
How To Make the Most of
PyRosetta

Jason Labonte & Michael Pacella
Gray Lab

RosettaCON 2012

Outline

• Custom Rosetta classes in PyRosetta
– Movers/Protocols
– Scoring methods

• Tips for better PyRosetta scripts
– Tricky Python subtleties

• import statements
• Passing objects to methods in Python

– Standard Rosetta things that work differently in PyRosetta
• PyJobDistributor

• Passing & parsing Rosetta option flags

– Where else to go for help
• Printing Rosetta objects
• Demos & test scripts

• How-to
– RNA
– NMR constraints
– Symmetry operations
– Non-canonical AAs & ligands

CUSTOM ROSETTA CLASSES
PyRosetta Tutorial

Classes in Python:
__init__() method

class MyShape:

 """

 This is how one defines a class.

 Within the class statement block go its methods....

 """

 def __init__(self):

 """

 This method is called when instantiating a MyShape object.

 (In the method declaration above, note the use of "self".

 "self" refers to the particular instance of MyShape that is

 running the code. When one calls a method, the first argu-

 ment passed to that argument is always the instance of the

 class calling the method.

 """

 self.color = 0 # Sets default value for color. (Again, note

 # the use of "self".)

Classes in Python:
__str__() method

 def __str__(self):

 """

 This method determines what string is printed if you print

 the object.

 """

 return self.__doc__

Classes in Python:
Example Methods

 def area(self):

 """

 Output the area of the shape.

 """

 return # Code to calculate the area goes here.

 def draw(self, line_width = 1):

 """

 Draw the shape on the screen.

 (Note how "line_width" is given a default value. This is how

 one overloads a function in Python.)

 """

 pass # Code to draw the shape goes here.

Classes in Python:
Inheritance

class MyCircle(MyShape):

 """

 This is how one defines a subclass.

 The parent class from which this class inherits all its methods

 goes in the parentheses. We don't need to write the

 __init__, __str__, area, or draw methods, but we can if we

 want to.

 """

 radius = 1.0 # Defines a property of MyCircle.

 def area(self):

 """

 Output the area of the circle.

 This overrides the "area" method inherited from MyShape.

 """

 return math.pi * self.radius**2

Classes in Python:
Instantiation & Usage

>>> circle = MyCircle()

>>> print circle

This is how one defines a subclass.

The parent class from which this class inherits all its methods

goes in the parentheses. We don't need to write the

__init__, __str__, area, or draw methods, but we can if we

want to.

>>> print circle.color

0

>>> print circle.area()

3.14159265359

>>> circle.draw() # Draws a circle of radius 1.0 in color 0 with a line

width of 1.

>>> circle.radius, circle.color = 1.5, 3

>>> circle.draw(2) # Draws a circle of radius 1.5 in color 3 with line

width of 2.

Movers in PyRosetta:
Required Methods

class PhiNByXDegreesMover(rosetta.protocols.moves.Mover):

 """

 This mover increments the phi angle of residue N by X degrees.

 """

 def __init__(self, N_in = 1, X_in = 15):

 # We must run Mover's __init__() method for our custom

 # Mover to act as a true Rosetta Mover.

 rosetta.protocols.moves.Mover.__init__(self)

 self.N = N_in

 self.X = X_in

 def __str__(self):

 return self.get_name() + \

 "\nresidue: " + str(self.N) + \

 " phi increment: " + str(self.X) + " degrees"

Movers in PyRosetta:
Required Methods

 def get_name(self):

 """

 Return the name of the class of the object instance, in

 this case, "PhiNByXDegreesMover".

 All Movers MUST include this method.

 """

 return self.__class__.__name__

 def apply(self, pose):

 """

 Apply a move to pose.

 All Movers MUST include this method.

 """

 print "Incrementing phi of res", self.N, "by", self.X, "degrees..."

 pose.set_phi(self.N, pose.phi(self.N) + self.X)

Decorators in Python:
Definition

• Decorators are essentially functions that take a class or
method as input and return a modified (“decorated”)
version of that class or method.

• If we have a class, MyCircle, and a decorator function —
def hollow(shape_in):

 """Modifies the draw() method of an input shape class to output a

 hollow shape."""

— then the “wrapper syntax”…
@hollow

class MyCircle(MyShape):

circle = MyCircle()

…results in the same object, circle, as…
class MyCircle(MyShape):

circle = hollow(MyCircle())

Scoring Methods in PyRosetta:
Context-Independent, 1-Body

import rosetta.core.scoring.methods as methods # Alias for the namespace

@rosetta.EnergyMethod() # An EnergyMethod object is a callable function.

class LengthScoreMethod(methods.ContextIndependentOneBodyEnergy):

 """

 A scoring method that favors longer peptides by assigning one Rosetta

 energy unit per residue.

