

9

Workshop	#2:	PyRosetta	

Rosetta is a suite of algorithms for biomolecular structure prediction and design. Rosetta is
written in C++ and is available from www.rosettacommons.org. PyRosetta is a toolkit in the
programming language Python, which encapsulates the Rosetta functionality by using the
compiled C++ libraries. Python is an easy language to learn and includes modern programming
approaches such as objects. It can be used via scripts and interactively as a command-line
program, similar to MATLAB®.

The goals of this first workshop are (1) to have you learn to use PyRosetta both interactively
and by writing programs and (2) to have you learn the PyRosetta functions to access and
manipulate properties of protein structure.

Basic Elements

You will need a few basic tools to work on PyRosetta.

• You need a text editor to edit scripts. A good editor will “markup” your code in color
and make sure your code is indented properly, and it can offer search tools across
multiple files and sometimes support for running and debugging your program. One
current favorite editor is jEdit (www.jedit.org). A popular editor on the Mac is
Aquamacs, based on the program Emacs. IDLE is an “integrated development
environment” (IDE) that is packaged with Python and includes pop-up function
signatures while you are writing code. A text-only (no mouse) program is vi or Vim
(www.vim.org), popular among *nix hackers. jEdit, Emacs, and vi are available for
Windows and Linux platforms. There is a built in Mac editor called TextEdit, similar
to Notepad or WordPad on a PC. These will not have the color markup and other
tools, but they will allow you to edit your files. Choose one of these programs and learn
to access it on your computer.

• You need a command-line interface (CLI) or terminal. On a Windows PC, typing
cmd under the Start menu will launch a Command Prompt which will support standard
DOS commands: dir, cd, copy, type, more, etc. On the Mac, you can find a terminal
in the menu on the bottom of the screen or by searching for xterm. The Mac terminal
will support standard UNIX/Linux shell commands: ls, cd, less, cp, mkdir, rm,
grep, awk, sed, gnuplot, etc. Search the Internet if you are not familiar with Linux
shell or DOS commands.

• You can access Python using the command ipython or python ipython.py from
the terminal. We use IPython (rather than Python) since it supports tab-completion,
which will help us find PyRosetta functions. On Windows, your install may include a
desktop shortcut for iPython PyRosetta Shell: this shortcut will open a terminal
and start IPython for you.

10 | Workshop #2: PyRosetta

Basic Python

Basic Python programming will be useful but is beyond the scope of this workshop. Excellent
introductory and reference material on the Python language is available at docs.python.org. A
very brief reference is also found in Appendix A.

Basic PyRosetta

1. Open a terminal and start IPython. To load the PyRosetta library, type

from pyrosetta import *
init()

The first line loads the Rosetta commands for use in the Python shell, and the second
command loads the Rosetta database files. The first line may require a few seconds to
load.

2. Many pdb files, like the one you opened in Workshop #1, have extraneous information
and often do not conform to file standards. You may have to “clean” your pdb file
before loading it into PyRosetta. You can do this through the command line interface
(not from within IPython) by using either the grep command (UNIX) or the findstr
command (DOS) to remove all lines that do not begin with ATOM in the pdb file.
Alternatively, a method from the PyRosetta toolbox namespace, cleanATOM can be
used to create “clean” pdb files:

from pyrosetta.toolbox import cleanATOM
cleanATOM("1YY8.pdb")

(This method will create a cleaned 1YY8.clean.pdb file for you.)

See Appendix C for details on these methods and specific examples of how to clean
pdb files.

3. Load a protein from a “clean” pdb file. Use the 1YY8.pdb file of the antibody you
looked at in Workshop #1. Put the file in your working directory or change to the
directory in which the file is located using cd from within IPython. Load the file as
follows:

pose = pose_from_pdb("1YY8.clean.pdb")

This creates a Pose object that you can now work with using a variety of methods.

If you have not already downloaded the pdb file, you can create a pose directly from the
protein database if you have a connection to the Internet:

from pyrosetta.toolbox import pose_from_rcsb
pose = pose_from_rcsb("1YY8")

Workshop #2: PyRosetta | 11

(This method will also create 1YY8.pdb and 1YY8.clean.pdb files for you)

4. Examine the protein using a variety of query functions:

print pose
print pose.sequence()
print "Protein has", pose.total_residue(), "residues."
print pose.residue(500).name()

What type of residue is residue 500? _____

Note that the 500th residue in the pdb file is not necessarily “residue number 500” in the
protein. Many pdb files have multiple peptide chains. Sometimes the residue numbering
follows a convention from a family of homologous proteins, and often several residues
of the N-terminus do not show up in a crystal structure. Find out the chain and pdb
residue number of residue 500: ________

print pose.pdb_info().chain(500)
print pose.pdb_info().number(500)

Lookup the Rosetta internal number for residue 100 of chain A:

print pose.pdb_info().pdb2pose('A', 100)

The converse command is:

print pose.pdb_info().pose2pdb(25)

Get and display the secondary structure of the pose using a toolbox method:

from pyrosetta.toolbox import get_secstruct
get_secstruct(pose)

To demonstrate IPython’s tab-completion feature, type in print pose.seq and hit
the tab key. IPython should complete the keyword sequence for you. Type pose. and
hit the tab key, and you should see a list of functions available for Pose objects.

