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ROSETTACARBOHYDRATE 
Tutorial/Demo 1 

Residues & Poses 

Linear Oligosaccharides & IUPAC Sequences 

1. Start up IPython and import PyRosetta. 

$ ipython 
Python 2.7.6 (default, Jun 22 2015, 17:58:13) 
Type "copyright", "credits" or "license" for more information. 
 
IPython 1.1.0 -- An enhanced Interactive Python. 
?         -> Introduction and overview of IPython's features. 
%quickref -> Quick reference. 
help      -> Python's own help system. 
object?   -> Details about 'object', use 'object??' for extra details. 
 
In [1]: from rosetta import * 

2. The -include_sugars flag must be used when modeling carbohydrates with Rosetta. 

In [2]: init('-include_sugars') 
PYROSETTA_DATABASE environment variable was set to: 

/usr/local/lib/PyRosetta/database; using it.... 
PyRosetta 2014 [Rosetta 2014 unknown:0cae3092782a6dfc70e10d190cc779187406545f] 

retrieved from: 
(C) Copyright Rosetta Commons Member Institutions. 
Created in JHU by Sergey Lyskov and PyRosetta Team. 
 
core.init: Rosetta version  from 
core.init: command: PyRosetta -include_sugars -database 

/usr/local/lib/PyRosetta/database 
core.init: 'RNG device' seed mode, using '/dev/urandom', seed=-1985974028 

seed_offset=0 real_seed=-1985974028 
core.init.random: RandomGenerator:init: Normal mode, seed=-1985974028 

RG_type=mt19937 

3. Set up the PyMOL_Mover for viewing structures. 

In [3]: pm = PyMOL_Mover() 

4. Rosetta can create both linear and branched oligosaccharides from an IUPAC sequence. Use the 
function, pose_from_saccharide_sequence(), which must be imported from the core.pose 
namespace. 

In [4]: from rosetta.core.pose import pose_from_saccharide_sequence 
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To properly build a linear oligosaccharide, Rosetta must know the following details about each 
sugar residue being created in the following order: 

 Main-chain connectivity — →2) (->2)), →4) (->4)), →6) (->6)), etc.; default value is -
>4)- 

 Anomeric form — α (a or alpha) or β (b or beta); default value is alpha 

 Enantiomeric form — L (L) or D (D); default value is D 

 3-Letter code — required; uses sentence case 

 Ring form code — f (for a furanose/5-membered ring), p (for a pyranose/6-membered 
ring); required 

Residues must be separated by hyphens. Glycosidic linkages can be specified with full IUPAC 
notation, e.g., -(1->4)- for “-(1→4)-”. Rosetta will assume -(1-> for aldoses and -(2-> for 
ketoses. Note that the standard is to write the IUPAC sequence of a saccharide chain in reverse 
order from how they are numbered. 

In [5]: glucose = pose_from_saccharide_sequence('alpha-D-Glcp') 
core.chemical.ResidueTypeSet: Finished initializing fa_standard residue type 

set.  Created 414 residue types 
core.chemical.ResidueTypeSet: Total time to initialize 0.658687 seconds. 
 
In [6]: galactose = pose_from_saccharide_sequence('Galp') 
 
In [7]: mannose = pose_from_saccharide_sequence('->3)-a-D-Manp') 
 
In [8]: maltotriose = pose_from_saccharide_sequence('a-D-Glcp-' * 3) 
 
In [9]: isomaltose = pose_from_saccharide_sequence('->6)-Glcp-' * 2) 
 
In [10]: lactose = pose_from_saccharide_sequence('b-D-Galp-(1->4)-a-D-Glcp') 
 
In [11]: pm.apply(isomaltose) 
 
In [12]: pm.apply(glucose) 
 
In [13]: pm.apply(galactose) 

5. When you print a Pose containing carbohydrate residues, the sugar residues will be listed as Z in 
the sequence. 

In [14]: print maltotriose 
PDB file name: alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp 
Total residues:3 
Sequence: ZZZ 
Fold tree: 
FOLD_TREE  EDGE 1 3 -1 
 
In [15]: print isomaltose 
PDB file name: alpha-D-Glcp-(1->6)- D-Glcp 
Total residues:2 
Sequence: ZZ 
Fold tree: 
FOLD_TREE  EDGE 1 2 -1 
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In [16]: print lactose 
PDB file name: beta-D-Galp-(1->4)- D-Glcp 
Total residues:2 
Sequence: ZZ 
Fold tree: 
FOLD_TREE  EDGE 1 2 -1 

However, you can have Rosetta print out the sequences for individual chains, using the 
chain_sequence() method. If you do this, Rosetta is smart enough to give you a distinct 
sequence format for saccharide chains. (You may have noticed that the default file name for a 
.pdb file created from this Pose will be the same sequence.) 

