
Page 1 of 18

ROSETTACARBOHYDRATE
Tutorial/Demo 1

Residues & Poses

Linear Oligosaccharides & IUPAC Sequences

1. Start up IPython and import PyRosetta.

$ ipython
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
Type "copyright", "credits" or "license" for more information.

IPython 1.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: from rosetta import *

2. The -include_sugars flag must be used when modeling carbohydrates with Rosetta.

In [2]: init('-include_sugars')
PYROSETTA_DATABASE environment variable was set to:

/usr/local/lib/PyRosetta/database; using it....
PyRosetta 2014 [Rosetta 2014 unknown:0cae3092782a6dfc70e10d190cc779187406545f]

retrieved from:
(C) Copyright Rosetta Commons Member Institutions.
Created in JHU by Sergey Lyskov and PyRosetta Team.

core.init: Rosetta version from
core.init: command: PyRosetta -include_sugars -database

/usr/local/lib/PyRosetta/database
core.init: 'RNG device' seed mode, using '/dev/urandom', seed=-1985974028

seed_offset=0 real_seed=-1985974028
core.init.random: RandomGenerator:init: Normal mode, seed=-1985974028

RG_type=mt19937

3. Set up the PyMOL_Mover for viewing structures.

In [3]: pm = PyMOL_Mover()

4. Rosetta can create both linear and branched oligosaccharides from an IUPAC sequence. Use the
function, pose_from_saccharide_sequence(), which must be imported from the core.pose
namespace.

In [4]: from rosetta.core.pose import pose_from_saccharide_sequence

Page 2 of 18

To properly build a linear oligosaccharide, Rosetta must know the following details about each
sugar residue being created in the following order:

 Main-chain connectivity — →2) (->2)), →4) (->4)), →6) (->6)), etc.; default value is -
>4)-

 Anomeric form — α (a or alpha) or β (b or beta); default value is alpha

 Enantiomeric form — L (L) or D (D); default value is D

 3-Letter code — required; uses sentence case

 Ring form code — f (for a furanose/5-membered ring), p (for a pyranose/6-membered
ring); required

Residues must be separated by hyphens. Glycosidic linkages can be specified with full IUPAC
notation, e.g., -(1->4)- for “-(1→4)-”. Rosetta will assume -(1-> for aldoses and -(2-> for
ketoses. Note that the standard is to write the IUPAC sequence of a saccharide chain in reverse
order from how they are numbered.

In [5]: glucose = pose_from_saccharide_sequence('alpha-D-Glcp')
core.chemical.ResidueTypeSet: Finished initializing fa_standard residue type

set. Created 414 residue types
core.chemical.ResidueTypeSet: Total time to initialize 0.658687 seconds.

In [6]: galactose = pose_from_saccharide_sequence('Galp')

In [7]: mannose = pose_from_saccharide_sequence('->3)-a-D-Manp')

In [8]: maltotriose = pose_from_saccharide_sequence('a-D-Glcp-' * 3)

In [9]: isomaltose = pose_from_saccharide_sequence('->6)-Glcp-' * 2)

In [10]: lactose = pose_from_saccharide_sequence('b-D-Galp-(1->4)-a-D-Glcp')

In [11]: pm.apply(isomaltose)

In [12]: pm.apply(glucose)

In [13]: pm.apply(galactose)

5. When you print a Pose containing carbohydrate residues, the sugar residues will be listed as Z in
the sequence.

In [14]: print maltotriose
PDB file name: alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp
Total residues:3
Sequence: ZZZ
Fold tree:
FOLD_TREE EDGE 1 3 -1

In [15]: print isomaltose
PDB file name: alpha-D-Glcp-(1->6)- D-Glcp
Total residues:2
Sequence: ZZ
Fold tree:
FOLD_TREE EDGE 1 2 -1

Page 3 of 18

In [16]: print lactose
PDB file name: beta-D-Galp-(1->4)- D-Glcp
Total residues:2
Sequence: ZZ
Fold tree:
FOLD_TREE EDGE 1 2 -1

However, you can have Rosetta print out the sequences for individual chains, using the
chain_sequence() method. If you do this, Rosetta is smart enough to give you a distinct
sequence format for saccharide chains. (You may have noticed that the default file name for a
.pdb file created from this Pose will be the same sequence.)

