic_mover.apply(pose) 

Like the CcdLoopClosureMover, the KinematicMover can be applied after various 
perturbations that alter or open the loop. 

The full loop prediction protocol of Mandell et al. has been implemented as separate movers 
for the low- and high-resolution stages. The LoopMover_Perturb_KIC operates on a 
centroid representation pose, and it is designed to predict a loop de novo. The 
LoopMover_Refine_KIC operates in the full-atom representation, and it is designed to refine 
a loop making small perturbations from a starting conformation such as one output by the 
LoopMover_Perturb_KIC mover. Here is an example of the usage of both: 

from rosetta.protocols.loops.loop_mover.perturb import * 
from rosetta.protocols.loops.loop_mover.refine import * 
 
sw = SwitchResidueTypeSetMover("centroid") 
sw.apply(pose) 
kic_perturb = LoopMover_Perturb_KIC(loops) 
kic_perturb.apply(pose) 
 
sw = SwitchResidueTypeSetMover("fa_standard") 
sw.apply(pose) 
 
kic_refine = LoopMover_Refine_KIC(loops) 
kic_refine.apply(pose) 

Because these are full prediction protocols, they will require some time to perform on your 
computer. Each will result in a single decoy structure; note that Mandell et al. generated 1000 
decoy structures for blind predictions of 12-residue loops. 

12. Time permitting, repeat exercises 8–10, replacing the CCD mover with the appropriate 
kinematic movers. 



Workshop #8: Loop Modeling | 59 

 

Simultaneous Loop Modeling and Docking 

Antibodies have two chains, light (L) and heavy (H), which can move relative to each other. 
They also have a long, hypervariable H3 loop, typically residues 95–102. Antibodies are 
common protein drugs, and they are often created by exploiting the immune system of a 
mouse. There is a need for high-quality homology models of antibodies. 

13. Sketch a fold tree that you could use to model an antibody with a flexible H3 loop and 
H and L chains that can move relative to each other. 

 

 

14. Write a low-resolution protocol to alternate docking and loop modeling steps. Use your 
code to model cetuximab. Use the job distributor to track your decoys. What is the 
lowest RMSD you can create in 100 decoys? _______ 


