
1

2

Table of Contents

Preface

Unit 1 Introduction to Molecular Modeling in Rosetta
 1.1 Protein Structure and Function
 1.2 Introduction to Protein Structure
 1.3 Introduction to Molecular Energies
 1.4 Protein Structure and Energies in Rosetta
 1.5 Getting Started in PyRosetta

Unit 2 Protein Structure in PyRosetta
 2.1 Exploring the Pose Object
 2.2 Accessing and Manipulating Protein Geometry
 2.3 Centroid and Full-atom representations of the protein
 2.4 Parameter files for residues

Unit 3 Calculating Energies in PyRosetta
 3.1 Introduction to Scoring Functions
 3.2 Creating and editing scoring functions
 3.3 Scoring components
 3.4 Accessing more detailed scoring information

Unit 4 Simple simulations in PyRosetta
 4.1 Introduction to the Monte Carlo Algorithm
 4.2 Using the Monte Carlo Object
 4.3 A simple Monte Carlo simulation
 4.4 Using the Job Distributor

Unit 5 Sampling – Movers
 5.1 Introduction to Movers
 5.2 Limiting the search space with the MoveMap
 5.3 Simple Backbone movers
 5.4 Fragment Movers
 5.5 Energy Minimization
 5.6 Other movers: SequenceMover, TrialMover, etc..

3

Unit 6 Side-chain Packing and Design
 6.1 The Side-chain Packer in Rosetta
 6.2 Packer Instructions through the PackerTask
 6.3 Packer Instructions through the Resfile
 6.4 The TaskFactory
 6.5 Other Side-chain movers

Unit 7 Methods and Protocols
 7.1 Introduction to Loop Modeling
 7.2 Loop-modeling Fold Tree
 7.3 Loop-modeling Protocol Movers
 7.4 Introduction to Protein Docking
 7.5 Rigid-Body Movers
 7.6 Docking Protocol Movers
 7.7 Modeling small-molecules
 7.8 Modeling DNA and RNA

Unit 8 Data analysis for PyRosetta (not yet complete)
 8.1 Funnel plots
 8.2 Sampling and discrimination
 8.3 General strategies for algorithm development

Appendices

References and Further Reading

4

Preface

Structures of proteins and protein complexes help explain biomolecular function, and
computational methods provide an inexpensive way to predict unknown structures, manipulate
behavior, or design new proteins or functions. The protein structure prediction program Rosetta,
developed by a consortium of laboratories in the Rosetta Commons, has an unmatched variety of
functionalities and is one of the most accurate protein structure prediction and design approaches
(Das & Baker Ann Rev Biochem 2008; Gray Curr Op Struct Biol 2006). To make the Rosetta
approaches broadly accessible to biologists and biomolecular engineers with varied backgrounds,
we developed PyRosetta, a Python-based interactive platform for accessing the objects and
algorithms within the Rosetta protein structure prediction suite. In PyRosetta, users can measure
and manipulate protein conformations, calculate energies in low- and high-resolution
representations, fold proteins from sequence, model variable regions of proteins (loops), dock
proteins or small molecules, and design protein sequences. Furthermore, with access to the
primary Rosetta optimization objects, users can build custom protocols for operations tailored to
particular biomolecular applications. Since the Python-based program can be run within the
visualization software PyMol, search algorithms can be viewed on-screen in real time.

In this book, we go over the fundamentals of molecular modeling in PyRosetta, providing both a
cursory background into the science behind various modeling strategies as well as instruction on
how to use the PyRosetta objects and functions. Each unit covers a single topic in the field and
walks the reader through the basic operations. Interactive exercises are incorporated so that the
reader gains hands-on experience using the variety of commands available in the toolkit. The
text is arranged progressively, beginning with the fundamentals of protein structure and
energetics, and then progressing through the applications of protein folding, refinement, packing,
design, docking, and loop modeling. A set of tables are provided at the end of the book as a
reference of the available commands.