In [17]: print maltotriose.chain_sequence(1)
alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp

In [18]: print isomaltose.chain_sequence(1)
alpha-D-Glcp-(1->6)-D-Glcp

In [19]: print lactose.chain_sequence(1)
beta-D-Galp-(1->4)-D-Glcp

Again, the standard is to show the sequence of a saccharide chain in reverse order from how
they are numbered.

In [20]: for res in lactose: print res.seqpos(), res.name()
1 ->4)-alpha-D-Glcp:reducing_end
2 ->4)-beta-D-Galp:non-reducing_end

In [21]: for res in maltotriose: print res.seqpos(), res.name()
1 ->4)-alpha-D-Glcp:reducing_end
2 ->4)-alpha-D-Glcp
3 ->4)-alpha-D-Glcp:non-reducing_end

6. Rosetta stores carbohydrate-specific information within ResidueType. If you print a residue, this
additional information will be displayed.

In [22]: print glucose.residue(1)
Residue 1: ->4)-alpha-D-Glcp:reducing_end:non-reducing_end (Glc, Z):
Base: ->4)-alpha-D-Glcp
 Properties: POLYMER CARBOHYDRATE LOWER_TERMINUS UPPER_TERMINUS POLAR CYCLIC

HEXOSE ALDOSE D_SUGAR PYRANOSE ALPHA_SUGAR
 Variant types: UPPER_TERMINUS_VARIANT LOWER_TERMINUS_VARIANT
 Main-chain atoms: C1 C2 C3 C4 O4
 Backbone atoms: C1 C2 C3 C4 O4 C5 O5 VO5 VC1 H1 H2 H3

H4 HO4 H5
 Side-chain atoms: O1 O2 O3 C6 O6 HO1 HO2 HO3 1H6 2H6 HO6
Carbohydrate Properties for this Residue:
 Basic Name: glucose
 IUPAC Name: D-glucopyranose
 Abbreviation: D-Glcp
 Classification: aldohexose
 Stereochemistry: D
 Ring Form: pyranose
 Anomeric Form: alpha
 Modifications:

Page 4 of 18

 none
 Polymeric Information:
 Main chain connection: N/A
 Branch connections: none
Ring Conformer: 4C1 (chair): C-P parameters (q, phi, theta): 0.55, 180, 0; nu

angles (degrees): 60, -60, 60, -60, 60
 O1 : axial
 O2 : equatorial
 O3 : equatorial
 O4 : equatorial
 C6 : equatorial
...

In [23]: print galactose.residue(1)
...

In [24]: print mannose.residue(1)
...

Torsion Angles, PDB File HETNAM Records, & RingConformers
The torsion angles of sugars are as follows:

 φ — The 1st glycosidic torsion back to the previous (n-1) residue. The angle is defined by the
cyclic oxygen, the two atoms across the bond, and
the cyclic carbon numbered one less than the
glycosidic linkage position. For aldopyranoses, φ(n)
is thus defined as O5(n)–C1(n)–OX(n-1)–CX(n-1) ,
where X is the position of the glycosidic linkage. For
aldofuranoses, φ(n) is defined as O4(n)–C1(n)–
OX(n-1)–CX(n-1) For 2-ketopyranoses, φ(n) is
defined as O6(n)–C2(n)-OX(n-1)-CX(n-1). For 2-
ketofuranoses, φ(n) is defined as O5(n)–C2(n)-
OX(n-1)–CX(n-1). Et cetera….

 ψ — The 2nd glycosidic torsion back to the previous (n-1) residue. The angle is defined by the
anomeric carbon, the two atoms across the bond, and the cyclic carbon numbered two less than
the glycosidic linkage position. ψ(n) is thus defined as Canomeric(n)–OX(n-1)–CX(n-1)–CX-1(n-1),
where X is the position of the glycosidic linkage.

 ω — The 3rd (and any subsequent) glycosidic torsion(s) back to the
previous residue. ω1(n) is defined as OX(n-1)–CX(n-1)–CX-1(n-1)–CX-
2(n-1), where X is the position of the glycosidic linkage. (This only
applies to sugars with exocyclic connectivities.)

 ν1–νn — The internal ring torsion angles, where n is the number of
atoms in the ring. ν1 defines the torsion across bond C1–C2, etc.