In [17]: print maltotriose.chain_sequence(1) 
alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp 
 
In [18]: print isomaltose.chain_sequence(1) 
alpha-D-Glcp-(1->6)-D-Glcp 
 
In [19]: print lactose.chain_sequence(1) 
beta-D-Galp-(1->4)-D-Glcp 

Again, the standard is to show the sequence of a saccharide chain in reverse order from how 
they are numbered. 

In [20]: for res in lactose: print res.seqpos(), res.name() 
1 ->4)-alpha-D-Glcp:reducing_end 
2 ->4)-beta-D-Galp:non-reducing_end 
 
In [21]: for res in maltotriose: print res.seqpos(), res.name() 
1 ->4)-alpha-D-Glcp:reducing_end 
2 ->4)-alpha-D-Glcp 
3 ->4)-alpha-D-Glcp:non-reducing_end 

6. Rosetta stores carbohydrate-specific information within ResidueType. If you print a residue, this 
additional information will be displayed. 

In [22]: print glucose.residue(1) 
Residue 1: ->4)-alpha-D-Glcp:reducing_end:non-reducing_end (Glc, Z): 
Base: ->4)-alpha-D-Glcp 
 Properties: POLYMER CARBOHYDRATE LOWER_TERMINUS UPPER_TERMINUS POLAR CYCLIC 

HEXOSE ALDOSE D_SUGAR PYRANOSE ALPHA_SUGAR 
 Variant types: UPPER_TERMINUS_VARIANT LOWER_TERMINUS_VARIANT 
 Main-chain atoms:  C1   C2   C3   C4   O4 
 Backbone atoms:    C1   C2   C3   C4   O4   C5   O5   VO5  VC1  H1   H2   H3   

H4   HO4  H5 
 Side-chain atoms:  O1   O2   O3   C6   O6   HO1  HO2  HO3 1H6  2H6   HO6 
Carbohydrate Properties for this Residue: 
 Basic Name: glucose 
 IUPAC Name: D-glucopyranose 
 Abbreviation: D-Glcp 
 Classification: aldohexose 
 Stereochemistry: D 
 Ring Form: pyranose 
 Anomeric Form: alpha 
 Modifications: 
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  none 
 Polymeric Information: 
  Main chain connection: N/A 
  Branch connections: none 
Ring Conformer: 4C1 (chair): C-P parameters (q, phi, theta): 0.55, 180, 0; nu 

angles (degrees): 60, -60, 60, -60, 60 
  O1 : axial 
  O2 : equatorial 
  O3 : equatorial 
  O4 : equatorial 
  C6 : equatorial 
... 
 
In [23]: print galactose.residue(1) 
... 
 
In [24]: print mannose.residue(1) 
... 

Torsion Angles, PDB File HETNAM Records, & RingConformers 
The torsion angles of sugars are as follows: 

  φ — The 1st glycosidic torsion back to the previous (n-1) residue. The angle is defined by the 
cyclic oxygen, the two atoms across the bond, and 
the cyclic carbon numbered one less than the 
glycosidic linkage position. For aldopyranoses, φ(n) 
is thus defined as O5(n)–C1(n)–OX(n-1)–CX(n-1) , 
where X is the position of the glycosidic linkage. For 
aldofuranoses, φ(n) is defined as O4(n)–C1(n)–
OX(n-1)–CX(n-1) For 2-ketopyranoses, φ(n) is 
defined as O6(n)–C2(n)-OX(n-1)-CX(n-1). For 2-
ketofuranoses, φ(n) is defined as O5(n)–C2(n)-
OX(n-1)–CX(n-1). Et cetera…. 

 ψ — The 2nd glycosidic torsion back to the previous (n-1) residue. The angle is defined by the 
anomeric carbon, the two atoms across the bond, and the cyclic carbon numbered two less than 
the glycosidic linkage position. ψ(n) is thus defined as Canomeric(n)–OX(n-1)–CX(n-1)–CX-1(n-1), 
where X is the position of the glycosidic linkage. 

 ω — The 3rd (and any subsequent) glycosidic torsion(s) back to the 
previous residue. ω1(n) is defined as OX(n-1)–CX(n-1)–CX-1(n-1)–CX-
2(n-1), where X is the position of the glycosidic linkage. (This only 
applies to sugars with exocyclic connectivities.) 

 ν1–νn — The internal ring torsion angles, where n is the number of 
atoms in the ring. ν1 defines the torsion across bond C1–C2, etc. 