While we are examining the advantages of IPython, try out the built-in help features by
typing any one of the following:

Pose?
?Pose
help(Pose)

Each of these will give a brief description of the Pose class and its purpose. The last
form will also give a list of function signatures for all the available functions within the
class. These methods of accessing help should work on many of the PyRosetta objects.

12 | Workshop #2: PyRosetta

Protein Geometry

5. Find the φ, ψ, and χ1 dihedral	angles of residue 5:

print pose.phi(5)
print pose.psi(5)
print pose.chi(1, 5)

6. Find the N–Cα and Cα–C bond lengths of residue 5. There are at least a couple ways to
do this.

First, store the unique atom identifier codes in variables:

R5N = AtomID(1, 5)
R5CA = AtomID(2, 5)
R5C = AtomID(3, 5)

(This works because the atoms are listed in a consistent order in a pdb file.) Then, use
these identifier codes to lookup bond lengths in the conformation object:

print pose.conformation().bond_length(R5N, R5CA)
print pose.conformation().bond_length(R5CA, R5C)

For the second method, access the Cartesian coordinates and use the Vector class to
find the norm of the displacement vector between the two atoms:

N_xyz = pose.residue(5).xyz("N")
CA_xyz = pose.residue(5).xyz("CA")
N_CA_vector = CA_xyz – N_xyz
print N_CA_vector.norm

These bond lengths are actual, experimental bond lengths from the crystal structure.
When Rosetta creates proteins de novo, it uses ideal values, similar to those from Engh
& Huber (1991). Let’s check how the actual bond lengths compare to Rosetta’s ideal
values. Find the Rosetta database directory on your computer (e.g.,
/usr/local/PyRosetta/rosetta_database). Enter the subdirectory
chemical/residue_type_sets/fa_standard/residue_types and, with your
text editor, load the param file appropriate for residue 5. The ICOOR_INTERNAL lines
give the internal coordinates for an ideal conformation, including the torsion angle,
bond angle, and bond length needed to build each subsequent atom in the group.

7. Can you identify the N–Cα and Cα–C bond lengths? How do they compare? Bonus: how
do they compare to Engh & Huber’s numbers? If they differ, why?

Workshop #2: PyRosetta | 13

8. Find the N–Cα–C bond angle in radians:

print pose.conformation().bond_angle(R5N, R5CA, R5C)

What is this angle in degrees? _______

Again, compare with the Rosetta database ideal value. What is the hybridization of the
Cα atom? _____ What is the standard bond angle for such a hybridization? _______

Be aware that not all bond lengths and angles are accessible through the conformation object.
The conformation object only contains a minimal subset of bond lengths and angles used in
generating Cartesian coordinates. The vector objects provide a general way to measure angles,
distances, and torsions between arbitrary atoms.

9. How could you also find the N–Cα–C bond angle using the vector dot product function,
v3 = v1.dot(v2)? (Recall from vector calculus that the angle between any two

displacement vectors BA and BC is arccos BA∙BC
BA BC

.)

Manipulating Protein Geometry

10. We can also alter the geometry of the protein. Perform each of the following
manipulations, and give the coordinates of the N atom of residue 6 afterward.

pose.set_phi(5, -60)
pose.set_psi(5, -43)
pose.set_chi(1, 5, 180)

pose.conformation().set_bond_length(R5N, R5CA, 1.5)
pose.conformation().set_bond_angle(R5N, R5CA, R5C,

110./180.*3.14159)

New coordinates of N atom of residue 6: (_____, _____, _____)

Remember that only some bond lengths and angles are available through the conformation
object. Note that even though dihedral angles are set in degrees, the bond angle is set in
radians! (To make the conversion between degrees and radians easier, you
may wish to import Python’s math module. See Appendix A for more
information.)

14 | Workshop #2: PyRosetta

Visualization and the PyMOL Mover

What if we wish to view the changes to geometry that we have made? We can “dump” the
information in a pose object into a new pdb file with the method
pose.dump_pdb("filename.pdb") and then open this pdb file in our favorite visualization
software. However, constantly dumping output and loading new files into a visualizer can be
cumbersome; thus, the visualization process was streamlined with the PyMOLMover, which
provides a means for observing structural changes almost instantaneously in PyMOL as they
are made in PyRosetta.

First, we must open PyMOL and run a script that will cause PyMOL to listen for instructions
from the PyMOL mover. (Certain Windows installations will use a shortcut that automatically
does this for you, or you can create a .pymolrc file in your home directory in Linux or Mac
that runs the code for you):

cd <your_PyRosetta_install_path>
run PyMOL-RosettaServer.py

Then, with PyRosetta, we must instantiate a PyMOLMover and then apply it to a pose any time
we make a change:

from pyrosetta import PyMOLMover
pymol = PyMOLMover()
pymol.apply(pose)

11. Make some changes to the dihedral angles of a pose and apply the PyMOL mover to
watch the effect of the new angles on the structure.