 χ1–χn — The side-chain torsion angles, where n is the number of
carbons in the sugar residue. The angle is defined by the carbon one
less than the glycosidic linkage position, the two atoms across the
bond, and the polar hydrogen. The cyclic ring counts as carbon 0. For
an aldopyranose, χ1 is thus defined by O5–C1–O1–HO1, and χ2 is
defined by C1–C2–O2–HO2. χ 5 is d+6efined by C4–C5–C6–O6,

Page 5 of 18

because it rotates the exocyclic carbon rather than twist the ring. χ6 is defined by C5–C6–O6–
HO6.

Take special note of how φ, ψ, and ω are defined in the reverse order as the same angles for amino acid
residues!

1. The chi() method of Pose works with sugar residues in the same way it works with amino acid
residues, where the first argument is the χ subscript and the second is the residue number of
the Pose.

In [25]: galactose.chi(1, 1)
Out[25]: -61.91429425427617

In [26]: galactose.chi(2, 1)
Out[26]: -179.445405

In [27]: galactose.chi(3, 1)
Out[27]: 178.810585

In [28]: galactose.chi(4, 1)
Out[28]: -120.00001100000001

In [29]: galactose.chi(5, 1)
Out[29]: -62.79708300000001

In [30]: galactose.chi(6, 1)
Out[30]: -176.382127

2. Likewise, we can use set_chi() to change these torsion angles and observe the changes in
PyMOL, setting the option to keep history to true.

In [31]: observer = PyMOL_Observer(galactose, True)

In [32]: galactose.set_chi(1, 1, 180)

In [33]: galactose.set_chi(2, 1, 60)

In [34]: galactose.set_chi(3, 1, 60)

In [35]: galactose.set_chi(4, 1, 0)

In [36]: galactose.set_chi(5, 1, 60)

In [37]: galactose.set_chi(6, 1, -60)

Page 6 of 18

3. The phi(), set_phi(), psi(), set_psi(), omega(), and set_omega() methods of Pose also
work with sugars. However, since pose_from_saccharide_sequence() creates a Pose with
non-ideal angles, larger oligomers may appear all jumbled together. Instead, let’s reload some
Poses from PDB files.
Rosetta uses a slightly modified PDB format for importing carbohydrate residues—although the
-alternate_3_letter_codes pdb_sugar flag can get around this issue in some cases. (See
https://www.rosettacommons.org/docs/wiki/rosetta_basics/preparation/Preparing-PDB-files-
for-non-peptide-polymers for more information.) The key difference in formats involves the
HETNAM record of the PDB format. The standard PDB HETNAM record line:

HETNAM GLC ALPHA-D-GLUCOSE

…means that all GLC 3-letter codes in the entire file are α-D-glucose, which is insufficient, as this
could mean several different α-D-glucoses, depending on the main chain of the glycan—and
many, many more if one includes modified sugars! The modified Rosetta-ready PDB HETNAM
record line:

HETNAM Glc A 1 ->4)-alpha-D-Glcp

… means that the GLC residue at position A1 requires the ->4)-alpha-D-Glcp ResidueType or
any of its VariantTypes. (Note also that Rosetta uses sentence case 3-letter-codes for sugars.)
The test/data/carbohydrates/ folder of PyRosetta includes a collection of PDB files for
oligosaccharides. Change to that directory and reload maltotriose and isomaltose from PDB files.

In [38]: cd test/data/carbohydrates/
...

In [39]: maltotriose = pose_from_file('maltotriose.pdb')

In [40]: isomaltose = pose_from_file('isomaltose.pdb')

Now try out the torsion angle getters and setters.

In [41]: pm.apply(maltotriose)

In [42]: maltotriose.phi(1)
core.pose.carbohydrates.util: Glycosidic torsions are undefined for the first

polysaccharide residue of a chain unless part of a branch.
core.pose.carbohydrates.util: Returning zero.
Out[42]: 0.0

In [43]: maltotriose.psi(1)
core.pose.carbohydrates.util: Glycosidic torsions are undefined for the first

polysaccharide residue of a chain unless part of a branch.
core.pose.carbohydrates.util: Returning zero.
Out[43]: 0.0

In [44]: maltotriose.phi(2)
Out[44]: 96.93460655617179

In [45]: maltotriose.psi(2)
Out[45]: 109.94421849476635

https://www.rosettacommons.org/docs/wiki/rosetta_basics/preparation/Preparing-PDB-files-for-non-peptide-polymers
https://www.rosettacommons.org/docs/wiki/rosetta_basics/preparation/Preparing-PDB-files-for-non-peptide-polymers