 χ1–χn — The side-chain torsion angles, where n is the number of 
carbons in the sugar residue. The angle is defined by the carbon one 
less than the glycosidic linkage position, the two atoms across the 
bond, and the polar hydrogen. The cyclic ring counts as carbon 0. For 
an aldopyranose, χ1 is thus defined by O5–C1–O1–HO1, and χ2 is 
defined by C1–C2–O2–HO2. χ 5 is d+6efined by C4–C5–C6–O6, 
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because it rotates the exocyclic carbon rather than twist the ring. χ6 is defined by C5–C6–O6–
HO6. 

Take special note of how φ, ψ, and ω are defined in the reverse order as the same angles for amino acid 
residues! 

1. The chi() method of Pose works with sugar residues in the same way it works with amino acid 
residues, where the first argument is the χ subscript and the second is the residue number of 
the Pose. 

In [25]: galactose.chi(1, 1) 
Out[25]: -61.91429425427617 
 
In [26]: galactose.chi(2, 1) 
Out[26]: -179.445405 
 
In [27]: galactose.chi(3, 1) 
Out[27]: 178.810585 
 
In [28]: galactose.chi(4, 1) 
Out[28]: -120.00001100000001 
 
In [29]: galactose.chi(5, 1) 
Out[29]: -62.79708300000001 
 
In [30]: galactose.chi(6, 1) 
Out[30]: -176.382127 

2. Likewise, we can use set_chi() to change these torsion angles and observe the changes in 
PyMOL, setting the option to keep history to true. 

In [31]: observer = PyMOL_Observer(galactose, True) 
 
In [32]: galactose.set_chi(1, 1, 180) 
 
In [33]: galactose.set_chi(2, 1, 60) 
 
In [34]: galactose.set_chi(3, 1, 60) 
 
In [35]: galactose.set_chi(4, 1, 0) 
 
In [36]: galactose.set_chi(5, 1, 60) 
 
In [37]: galactose.set_chi(6, 1, -60) 
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3. The phi(), set_phi(), psi(), set_psi(), omega(), and set_omega() methods of Pose also 
work with sugars. However, since pose_from_saccharide_sequence() creates a Pose with 
non-ideal angles, larger oligomers may appear all jumbled together. Instead, let’s reload some 
Poses from PDB files. 
Rosetta uses a slightly modified PDB format for importing carbohydrate residues—although the 
-alternate_3_letter_codes pdb_sugar flag can get around this issue in some cases. (See 
https://www.rosettacommons.org/docs/wiki/rosetta_basics/preparation/Preparing-PDB-files-
for-non-peptide-polymers for more information.) The key difference in formats involves the 
HETNAM record of the PDB format. The standard PDB HETNAM record line: 

HETNAM     GLC ALPHA-D-GLUCOSE 

…means that all GLC 3-letter codes in the entire file are α-D-glucose, which is insufficient, as this 
could mean several different α-D-glucoses, depending on the main chain of the glycan—and 
many, many more if one includes modified sugars! The modified Rosetta-ready PDB HETNAM 
record line: 

HETNAM     Glc A   1  ->4)-alpha-D-Glcp 

… means that the GLC residue at position A1 requires the ->4)-alpha-D-Glcp ResidueType or 
any of its VariantTypes. (Note also that Rosetta uses sentence case 3-letter-codes for sugars.) 
The test/data/carbohydrates/ folder of PyRosetta includes a collection of PDB files for 
oligosaccharides. Change to that directory and reload maltotriose and isomaltose from PDB files. 

In [38]: cd test/data/carbohydrates/ 
... 
 
In [39]: maltotriose = pose_from_file('maltotriose.pdb') 
 
In [40]: isomaltose = pose_from_file('isomaltose.pdb') 

Now try out the torsion angle getters and setters. 

In [41]: pm.apply(maltotriose) 
 
In [42]: maltotriose.phi(1) 
core.pose.carbohydrates.util: Glycosidic torsions are undefined for the first 

polysaccharide residue of a chain unless part of a branch. 
core.pose.carbohydrates.util: Returning zero. 
Out[42]: 0.0 
 
In [43]: maltotriose.psi(1) 
core.pose.carbohydrates.util: Glycosidic torsions are undefined for the first 

polysaccharide residue of a chain unless part of a branch. 
core.pose.carbohydrates.util: Returning zero. 
Out[43]: 0.0 
 
In [44]: maltotriose.phi(2) 
Out[44]: 96.93460655617179 
 
In [45]: maltotriose.psi(2) 
Out[45]: 109.94421849476635 
 

https://www.rosettacommons.org/docs/wiki/rosetta_basics/preparation/Preparing-PDB-files-for-non-peptide-polymers
https://www.rosettacommons.org/docs/wiki/rosetta_basics/preparation/Preparing-PDB-files-for-non-peptide-polymers
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In [46]: maltotriose.omega(2) 
core.pose.carbohydrates.util: Omega is undefined for this residue, because the 

glycosidic linkage is not exocyclic. 
core.pose.carbohydrates.util: Returning zero. 
Out[46]: 0.0 
 
In [47]: maltotriose.phi(3) 
Out[47]: 103.21420435050914 
 
In [48]: maltotriose.psi(3) 
Out[48]: 118.64096726060517 
 
In [49]: observer = PyMOL_Observer(maltotriose, True) 
~PosePyObserver... 
 