 """

 def __init__(self):

 methods.ContextIndependentOneBodyEnergy.__init__(self,

 self.creator())

 # (Since the decorator is applied at the definition of the class,

 # the class method creator(), which is made by the function

 # EnergyMethod()(), is there at the time when LengthScoreMethod is

 # instantiated.)

 def residue_energy(self, res, pose, emap):

 emap.get().set(self.scoreType, 1.0) # 1 energy unit per residue

Scoring Methods in PyRosetta:
Usage

>>> from rosetta import *

>>> from scoring_methods import * # Assumes your LengthScoreMethod class

is in the module scoring_methods.py.

>>> init()

>>> pose = pose_from_sequence("ACDEFGHI")

>>> sf = ScoreFunction()

>>> print sf(pose)

0.0

>>> len_score = LengthScoreMethod.scoreType # Extracts the ScoreType from

your custom scoring method.

>>> sf.set_weight(len_score, 1) # Sets the weight of your custom len_score

component to 1.

>>> print sf(pose)

8.0

Scoring Methods in PyRosetta:
Context-Independent, 2-Body

@rosetta.EnergyMethod()

class CI2BScoreMethod(methods.ContextIndependentTwoBodyEnergy):

 def __init__(self):

 methods.ContextIndependentTwoBodyEnergy.__init__(self,

 self.creator())

 def residue_pair_energy(self, res1, res2, pose, sf, emap):

 score = 1.0 # A real method would calculate a value from res1 and

 # res2

 emap.get().set(self.scoreType, score)

 def atomic_interaction_cutoff(self): return 0.0

 def defines_intrares_energy(self, weights): return True

 def eval_intrares_energy(self, res, pose, sf, emap): pass

Scoring Methods in PyRosetta:
Context-Dependent, 2-Body

@rosetta.EnergyMethod()

class CD2BScoreMethod(methods.ContextDependentTwoBodyEnergy):

 def __init__(self):

 methods.ContextDependentTwoBodyEnergy.__init__(self,

 self.creator())

 def residue_pair_energy(self, res1, res2, pose, sf, emap):

 score = 1.0 # A real method would calculate a value from res1 and

 # res2

 emap.get().set(self.scoreType, score)

 def atomic_interaction_cutoff(self): return 0.0

 def defines_intrares_energy(self, weights): return True

 def eval_intrares_energy(self, res, pose, sf, emap): pass

TIPS
PyRosetta Tutorial

Import Statements in Python

• import module

– imports the namespace module from module.py
– runs module.py
– allows one to call MyClass & my_method using

module.MyClass() & module.my_method()
• from module import MyClass, my_method

– does not import the namespace module
– does not run module.py
– allows one to call MyClass & my_method using MyClass()

& my_method()

• When you use from rosetta import *, it does not
import all classes and methods from Rosetta.

Argument Passing in Python:
By Value

def my_method(argument):

 argument += 1

 return argument

number = 1 # number is a "primitive type".

my_method(number)

print number # This will print "1".

print my_method(number) # This will print "2".

Argument Passing in Python:
By Reference

def my_method(argument):

 argument.set_phi(1, 180)

 return argument.phi(1)

pose = pose_from_sequence("AAAAA") # pose is an object.

my_method(pose)

print pose.phi(1) # This will print "180".

print my_method(pose) # This will also print "180".

Job Distribution in PyRosetta:
PyJobDistributor

jd = PyJobDistributor("filename", nstruct, sf)

The above constructs a job distibutor that will create nstruct decoys

named filename_1.pdb to filename_N.pdb and a score file, filename.fasc.

The PyJobDistributor will not overwrite a file already in existence.

When initialized, the next available output file is started as an in-

progress file.

jd.native_pose = native_pose

If a native pose is provided, a column of RMSDs will be included in the

score file.

while not jd.job_complete:

 pose.assign(start_pose)

 my_protocol.apply(pose)

 jd.output_decoy(pose)

 # Outputs the next decoy, deletes the in-progress file, and creates the

 # next available in-progress file.

Job Distribution in PyRosetta:
Example with PBS

The portable batch system (pbs) script:

#!/bin/bash -f

#PBS -M my_name@gmail.com

#PBS -m e

#PBS -l nodes=1:ppn=1

#PBS -l mem=1024mb

#PBS -l walltime=1:00:00

#PBS -l cput=1:00:00

#PBS -j oe

#PBS -q batch

source ~/Applications/PyRosetta/SetPyRosettaEnvironment.sh

cd $PBS_O_WORKDIR

python2.6 relax.py

How to submit:

$ qsub relax.pbs

Option Flags in PyRosetta
Recommended Route: Defining “extra_options”

• This will add-on to a default list of options:
– -database

– -ex1

– -ex2aro

init(extra_options = "-mute basic -mute core -mute protocols")

Option Flags in PyRosetta
Alternate Route: Creating a Custom “args” List

• This allows you to fully customize the
command line options passed to PyRosetta.

• app and -database /path/to/database must be
included.

opts = ["app", "-database /path/to/database", "-ex1", "-ex2aro",

 "-symmetry:symmetry_definition symm_def.dat"]

args = utility.vector1_string()

args.extend(opts)

init(args)

Printing Objects in PyRosetta

• The Gray Lab has methodically been going
through classes in the Rosetta library and
adding print functionality.