Page 7 of 18

In [46]: maltotriose.omega(2)
core.pose.carbohydrates.util: Omega is undefined for this residue, because the

glycosidic linkage is not exocyclic.
core.pose.carbohydrates.util: Returning zero.
Out[46]: 0.0

In [47]: maltotriose.phi(3)
Out[47]: 103.21420435050914

In [48]: maltotriose.psi(3)
Out[48]: 118.64096726060517

In [49]: observer = PyMOL_Observer(maltotriose, True)
~PosePyObserver...

In [50]: for i in (2, 3):
 : maltotriose.set_phi(i, 180)
 : maltotriose.set_psi(i, 180)
 :

In [51]: pm.apply(isomaltose)

In [52]: isomaltose.phi(2)
Out[52]: 44.32677030464958

In [53]: isomaltose.psi(2)
Out[53]: -170.86933817075462

In [54]: isomaltose.omega(2)
Out[54]: 49.383018645410004

In [55]: observer = PyMOL_Observer(isomaltose, True)
~PosePyObserver...

In [56]: isomaltose.set_phi(2, 180)

In [57]: isomaltose.set_psi(2, 180)

In [58]: isomaltose.set_omega(2, 180)

4. Any cyclic residue also stores its ν angles.

In [59]: pm.apply(glucose)

In [60]: Glc1 = glucose.residue(1)

In [61]: for i in range(1, 6): print Glc1.nu(i)
60.755967
-62.556893
-299.976484
-57.917154
56.8

Page 8 of 18

5. However, we care more about the ring conformation of a cyclic residue’s rings, in this case, its
only ring with index of 1. (The output values here are the ideal angles, not the actual angles,
which we viewed above.)

In [62]: print Glc1.ring_conformer(1)
4C1 (chair): C-P parameters (q, phi, theta): 0.55, 180, 0; nu angles

(degrees): 60, -60, 60, -60, 60

6. Pose::set_nu() does not exist, because it would rip a ring apart. Instead, we need to use the
set_ring_conformer() method, which takes a RingConformer object. We can ask a cyclic
ResidueType for one of its RingConformerSets to give us the RingConformer we want. Then,
we can set the conformation for our residue through Pose. (The arguments of
set_ring_conformer() are the Pose’s sequence position, ring number, and the new
conformer, respectively.)

In [63]: ring_set = Glc1.type().ring_conformer_set(1)

In [64]: conformer = ring_set.get_ideal_conformer_by_name('1C4')

In [65]: glucose.set_ring_conformation(1, 1, conformer)

In [66]: pm.apply(glucose)

Modified Sugars, Branched Oligosaccharides, & PDB File LINK Records

1. Modified sugars can also be created in Rosetta, either from sequence or from file. In the former
case, simply use the proper abbreviation for the modification after the “ring form code”. For
example, the abbreviation for an N-acetyl group is “NAc”. Note the N-acetyl group in the PyMOL
window.

In [67]: LacNAc = pose_from_saccharide_sequence('b-D-Galp-(1->4)-a-D-GlcpNAc')

In [68]: pm.apply(LacNAc)

2. Rosetta can handle branched oligosaccharides as well, but when loading from a sequence, this
requires the use of brackets, as in the standard IUPAC notation. For example, here is how one
would load Lewisx (Lex), a common branched glyco-epitope, into Rosetta by sequence.

In [69]: Lex = pose_from_saccharide_sequence('b-D-Galp-(1->4)-[a-L-Fucp-(1-
>3)]-D-GlcpNAc')

core.conformation.Conformation: appending residue by a chemical bond in the
foldtree: 3 ->4)-alpha-L-Fucp:non-reducing_end:branch_lower_terminus
anchor: O3 1 root: C1

In [70]: pm.apply(Lex)

3. One can also load branched carbohydrates from a PDB file. These PDB files must include LINK
records, which are a standard part of the PDB format. A LINK record looks like this:

LINK O3 Glc A 1 C1 Fuc B 1 1555 1555 1.5

Page 9 of 18

It tells us that there is a covalent linkage between O3 of glucose A1 and C1 of fucose B1 with a
bond length of 1.5 Å. (The 1555s indicate symmetry and are ignored by Rosetta.)