In [50]: for i in (2, 3): 
   ....:     maltotriose.set_phi(i, 180) 
   ....:     maltotriose.set_psi(i, 180) 
   ....: 
 
In [51]: pm.apply(isomaltose) 
 
In [52]: isomaltose.phi(2) 
Out[52]: 44.32677030464958 
 
In [53]: isomaltose.psi(2) 
Out[53]: -170.86933817075462 
 
In [54]: isomaltose.omega(2) 
Out[54]: 49.383018645410004 
 
In [55]: observer = PyMOL_Observer(isomaltose, True) 
~PosePyObserver... 
 
In [56]: isomaltose.set_phi(2, 180) 
 
In [57]: isomaltose.set_psi(2, 180) 
 
In [58]: isomaltose.set_omega(2, 180) 

4. Any cyclic residue also stores its ν angles. 

In [59]: pm.apply(glucose) 
 
In [60]: Glc1 = glucose.residue(1) 
 
In [61]: for i in range(1, 6): print Glc1.nu(i) 
60.755967 
-62.556893 
-299.976484 
-57.917154 
56.8 
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5. However, we care more about the ring conformation of a cyclic residue’s rings, in this case, its 
only ring with index of 1. (The output values here are the ideal angles, not the actual angles, 
which we viewed above.) 

In [62]: print Glc1.ring_conformer(1) 
4C1 (chair): C-P parameters (q, phi, theta): 0.55, 180, 0; nu angles 

(degrees): 60, -60, 60, -60, 60 

6. Pose::set_nu() does not exist, because it would rip a ring apart. Instead, we need to use the 
set_ring_conformer() method, which takes a RingConformer object. We can ask a cyclic 
ResidueType for one of its RingConformerSets to give us the RingConformer we want. Then, 
we can set the conformation for our residue through Pose. (The arguments of  
set_ring_conformer() are the Pose’s sequence position, ring number, and the new 
conformer, respectively.) 

In [63]: ring_set = Glc1.type().ring_conformer_set(1) 
 
In [64]: conformer = ring_set.get_ideal_conformer_by_name('1C4') 
 
In [65]: glucose.set_ring_conformation(1, 1, conformer) 
 
In [66]: pm.apply(glucose) 

Modified Sugars, Branched Oligosaccharides, & PDB File LINK Records 

1. Modified sugars can also be created in Rosetta, either from sequence or from file. In the former 
case, simply use the proper abbreviation for the modification after the “ring form code”. For 
example, the abbreviation for an N-acetyl group is “NAc”. Note the N-acetyl group in the PyMOL 
window. 

In [67]: LacNAc = pose_from_saccharide_sequence('b-D-Galp-(1->4)-a-D-GlcpNAc') 
 
In [68]: pm.apply(LacNAc) 

2. Rosetta can handle branched oligosaccharides as well, but when loading from a sequence, this 
requires the use of brackets, as in the standard IUPAC notation. For example, here is how one 
would load Lewisx (Lex), a common branched glyco-epitope, into Rosetta by sequence. 

In [69]: Lex = pose_from_saccharide_sequence('b-D-Galp-(1->4)-[a-L-Fucp-(1-
>3)]-D-GlcpNAc') 

core.conformation.Conformation: appending residue by a chemical bond in the 
foldtree: 3 ->4)-alpha-L-Fucp:non-reducing_end:branch_lower_terminus 
anchor:  O3     1 root:  C1  

 
In [70]: pm.apply(Lex) 

3. One can also load branched carbohydrates from a PDB file. These PDB files must include LINK 
records, which are a standard part of the PDB format. A LINK record looks like this: 

LINK         O3  Glc A   1                 C1  Fuc B   1     1555   1555  1.5 
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It tells us that there is a covalent linkage between O3 of glucose A1 and C1 of fucose B1 with a 
bond length of 1.5 Å. (The 1555s indicate symmetry and are ignored by Rosetta.) 