For more advanced PyMOL mover options, visit www.pyrosetta.org/pymol_mover-tutorial, or
see Appendix A.

Programming

12. You can write programs in Python to accomplish more complicated tasks. Using your
text editor, open a new file with extension .py (e.g., rama.py). You can write your
entire program here and then run it either from the command line by typing

[linux]> python rama.py

or from inside a Python shell by typing

In [1]: run rama.py

Workshop #2: PyRosetta | 15

Here is a sample program:

from pyrosetta import *
init()
p = pose_from_pdb("1ABC.pdb")

for i in range(1, p.total_residue() + 1):
 print i, "phi =", p.phi(i), "psi =", p.psi(i)

Note that we must always first import the Rosetta modules with the import command
and initialize Rosetta with the init() command before loading a pose. (Appendix A
contains a list of common Python commands and syntax.) Test that you can write and
run a simple program from a file.

Programming Exercises

Submit your script file and your output.

1. Torsion angle. Use the vector objects to write a script to calculate torsion angles
between four arbitrary atoms. This will require knowledge of vector calculus. Hint:
You will need to calculate the normal vectors of the two planes of the dihedral angle.

2. Ideal helix. Write a program to create a 20-residue ideal helix by setting the φ and ψ
angles to the typical values for an α-helix. To start, use pose =
pose_from_sequence("AAA", "fa_standard") to create a new pose, except
using 20 “A”s in the argument to create a 20-residue poly-
alanine. Output your structure using pose.dump_pdb("helix.pdb").

View your new file in PyMOL to check your work. How can you be sure your structure
is a proper α-helix? List three distinct structural characteristics that you can check.

3. Ideal strand. Write a program to create a 20-residue ideal β-strand by setting the φ and
ψ angles to values in the middle of the β region of the Ramachandran plot.

View your new file in PyMOL to check your work. How can you be sure your structure
is a proper β-strand? List three distinct structural characteristics that you can check.

4. Secondary structure propensities. Write a program to calculate the propensity of each
residue type to appear in a helix. Loop through all residues in a protein, and count each
alanine that is in a helix, sheet, or loop according to some φ/ψ-based criteria. The

propensity can then be calculated as 𝑃1	234 =
67	89:
67	total

, 𝑃<	Ala =
6=	Ala
6=	total

, and 𝑃>	Ala =
6?	Ala
6?	total

,

where Nα Ala, Nβ Ala, and NL Ala, are the counts of alanine residues in helices, sheets, and
loops, respectively, and Nα total, Nβ total, and NL total, are the counts of all residues in
helices, sheets, and loops, respectively. (Note that terminal residues have different
names in Rosetta than internal ones; e.g., an N-terminal ALA has the name
ALA_p:NtermProteinFull.)

16 | Workshop #2: PyRosetta

Bonus level 1: Find propensities for all 20 amino acid types. This will be easier if you
use a data structure (list, array, dictionary, map) to store the counts of the 20 types. Do
the residues with the highest helical propensity match that given by Brandon & Tooze?

Bonus level 2: To get better statistics, collect your data by looping over a set of 10 pdb
files. Better yet, use a set of files such as the PDBSelect set of representative chains
(http://bioinfo.tg.fh-giessen.de/pdbselect; this may require considerable download and
compute time.)

5. Idealize a protein. Write a program that sets all bond lengths and angles to their Engh
& Huber ideal values. Test your program using a structure from the pdb. What happens
to the resulting protein? Why?

6. Cleaning pdb files. Coordinate files in the Protein Data Bank are quite diverse, and
many pdb files have variations in their format to accommodate peculiarities such as
post-translationally modified residues or disordered regions where coordinates could
not be determined for certain atoms. In addition, some pdb files simply do not conform
to the file standards. When the pdb file departs from the standards, it is necessary to
clean-up the pdb file before loading it into Rosetta. (See Appendix C.) For this exercise,
examine PDB ID 1D4I (HIV-1 protease in complex with an inhibitor).

What non-standard amino acid is present, and what is this amino acid? (Hint: examine
the pdb file header or the web page summary.)

Write a script that converts the non-standard amino acid to its unmodified form. (Hint:
use UNIX commands grep, awk, or sed along with pipes. Note: It is also possible to
directly use a modified amino acid by creating a parameter file to define that residue,
but that is a more advanced topic!)

answer: The following UNIX shell command will change ABA to ALA and change the
HETATM keys to ATOM (enter as a single-line command!):

awk '{if ($1 == "HETATM" && $4 == "ABA")
{gsub("HETATM","ATOM");
gsub("ABA","ALA")};
print}' 1D41.pdb | grep
^ATOM > 1D41.clean.pdb

References

1. R. A. Engh & R. Huber, “Accurate bond and angle parameters for X-ray protein
structure refinement,” Acta. Cryst. A 47, 392–400 (1991).

2. J. Parsons et al., “Practical conversion from torsion space to Cartesian space for in
silico protein synthesis,” J. Comp. Chem. 26, 1063–1068 (2005).

3. Python help available at http://docs.python.org.