In [71]: Lex = pose_from_file('Lex.pdb')
core.conformation.Conformation: Connecting residues: 1 (->4)-beta-D-

Glcp:reducing_end:->3)-branch:2-AcNH) and 3 (->4)-alpha-L-Fucp:non-
reducing_end:branch_lower_terminus) at atoms O3 and C1

core.conformation.Conformation: with mutual distances: 0.18607 and 1.79499

In [72]: pm.apply(Lex)

You may notice when viewing the structure in PyMOL that the hybridization of the carbonyl of
the amido functionality of the N-acetyl group is wrong. This is because of an error in the model
deposited in the PDB from which this file was generated. This is, unfortunately, a very common
problem with sugar structures found in the PDB.
You may also have noticed the test/data/carbohydrates/Lex.pdb file indicated in its HETNAM
records that Glc1 was actually an N-acetylglycosamine (GlcNAc) with the indication 2-
acetylamino-2-deoxy-. This is optional and is helpful for human-readability, but Rosetta only
needs to know the base ResidueType of each sugar residue; specific VariantTypes needed—
and most sugar modifications are treated as VariantTypes—are determined automatically from
the atom names in the HETATM records for the residue. Anything after the comma is ignored.

4. Print out the Pose to see how the FoldTree is defined. Note the CHEMICAL Edge (-2). This is
Rosetta’s way of indicating a branch backbone connection. Unlike a standard POLYMER Edge (-1),
it tells you which atoms are involved.
Print out the sequence of each chain.

In [73]: print Lex
PDB file name: Lex.pdb
Total residues:3
Sequence: ZZZ
Fold tree:
FOLD_TREE EDGE 1 2 -1 EDGE 1 3 -2 O3 C1

In [74]: for i in range(2): print Lex.chain_sequence(i + 1)
beta-D-Galp-(1->4)-D-GlcpN
alpha-L-Fucp-

5. Print out information about each residue in the Pose to see which VariantTypes and
ResiduePropertys are assigned to each.

In [75]: for res in Lex: print res
...

6. Output the various torsion angles. Now it should be clear why φ and ψ are defined the way they
are. If they were defined as in AA residues, they would not have unique definitions, since GlcNAc
is a branch point.

In [76]: Lex.phi(2)
Out[76]: -85.80426357119143

In [77]: Lex.psi(2)
Out[77]: 135.6468768989725

In [78]: Lex.phi(3)

Page 10 of 18

Out[78]: -76.88533924419255

In [79]: Lex.psi(3)
Out[79]: -97.03727535363538

Note that for this oligosaccharide χ3(1) is equivalent to ψ(3) and χ4(1) is equivalent to ψ(2).

In [80]: Lex.chi(3, 1)
Out[80]: -97.03727535363538

In [81]: Lex.chi(4, 1)
Out[81]: 135.6468768989725

For modified sugars, χ angles are redefined at the positions where substitution has occurred. For
new χs that have come into existence from the addition of new atoms and bonds, new
definitions are added to new indices. For example, for GlcN2Ac residue 1, χC2–N2–C′– Cα′ is accessed
through chi(7, 1).

In [82]: Lex.chi(2, 1)
Out[82]: -230.8915297047683

In [83]: Lex.set_chi(2, 1, 180)

In [84]: pm.apply(Lex)

In [85]: Lex.chi(7, 1)
Out[85]: 179.81012671885887

In [86]: Lex.set_chi(7, 1, 0)

In [87]: pm.apply(Lex)

7. Play around with getting and setting the various torsion angles for Lex.

N- and O-Linked Glycans

1. Branching does not have to occur at sugars; a glycan can be attached to the nitrogen of an Asn
or the oxygen of a Ser or Thr. N-linked glycans themselves tend to be branched structures.

In [88]: N_linked = pose_from_file('N-linked_14-mer_glycan.pdb')
...