In [71]: Lex = pose_from_file('Lex.pdb') 
core.conformation.Conformation: Connecting residues: 1 ( ->4)-beta-D-

Glcp:reducing_end:->3)-branch:2-AcNH ) and 3 ( ->4)-alpha-L-Fucp:non-
reducing_end:branch_lower_terminus ) at atoms  O3  and  C1 

core.conformation.Conformation:  with mutual distances: 0.18607 and 1.79499 
 
In [72]: pm.apply(Lex) 

You may notice when viewing the structure in PyMOL that the hybridization of the carbonyl of 
the amido functionality of the N-acetyl group is wrong. This is because of an error in the model 
deposited in the PDB from which this file was generated. This is, unfortunately, a very common 
problem with sugar structures found in the PDB. 
You may also have noticed the test/data/carbohydrates/Lex.pdb file indicated in its HETNAM 
records that Glc1 was actually an N-acetylglycosamine (GlcNAc) with the indication 2-
acetylamino-2-deoxy-. This is optional and is helpful for human-readability, but Rosetta only 
needs to know the base ResidueType of each sugar residue; specific VariantTypes needed—
and most sugar modifications are treated as VariantTypes—are determined automatically from 
the atom names in the HETATM records for the residue. Anything after the comma is ignored. 

4. Print out the Pose to see how the FoldTree is defined. Note the CHEMICAL Edge (-2). This is 
Rosetta’s way of indicating a branch backbone connection. Unlike a standard POLYMER Edge (-1), 
it tells you which atoms are involved. 
Print out the sequence of each chain. 

In [73]: print Lex 
PDB file name: Lex.pdb 
Total residues:3 
Sequence: ZZZ 
Fold tree: 
FOLD_TREE  EDGE 1 2 -1  EDGE 1 3 -2  O3   C1 
 
In [74]: for i in range(2): print Lex.chain_sequence(i + 1) 
beta-D-Galp-(1->4)-D-GlcpN 
alpha-L-Fucp- 

5. Print out information about each residue in the Pose to see which VariantTypes and 
ResiduePropertys are assigned to each. 

In [75]: for res in Lex: print res 
... 

6. Output the various torsion angles. Now it should be clear why φ and ψ are defined the way they 
are. If they were defined as in AA residues, they would not have unique definitions, since GlcNAc 
is a branch point. 

In [76]: Lex.phi(2) 
Out[76]: -85.80426357119143 
 
In [77]: Lex.psi(2) 
Out[77]: 135.6468768989725 
 
In [78]: Lex.phi(3) 
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Out[78]: -76.88533924419255 
 
In [79]: Lex.psi(3) 
Out[79]: -97.03727535363538 

Note that for this oligosaccharide χ3(1) is equivalent to ψ(3) and χ4(1) is equivalent to ψ(2). 

In [80]: Lex.chi(3, 1) 
Out[80]: -97.03727535363538 
 
In [81]: Lex.chi(4, 1) 
Out[81]: 135.6468768989725 

For modified sugars, χ angles are redefined at the positions where substitution has occurred. For 
new χs that have come into existence from the addition of new atoms and bonds, new 
definitions are added to new indices. For example, for GlcN2Ac residue 1, χC2–N2–C′– Cα′ is accessed 
through chi(7, 1). 

In [82]: Lex.chi(2, 1) 
Out[82]: -230.8915297047683 
 
In [83]: Lex.set_chi(2, 1, 180) 
 
In [84]: pm.apply(Lex) 
 
In [85]: Lex.chi(7, 1) 
Out[85]: 179.81012671885887 
 
In [86]: Lex.set_chi(7, 1, 0) 
 
In [87]: pm.apply(Lex) 

7. Play around with getting and setting the various torsion angles for Lex. 

N- and O-Linked Glycans 

1. Branching does not have to occur at sugars; a glycan can be attached to the nitrogen of an Asn 
or the oxygen of a Ser or Thr. N-linked glycans themselves tend to be branched structures. 

In [88]: N_linked = pose_from_file('N-linked_14-mer_glycan.pdb') 
... 
 
In [89]: pm.apply(N_linked) 
 
In [90]: pm.send_ss(N_linked) 
 
In [91]: print N_linked 
PDB file name: N-linked_14-mer_glycan.pdb 
Total residues:19 
Sequence: ANASAZZZZZZZZZZZZZZ 
Fold tree: 
FOLD_TREE  EDGE 1 5 -1  EDGE 2 6 -2  ND2  C1   EDGE 6 14 -1  EDGE 8 15 -2  O6   

C1   EDGE 15 17 -1  EDGE 15 18 -2  O6   C1   EDGE 18 19 -1 
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In [92]: for i in range(4): print N_linked.chain_sequence(i + 1) 
ANASA 
alpha-D-Glcp-(1->3)-alpha-D-Glcp-(1->3)-alpha-D-Glcp-(1->3)-alpha-D-Manp-(1-

>2)-alpha-D-Manp-(1->2)-alpha-D-Manp-(1->3)-beta-D-Manp-(1->4)-beta-D-
GlcpNAc-(1->4)-beta-D-GlcpNAc- 

alpha-D-Manp-(1->2)-alpha-D-Manp-(1->3)-alpha-D-Manp- 
alpha-D-Manp-(1->2)-alpha-D-Manp- 
 
In [93]: O_linked = pose_from_file('O_glycan.pdb') 
... 
 