Additional resources on the Rosetta program are available online. The PyRosetta web site,
pyrosetta.org, includes additional example and application scripts. A web-based user forum is in
development and we hope that the PyRosetta community will share their experiences as well as
useful scripts so that we build a repository of useful functions. For the expert, documentation on
the underlying C++ code is available at www.rosettacommons.org under the TikiWiki
application (www.rosettacommons.org/tiki/tiki-index.php). PyRosetta is built upon the Rosetta 3
platform, so objects available in PyRosetta will have the same underlying data structures and
functionality.

5

Unit 1: Introduction to Molecular Modeling in Rosetta

1.1 Protein Structure and Function

Proteins are one of the five major biological macromolecules, they are responsible for a

variety of biochemical processes from structure, to signaling, to catalyzing essential biochemical
reactions. Proteins are polymers of amino acids that are encoded by genes. In the processes of
translation, a mRNA transcript from the nucleus is used to create the protein chain in the
ribosome. After translation, this amino acid polymer (also known as a polypeptide chain) adopts
the lowest free-energy conformation in solution, through a process called protein folding. Most
naturally occurring proteins fold into a very specific shape or structure, and their function is
directly a result of this structure. A typical folding energy for a protein is -10 kcal/mol, meaning
that well over 99% of the protein in solution adopts this lowest-free energy conformation.

Fig 1.1.1 Protein synthesis

Like protein folding, almost all protein functions occur as a result of this basic

thermodynamic principle: the protein will adopt the lowest energy conformation in a given
environment. In almost all cases, this lowest energy conformation is a biologically-evolved,
highly specific structure. For example, in protein-protein binding, in which two proteins are free
in solution, the lowest energy conformation will be a highly specific complex between the two
partners. The energy of a given conformation is a function of various molecular forces that act
on that conformation, including electrostatics, Van der Waals interactions, hydrogen-bonding,
and solvation energies.

Since its inception in 1998, the Rosetta molecular modeling software has been designed

for accurate protein structure prediction and design. Fundamentally, its algorithms use this same

6

basic thermodynamic principle: it explores many conformations of a protein given a set of pre-
defined constraints, under an approximate free energy function, searching for the lowest-energy,
and consequently biologically-relevant, conformation. For each algorithm, from docking, to
folding, to design, it is essential to understand three things:

1. What are conformational constraints to the system?
2. What is conformational sampling strategy within these predefined constraints?
3. What is the energy function/score function that is being used to identify the lowest-

energy conformation?

1.2 Introduction to Protein Structure

 The monomers of a polypeptide chain, called residues, form a polymer through peptide
bonds. The polypeptide chain itself (hereafter referred to as the backbone) is made up entirely of
an N-Cα bond, a Cα-C bond, and a C-N bond, repeated for each amino acid. The structure of
this polymer can be described in two ways: first, as a set of Cartesian coordinates (x, y, z) that
describe the position of every atom in the polymer, and second, as a internal coordinates, as a
set of torsion angle values along all bonds (φ,ψ,ω) for each amino acid in the polymer.

Fig 1.2.1 the polypeptide chain

 The specificity of protein structure and function arises from its amino acid sequence.

Although all backbone atoms for all residues are identical, each residue in the polypeptide chain
is one of 20 amino acids, shown as R-groups in the Fig 1.2.1. Amino acids differ from one
another through their side-chains, defined as those non-backbone atoms bonded to the Cα atom.
The twenty amino acids and their side-chains are shown in Fig 1.2.2.

The structure of the residue side-chains can be described either in the Cartesian

coordinates (x,y,z) of each side-chain atom, or as the torsion angle values of each rotatable bond
in the side-chain (χ1, χ2, χ3…). Note that because different amino acids have different side-
chains, they have a varying number of torsion angles, from no torsion angles in glycine, to four
torsion angles in lysine.

7

Fig 1.2.2 Amino Acid types

Finally, many protein systems in biology include more than a single protein chain. A

protein complex, for example, by definition, involves the interaction of two proteins, or two
protein chains. The relative spatial position and orientation of one polypeptide chain relative to
another can be described exactly using three dimensions of translation (T) and three dimensions
of rotation (R), based on a given fixed spatial reference frame.