In [89]: pm.apply(N_linked)

In [90]: pm.send_ss(N_linked)

In [91]: print N_linked
PDB file name: N-linked_14-mer_glycan.pdb
Total residues:19
Sequence: ANASAZZZZZZZZZZZZZZ
Fold tree:
FOLD_TREE EDGE 1 5 -1 EDGE 2 6 -2 ND2 C1 EDGE 6 14 -1 EDGE 8 15 -2 O6

C1 EDGE 15 17 -1 EDGE 15 18 -2 O6 C1 EDGE 18 19 -1

Page 11 of 18

In [92]: for i in range(4): print N_linked.chain_sequence(i + 1)
ANASA
alpha-D-Glcp-(1->3)-alpha-D-Glcp-(1->3)-alpha-D-Glcp-(1->3)-alpha-D-Manp-(1-

>2)-alpha-D-Manp-(1->2)-alpha-D-Manp-(1->3)-beta-D-Manp-(1->4)-beta-D-
GlcpNAc-(1->4)-beta-D-GlcpNAc-

alpha-D-Manp-(1->2)-alpha-D-Manp-(1->3)-alpha-D-Manp-
alpha-D-Manp-(1->2)-alpha-D-Manp-

In [93]: O_linked = pose_from_file('O_glycan.pdb')
...

In [94]: pm.apply(O_linked)

In [95]: pm.send_ss(O_linked)

In [96]: print O_linked
PDB file name: O_glycan.pdb
Total residues:4
Sequence: ASAZ
Fold tree:
FOLD_TREE EDGE 1 3 -1 EDGE 2 4 -2 OG C1

In [97]: for i in range(2): print O_linked.chain_sequence(i + 1)
ASA
alpha-D-Glcp-

2. set_phi() and set_psi() still work when a glycan is linked to a peptide.

In [98]: N_linked.set_phi(N_linked.pdb_info().pdb2pose("B", 1), 180)

In [99]: pm.apply(N_linked)

In [100]: N_linked.set_psi(N_linked.pdb_info().pdb2pose("B", 1), 0)

In [101]: pm.apply(N_linked)

In [102]: N_linked.set_omega(N_linked.pdb_info().pdb2pose("B", 1), 90)

In [103]: pm.apply(N_linked)

Notice that in this case ψ and ω affect the side chain torsions (χs) of the asparagine residue.
3. One can also create conjugated glycans from sequences if performed in steps, first creating the

peptide portion by loading from a .pdb file or from sequence and then using the
glycosylate_pose() function, (which needs to be imported first.) For example, to glycosylate
an ASA peptide with a single glucose at position 2 of the peptide, we perform the following:

In [104]: peptide = pose_from_sequence('ASA')

In [105]: pm.apply(peptide)

In [106]: from rosetta.core.pose.carbohydrates import glycosylate_pose,

glycosylate_pose_by_file

In [107]: glycosylate_pose(peptide, 2, 'Glcp')

Page 12 of 18

core.conformation.Conformation: appending residue by a chemical bond in the
foldtree: 4 ->4)-alpha-D-Glcp:non-reducing_end:branch_lower_terminus
anchor: OG 2 root: C1

core.pose.carbohydrates.util: Glycosylated pose with Glcp-OGSER2

In [108]: pm.apply(peptide)

(Unfortunately, PyMOL tends to get confused about which atoms are actually forming bonds,
but if you examine the structure carefully, you will find that all of the atoms are in the right
place.)
It is also possible to glycosylate a pose with common glycans found in the database. These files
end in the .iupac extension and are simply IUPAC sequences just as we have been using.

In [109]: cd ../../../database/chemical/carbohydrates/common_glycans/

In [110]: ls
...

In [111]: peptide = pose_from_sequence('ASA')

In [112]: glycosylate_pose_by_file(peptide, 2, 'core_5_O-glycan.iupac')
core.conformation.Conformation: appending residue by a chemical bond in the

foldtree: 4 ->3)-alpha-D-Galp:branch_lower_terminus:2-AcNH anchor: OG
2 root: C1

core.pose.carbohydrates.util: Glycosylated pose with a-D-GalpNAc-(1->3)-a-D-
GalpNAc--OGSER2

In [113]: pm.apply(peptide)

Page 13 of 18

ROSETTACARBOHYDRATE
Tutorial/Demo 2

Scoring

sugar_bb Scoring Method
Currently, scoring for carbohydrates has simply used the talaris scoring function but with the addition
of a sugar_bb scoring term. sugar_bb implements the CHI energy function from Grant & Woods, Curr.
Opin. Struct. Biol. 2014, 28C, 47–55. The CHI energy function for φ angles depends on whether the
residue is axial or equatorial at its anomeric position—that is, on whether or not it is an α or β
carbohydrate. The CHI energy function for ψ depends on the attachment position and axial/equatorial
designation of the previous residue. It is intended that further functions for other torsion angles will be
added to the sugar_bb term in the future.