In [94]: pm.apply(O_linked) 
 
In [95]: pm.send_ss(O_linked) 
 
In [96]: print O_linked 
PDB file name: O_glycan.pdb 
Total residues:4 
Sequence: ASAZ 
Fold tree: 
FOLD_TREE  EDGE 1 3 -1  EDGE 2 4 -2  OG   C1 
 
In [97]: for i in range(2): print O_linked.chain_sequence(i + 1) 
ASA 
alpha-D-Glcp- 

2. set_phi() and set_psi() still work when a glycan is linked to a peptide. 

In [98]: N_linked.set_phi(N_linked.pdb_info().pdb2pose("B", 1), 180) 
 
In [99]: pm.apply(N_linked) 
 
In [100]: N_linked.set_psi(N_linked.pdb_info().pdb2pose("B", 1), 0) 
 
In [101]: pm.apply(N_linked) 
 
In [102]: N_linked.set_omega(N_linked.pdb_info().pdb2pose("B", 1), 90) 
 
In [103]: pm.apply(N_linked) 

Notice that in this case ψ and ω affect the side chain torsions (χs) of the asparagine residue. 
3. One can also create conjugated glycans from sequences if performed in steps, first creating the 

peptide portion by loading from a .pdb file or from sequence and then using the 
glycosylate_pose() function, (which needs to be imported first.) For example, to glycosylate 
an ASA peptide with a single glucose at position 2 of the peptide, we perform the following: 

In [104]: peptide = pose_from_sequence('ASA') 
 
In [105]: pm.apply(peptide) 
 
In [106]: from rosetta.core.pose.carbohydrates import glycosylate_pose, 

glycosylate_pose_by_file 
 
In [107]: glycosylate_pose(peptide, 2, 'Glcp') 
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core.conformation.Conformation: appending residue by a chemical bond in the 
foldtree: 4 ->4)-alpha-D-Glcp:non-reducing_end:branch_lower_terminus 
anchor:  OG     2 root:  C1 

core.pose.carbohydrates.util: Glycosylated pose with Glcp-OGSER2 
 
In [108]: pm.apply(peptide) 

(Unfortunately, PyMOL tends to get confused about which atoms are actually forming bonds, 
but if you examine the structure carefully, you will find that all of the atoms are in the right 
place.) 
It is also possible to glycosylate a pose with common glycans found in the database. These files 
end in the .iupac extension and are simply IUPAC sequences just as we have been using. 

In [109]: cd ../../../database/chemical/carbohydrates/common_glycans/ 
 
In [110]: ls 
... 
 
In [111]: peptide = pose_from_sequence('ASA') 
 
In [112]: glycosylate_pose_by_file(peptide, 2, 'core_5_O-glycan.iupac') 
core.conformation.Conformation: appending residue by a chemical bond in the 

foldtree: 4 ->3)-alpha-D-Galp:branch_lower_terminus:2-AcNH anchor:  OG     
2 root:  C1 

core.pose.carbohydrates.util: Glycosylated pose with a-D-GalpNAc-(1->3)-a-D-
GalpNAc--OGSER2 

 
In [113]: pm.apply(peptide) 
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ROSETTACARBOHYDRATE 
Tutorial/Demo 2 

Scoring  

sugar_bb Scoring Method 
Currently, scoring for carbohydrates has simply used the talaris scoring function but with the addition 
of a sugar_bb scoring term. sugar_bb implements the CHI energy function from Grant & Woods, Curr. 
Opin. Struct. Biol. 2014, 28C, 47–55. The CHI energy function for φ angles depends on whether the 
residue is axial or equatorial at its anomeric position—that is, on whether or not it is an α or β 
carbohydrate. The CHI energy function for ψ depends on the attachment position and axial/equatorial 
designation of the previous residue. It is intended that further functions for other torsion angles will be 
added to the sugar_bb term in the future. 

1. Start up IPython and import and initialize PyRosetta. 

$ ipython 
... 
 
In [1]: from rosetta import * 
 
In [2]: init(extra_options='-include_sugars -read_pdb_link_records') 
... 

2. Load in maltotriose. 

In [3]: cd tests/integration/tests/carbohydrates/input/ 
... 
 