• E.g.:

>>>min_mover = MinMover()

>>>print min_mover

Mover name: MinMover, Mover type: MinMover, Mover current tag:NoTag

Minimization type: linmin, Score tolerance: 0.01, Nb list: 1, Deriv

check: 0

Demos & Test Scripts

• A large selection of demos can be found in
your PyRosetta install directory in the /test
folder.

HOW-TO
PyRosetta Tutorial

RNA in PyRosetta:
To Do Beforehand

• pdb files with RNA must be in a special format
to be imported into Rosetta.

– Residue names GUA (G), ADE (A), CYT (C), &
URA/URI (U) must be changed to rG, rA, rC, & rU,
respectively, so that Rosetta knows they have
ribose, not deoxyribose, rings.

– A handy script, make_rna_rosetta_ready.py, has been
written to do this for you.

RNA in PyRosetta:
Sample Code

Create residue type set for RNA.

rna_set = ChemicalManager.get_instance().residue_type_set("rna").get()

Load pose.

pose = pose_from_pdb(rna_set, "filename.pdb")

RNA has different torsion angles....

print pose.gamma(1) # 1 is the residue number.

print pose.delta(1)

print pose.epsilon(1)

print pose.chi(1)

print pose.zeta(1)

Construct an RNA score function.

sf = create_score_function("rna_hires")

RNA in PyRosetta:
Sample Code

Import RNA movers and protocols.

from rosetta.protocols.rna import *

Construct an RNA minimization mover.

min_mover = RNA_Minimizer()

Minimize the pose.

min_mover.apply(pose)

NMR Constraints in PyRosetta:
ConstraintSetMover

Construct constraint set mover.

set_constraints = ConstraintSetMover()

set_constraints.constraint_file("filename.cst")

Prepare scorefunction.

sf = create_score_function("standard")

sf.set_weight(atom_pair_constraint, 1.0)

Set constraints into pose.

set_constraints.apply(pose)

Score the pose.

sf.show(pose)

NMR Constraints in PyRosetta:
List of Constraint Scoring Components
• atom_pair_constraint

• constant_constraint

• coordinate_constraint

• angle_constraint

• dihedral_constraint

Symmetry in PyRosetta:
To Do Beforehand

• prepare a pdb of the “master” subunit

• prepare a symmetry definition file

• include -symmetry:symmetry_definition
name_of_symm_def_file.dat in your args

Symmetry in PyRosetta:
Sample Code

Extra import statements are necessary.

import rosetta.core.conformation.symmetry

import rosetta.core.pose.symmetry

import rosetta.core.scoring.symmetry

import rosetta.protocols.simple_moves.symmetry

Create a symmetric pose.

def symmetrize_pose(pose):

 pose_symm_data = core.conformation.symmetry.SymmData(pose.n_residue(),

 pose.num_jump())

 pose_symm_data.read_symmetry_data_from_file("sym_def_file.dat")

 core.pose.symmetry.make_symmetric_pose(pose, pose_symm_data)

 # Many other useful utility funtions are in core.pose.symmetry.

Symmetry in PyRosetta:
Sample Code

Create a symmetric scorefuction.

sym_sfxn = core.scoring.symmetry.SymmetricScoreFunction()

Create a symmetric pack rotamers mover.

sym_packer = protocols.simple_moves.symmetry.SymPackRotamersMover(sym_sfxn,

 task)

Create a symmetric min mover.

sym_min_mover = protocols.simple_moves.symmetry.SymMinMover()

Create a symmetric move map.

move_map = MoveMap()

core.pose.symmetry.make_symmetric_movemap(pose, move_map)

Many other useful movers are in protocols.simple_moves.symmetry.

Custom Parameter Files in PyRosetta
To Do Beforehand

• Obtain an .mdl-formatted file of your residue’s
geometry. (OpenBabel is great for converting
formats on chemical structures.)

• Run molfile_to_params.py to convert to a Rosetta-
readable .params file

Custom Parameter Files in PyRosetta:
Sample Code

Create a vector1 of paths to your extra .params files you want loaded.

params_paths = utility.vector1_string()

params_paths.extend(["list", "of", "paths", "to", "extra", "params"])

Create a non-standard ResidueTypeSet that includes your extra .params.

nonstandard_residue_set = generate_nonstandard_residue_set(params_paths)

Use this ResidueTypeSet when loading your pdb w/ non-standard residues.

pose = pose_from_pdb(nonstandard_residue_set, "nonstandard.pdb")

Custom Parameter Files in PyRosetta:
Another Option

• A more permanent route (though
inappropriate for check-ins) is to add your
new .params file to the chemical database.

• You will also need to specify the path in
residue_types.txt (also in the database) and
ensure it is not commented out.

Special Thanks

• Will Sheffler

• Jeff Gray

• Sid Chaudhury

• Sergey Lyskov

• Evan Baugh

• Boon Uranukul

• Gray Lab

• you, for listening