1. Start up IPython and import and initialize PyRosetta.

$ ipython
...

In [1]: from rosetta import *

In [2]: init(extra_options='-include_sugars -read_pdb_link_records')
...

2. Load in maltotriose.

In [3]: cd tests/integration/tests/carbohydrates/input/
...

In [4]: maltose = pose_from_file('maltotriose.pdb')
...

3. Create a standard ScoreFunction and score the Pose. Note that when the -include_sugars
flag is used, the sugar_bb scoring term weight is set to 1.0 by default.

In [5]: sf = get_fa_scorefxn()
...
core.scoring.ScoreFunctionFactory: The -include_sugars flag was used with no

sugar_bb weight set in the weights file. Setting sugar_bb weight to 1.0
by default.

In [6]: sf.show(maltose)
...
--
 Scores Weight Raw Score Wghtd.Score
--
 fa_atr 0.800 -4.279 -3.423
 fa_rep 0.440 1.693 0.745
 fa_sol 0.750 8.367 6.275
 fa_intra_rep 0.004 4.866 0.019

Page 14 of 18

 fa_elec 0.700 -0.359 -0.251
 pro_close 1.000 0.000 0.000
 hbond_sr_bb 1.170 0.000 0.000
 hbond_lr_bb 1.170 0.000 0.000
 hbond_bb_sc 1.170 0.000 0.000
 hbond_sc 1.100 -0.530 -0.583
 dslf_fa13 1.000 0.000 0.000
 rama 0.200 0.000 0.000
 omega 0.500 0.000 0.000
 fa_dun 0.560 0.000 0.000
 p_aa_pp 0.320 0.000 0.000
 ref 1.000 0.000 0.000
 sugar_bb 1.000 2.691 2.691

 Total weighted score: 5.473

4. If we print maltose, we can see that it has 1α→4 connections.

In [7]: print maltose.chain_sequence(1)
alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp

α-D-Glucopyranose has all equatorial hydroxyl groups except at the anomeric position where the
hydroxyl is axial. So in the series of four energy plots above, for φ we care about the upper left
plot, which is for α connections, and for ψ we care about the lower right plot, which is for
equatorial connections to the 4 position. Currently the values for φ and ψ are in the right vicinity
but not ideal.

In [8]: maltose.phi(2)
Out[8]: 96.93460655617179

In [9]: maltose.psi(2)
Out[9]: 109.94421849476635

In [10]: maltose.phi(3)
Out[10]: 103.21420435050914

In [11]: maltose.psi(3)
Out[11]: 118.64096726060517

5. The MinMover should be able to idealize the φ and ψ components of the CHI energy function.

In [12]: sugar_bb_only_sf = ScoreFunction()

In [13]: sugar_bb_only_sf.set_weight(sugar_bb, 1.0)

In [14]: sugar_bb_only_sf.show(maltose)
...
--
 Scores Weight Raw Score Wghtd.Score
--
 sugar_bb 1.000 2.691 2.691

 Total weighted score: 2.691

In [15]: mm = MoveMap()

Page 15 of 18

In [16]: mm.set_bb(True)

In [17]: minimizer = MinMover(mm, sugar_bb_only_sf, "dfpmin", 0.01, True)

In [18]: minimizer.apply(maltose)
...

In [19]: sugar_bb_only_sf.show(maltose)
--
 Scores Weight Raw Score Wghtd.Score
--
 sugar_bb 1.000 0.341 0.341

 Total weighted score: 0.341

In [20]: maltose.phi(2)
Out[20]: 71.5925163033063

In [21]: maltose.psi(2)
Out[21]: 103.62750223435093

In [22]: maltose.phi(3)
Out[22]: 75.19453791137022

In [23]: maltose.psi(3)
Out[23]: 114.69894025990594

We can show the energies for each residue individually. Here, we confirm that φ and ψ are
undefined for the first residue.