In [4]: maltose = pose_from_file('maltotriose.pdb') 
... 

3. Create a standard ScoreFunction and score the Pose. Note that when the -include_sugars 
flag is used, the sugar_bb scoring term weight is set to 1.0 by default. 

In [5]: sf = get_fa_scorefxn() 
... 
core.scoring.ScoreFunctionFactory: The -include_sugars flag was used with no 

sugar_bb weight set in the weights file.  Setting sugar_bb weight to 1.0 
by default. 

 
In [6]: sf.show(maltose) 
... 
------------------------------------------------------------ 
 Scores                       Weight   Raw Score Wghtd.Score 
------------------------------------------------------------ 
 fa_atr                       0.800      -4.279      -3.423 
 fa_rep                       0.440       1.693       0.745 
 fa_sol                       0.750       8.367       6.275 
 fa_intra_rep                 0.004       4.866       0.019 
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 fa_elec                      0.700      -0.359      -0.251 
 pro_close                    1.000       0.000       0.000 
 hbond_sr_bb                  1.170       0.000       0.000 
 hbond_lr_bb                  1.170       0.000       0.000 
 hbond_bb_sc                  1.170       0.000       0.000 
 hbond_sc                     1.100      -0.530      -0.583 
 dslf_fa13                    1.000       0.000       0.000 
 rama                         0.200       0.000       0.000 
 omega                        0.500       0.000       0.000 
 fa_dun                       0.560       0.000       0.000 
 p_aa_pp                      0.320       0.000       0.000 
 ref                          1.000       0.000       0.000 
 sugar_bb                     1.000       2.691       2.691 
--------------------------------------------------- 
 Total weighted score:                        5.473 

4. If we print maltose, we can see that it has 1α→4 connections. 

In [7]: print maltose.chain_sequence(1) 
alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp 

α-D-Glucopyranose has all equatorial hydroxyl groups except at the anomeric position where the 
hydroxyl is axial. So in the series of four energy plots above, for φ we care about the upper left 
plot, which is for α connections, and for ψ we care about the lower right plot, which is for 
equatorial connections to the 4 position. Currently the values for φ and ψ are in the right vicinity 
but not ideal. 

In [8]: maltose.phi(2) 
Out[8]: 96.93460655617179 
 
In [9]: maltose.psi(2) 
Out[9]: 109.94421849476635 
 
In [10]: maltose.phi(3) 
Out[10]: 103.21420435050914 
 
In [11]: maltose.psi(3) 
Out[11]: 118.64096726060517 

5. The MinMover should be able to idealize the φ and ψ components of the CHI energy function. 

In [12]: sugar_bb_only_sf = ScoreFunction() 
 
In [13]: sugar_bb_only_sf.set_weight(sugar_bb, 1.0) 
 
In [14]: sugar_bb_only_sf.show(maltose) 
... 
------------------------------------------------------------ 
 Scores                       Weight   Raw Score Wghtd.Score 
------------------------------------------------------------ 
 sugar_bb                     1.000       2.691       2.691 
--------------------------------------------------- 
 Total weighted score:                        2.691 
 
In [15]: mm = MoveMap() 
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In [16]: mm.set_bb(True) 
 
In [17]: minimizer = MinMover(mm, sugar_bb_only_sf, "dfpmin", 0.01, True) 
 
In [18]: minimizer.apply(maltose) 
... 
 
In [19]: sugar_bb_only_sf.show(maltose) 
------------------------------------------------------------ 
 Scores                       Weight   Raw Score Wghtd.Score 
------------------------------------------------------------ 
 sugar_bb                     1.000       0.341       0.341 
--------------------------------------------------- 
 Total weighted score:                        0.341 
 
In [20]: maltose.phi(2) 
Out[20]: 71.5925163033063 
 
In [21]: maltose.psi(2) 
Out[21]: 103.62750223435093 
 
In [22]: maltose.phi(3) 
Out[22]: 75.19453791137022 
 
In [23]: maltose.psi(3) 
Out[23]: 114.69894025990594 

We can show the energies for each residue individually. Here, we confirm that φ and ψ are 
undefined for the first residue. 

In [24]: maltose.energies().show(1) 
E             sugar_bb 
E(i)   1          0.00 
 
In [25]: maltose.energies().show(2) 
E             sugar_bb 
E(i)   2          0.09 
 
In [26]: maltose.energies().show(3) 
E             sugar_bb 
E(i)   3          0.26 

6. Isomaltose has an exocyclic connection between its tow saccharide residues. 

In [27]: isomaltose = pose_from_file('isomaltose.pdb') 
 
In [28]: print isomaltose.chain_sequence(1) 
alpha-D-Glcp-(1->6)-D-Glcp 
 
In [29]: sugar_bb_only_sf.show(isomaltose) 
core.conformation.util: The attachment point for the query atom is not found 

in the ring; an axial/equatorial designation is meaningless. 
------------------------------------------------------------ 
 Scores                       Weight   Raw Score Wghtd.Score 
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------------------------------------------------------------ 
 sugar_bb                     1.000       1.925       1.925 
--------------------------------------------------- 
 Total weighted score:                        1.925 
 
In [30]: isomaltose.phi(2) 
Out[30]: 44.32677030464958 
 
In [31]: isomaltose.psi(2) 
Out[31]: -170.86933817075462 
 
In [32]: isomaltose.omega(2) 
Out[32]: 49.383018645410004 
 
In [33]: minimizer.apply(isomaltose) 
... 
 
In [34]: sugar_bb_only_sf.show(isomaltose) 
------------------------------------------------------------ 
 Scores                       Weight   Raw Score Wghtd.Score 
------------------------------------------------------------ 
 sugar_bb                     1.000       0.030       0.030 
--------------------------------------------------- 
 Total weighted score:                        0.030 
 
In [35]: isomaltose.phi(2) 
Out[35]: 73.93352994380763 
 
In [36]: isomaltose.psi(2) 
Out[36]: -170.86933817075462 
 
In [37]: isomaltose.omega(2) 
Out[37]: 49.383018645410004 

Note that only φ changed. This is because for an exocyclic connection, ψ is no longer a 
connection to a ring, so axial and equatorial are meaningless, and the scoring function shown 
above does not apply. Likewise, ω torsions do not show the same statistical trends as ψ. 

7. The sugar_bb scoring term also works across branches and conjugation connections to peptides 
or other polymers. Again, only φ and ψ angles axial or equatorial to a ring will be scored. (Note 
that we need to set the MoveMap to allow angles with BRANCH TorsionIDs to move.) 

In [1]: from rosetta import * 
 
In [2]: init(extra_options='-include_sugars -read_pdb_link_records') 
... 
 
In [3]: sugar_bb_only_sf = ScoreFunction() 
 
In [4]: sugar_bb_only_sf.set_weight(sugar_bb, 1.0) 
 
In [5]: mm = MoveMap() 
 
In [6]: mm.set_bb(True) 
 



Page 17 of 18 
 

In [7]: mm.set_chi(True) 
 
In [8]: mm.set_branches(True) 
 
In [9]: minimizer = MinMover(mm, sugar_bb_only_sf, "dfpmin", 0.01, True) 
 
In [10]: cd tests/integration/tests/carbohydrates/input/ 
... 
 
In [11]: Lex = pose_from_file('Lex.pdb') 
... 
 
In [12]: for chain in range(1, Lex.conformation().num_chains() + 1): print 

Lex.chain_sequence(chain) 
beta-D-Galp-(1->4)-D-GlcpN 
alpha-L-Fucp- 
 
In [13]: print Lex.fold_tree() 
FOLD_TREE  EDGE 1 2 -1  EDGE 1 3 -2  O3   C1 
 
In [14]: Lex.phi(2) 
Out[14]: -85.80426357119143 
 
In [15]: Lex.psi(2) 
Out[15]: 135.6468768989725 
 
In [16]: Lex.phi(3) 
Out[16]: -76.88533924419255 
 
In [17]: Lex.psi(3) 
Out[17]: -97.03727535363538 
 
In [18]: mm.set_branches(True) 
 
In [19]: minimizer.apply(Lex) 
core.pose.util: WARNING: Unable to find atom_tree atom for this Rosetta branch 

connection angle: residue 3 BRANCH 1 
 
In [20]: Lex.phi(2) 
Out[20]: -65.62117800426097 
 
In [21]: Lex.psi(2) 
Out[22]: 136.95480413762755 
 
In [23]: Lex.phi(3) 
Out[23]: -73.03033840543367 
 
In [24]: Lex.psi(3) 
Out[24]: -93.63314466264218 
 
In [25]: O_linked = pose_from_file('O_glycan.pdb') 
... 
 
In [26]: for chain in range(1, O_linked.conformation().num_chains() + 1): 

print O_linked.chain_sequence(chain) 
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ASA 
alpha-D-Glcp- 
 
In [27]: O_linked.phi(4) 
Out[27]: 71.4566619001219 
 
In [28]: O_linked.psi(4) 
Out[28]: 177.2781916108563 
 
In [29]: minimizer.apply(O_linked) 
... 
 
In [30]: O_linked.phi(4) 
Out[30]: 73.93352351769039 
 
In [31]: O_linked.psi(4) 
Out[31]: 177.2781916108563 