In [24]: maltose.energies().show(1)
E sugar_bb
E(i) 1 0.00

In [25]: maltose.energies().show(2)
E sugar_bb
E(i) 2 0.09

In [26]: maltose.energies().show(3)
E sugar_bb
E(i) 3 0.26

6. Isomaltose has an exocyclic connection between its tow saccharide residues.

In [27]: isomaltose = pose_from_file('isomaltose.pdb')

In [28]: print isomaltose.chain_sequence(1)
alpha-D-Glcp-(1->6)-D-Glcp

In [29]: sugar_bb_only_sf.show(isomaltose)
core.conformation.util: The attachment point for the query atom is not found

in the ring; an axial/equatorial designation is meaningless.
--
 Scores Weight Raw Score Wghtd.Score

Page 16 of 18

--
 sugar_bb 1.000 1.925 1.925

 Total weighted score: 1.925

In [30]: isomaltose.phi(2)
Out[30]: 44.32677030464958

In [31]: isomaltose.psi(2)
Out[31]: -170.86933817075462

In [32]: isomaltose.omega(2)
Out[32]: 49.383018645410004

In [33]: minimizer.apply(isomaltose)
...

In [34]: sugar_bb_only_sf.show(isomaltose)
--
 Scores Weight Raw Score Wghtd.Score
--
 sugar_bb 1.000 0.030 0.030

 Total weighted score: 0.030

In [35]: isomaltose.phi(2)
Out[35]: 73.93352994380763

In [36]: isomaltose.psi(2)
Out[36]: -170.86933817075462

In [37]: isomaltose.omega(2)
Out[37]: 49.383018645410004

Note that only φ changed. This is because for an exocyclic connection, ψ is no longer a
connection to a ring, so axial and equatorial are meaningless, and the scoring function shown
above does not apply. Likewise, ω torsions do not show the same statistical trends as ψ.

7. The sugar_bb scoring term also works across branches and conjugation connections to peptides
or other polymers. Again, only φ and ψ angles axial or equatorial to a ring will be scored. (Note
that we need to set the MoveMap to allow angles with BRANCH TorsionIDs to move.)

In [1]: from rosetta import *

In [2]: init(extra_options='-include_sugars -read_pdb_link_records')
...

In [3]: sugar_bb_only_sf = ScoreFunction()

In [4]: sugar_bb_only_sf.set_weight(sugar_bb, 1.0)

In [5]: mm = MoveMap()

In [6]: mm.set_bb(True)

Page 17 of 18

In [7]: mm.set_chi(True)

In [8]: mm.set_branches(True)

In [9]: minimizer = MinMover(mm, sugar_bb_only_sf, "dfpmin", 0.01, True)

In [10]: cd tests/integration/tests/carbohydrates/input/
...

In [11]: Lex = pose_from_file('Lex.pdb')
...

In [12]: for chain in range(1, Lex.conformation().num_chains() + 1): print

Lex.chain_sequence(chain)
beta-D-Galp-(1->4)-D-GlcpN
alpha-L-Fucp-

In [13]: print Lex.fold_tree()
FOLD_TREE EDGE 1 2 -1 EDGE 1 3 -2 O3 C1

In [14]: Lex.phi(2)
Out[14]: -85.80426357119143

In [15]: Lex.psi(2)
Out[15]: 135.6468768989725

In [16]: Lex.phi(3)
Out[16]: -76.88533924419255

In [17]: Lex.psi(3)
Out[17]: -97.03727535363538

In [18]: mm.set_branches(True)

In [19]: minimizer.apply(Lex)
core.pose.util: WARNING: Unable to find atom_tree atom for this Rosetta branch

connection angle: residue 3 BRANCH 1

In [20]: Lex.phi(2)
Out[20]: -65.62117800426097

In [21]: Lex.psi(2)
Out[22]: 136.95480413762755

In [23]: Lex.phi(3)
Out[23]: -73.03033840543367

In [24]: Lex.psi(3)
Out[24]: -93.63314466264218

In [25]: O_linked = pose_from_file('O_glycan.pdb')
...

In [26]: for chain in range(1, O_linked.conformation().num_chains() + 1):

print O_linked.chain_sequence(chain)

Page 18 of 18

ASA
alpha-D-Glcp-

In [27]: O_linked.phi(4)
Out[27]: 71.4566619001219

In [28]: O_linked.psi(4)
Out[28]: 177.2781916108563

In [29]: minimizer.apply(O_linked)
...

In [30]: O_linked.phi(4)
Out[30]: 73.93352351769039

In [31]: O_linked.psi(4)
Out[31]: 177.2781916108563