1.3 Introduction to Molecular Energies

 The energy of a given conformation is a result of molecular forces that act on and
between all non-bonded atoms in that conformation. In protein biophysics, the most significant
energy contributions that favor one conformation over another are Van der Waals energies, steric
repulsions, electrostatic energies, solvation energies, and hydrogen bonding energies. These
component energies themselves functions of the atomic positions and atom types of the atoms in
the protein structure.

8

1.4 Protein Structure and Energies in Rosetta

 In Rosetta, a protein system is represented by an object called a pose. The pose contains
all the structural information necessary to completely define the system in both spatial
coordinates and internal coordinates.

 Within the pose object, the Cartesian coordinates and internal coordinates are
synchronized, both are used in Rosetta. Sampling is done primarily through manipulation of the
internal coordinates (for example, perturbing a φ or ψ torsion angle), while the energy is
calculated primarily from the Cartesian coordinates (for example, calculating the electrostatic
interaction between two atoms, using their respective spatial coordinates). In a process called
“refolding”, new Cartesian coordinates are generated by ‘rebuilding’ the polypeptide chain, side-
chain conformation, and rigid-body orientations, from the internal coordinates. Likewise, when
a pose is first instantiated, it is typically created from a PDB file, which contains only spatial
coordinates, and the internal coordinates are generated from the spatial coordinates
automatically. At all times, the spatial coordinates and internal coordinates are synchronized
within the pose.

 In Rosetta, most of the energetic components are functions of the atom types and spatial
positions of atoms that comprise the system. Van der Waals interactions and Pauli Exclusion
forces are modeled using the Lennard-Jones potential, using the Cartesian coordinates of all non-
bonded atoms. Electrostatics are modeled using a simple distance-dependent dialectric, with
distance derived from the coordinates of charged atoms. Solvation is modeled using the
Lazardis-Karplus Gaussian solvent-exclusion model using the pair-wise distances of all atoms in
the system. There are scoring components that use the internal coordinates as well. Hydrogen-
bonding is modeled using a backbone-dependent, orientation-dependent empirical formula that
uses both Cartesian coordinates and bond geometries of donors and acceptors as well as the φ
and ψ of the hydrogen-bonding residues. Finally, there are internal energy terms, such as the
Dunbrack side-chain energy, or the Ramachandran backbone energy, that are derived purely
from the internal coordinates (χ and φ,ψ, respectively) directly.

(Natoms) x (x, y, z) (Nres) x (φ, ψ, ω, χi)
(Nchains - 1) x (R,T)

refolding
Cartesian

coordinates
Internal

coordinates

9

1.5 Getting started in PyRosetta

PyRosetta is written as a python front-end to the Rosetta molecular modeling suite. It allows the
user to access Rosetta functions and classes using the Python scripting language. To get started
you have to import all Rosetta functions and initialize the Rosetta database files:

>>from rosetta import *
>>init()

PyRosetta has primarily two modes of use: interactive mode and script mode. Interactive-mode
uses IPython and allows the user to type in PyRosetta commands in real-time. It is excellent for
learning to use PyRosetta or running simple commands quickly. Simply go to your PyRosetta
directory and type:

>>python ipython.py

Once the interactive mode has loaded up, type in the previous two commands into the Python
terminal to import the Rosetta library and initialize PyRosetta, and you are ready to go.
Additionally, there are two help features in interactive mode: tab-completion and the ‘help’
command. Double-tapping the ‘tab’ button will show a list of possible functions that match what
has been entered in the Python terminal so far. The help function will take in any PyRosetta
object/function name and output a text description of what that function does as well as usage
information, for example how it is constructed or called:

>>help(Pose)
<< Help on class Pose in module rosetta.core.pose._rosetta_core_pose:

class Pose(Boost.Python.instance)
 | The Pose class represents a molecular system (proteindnaligand...)
 | as a container of librosetta Residue objects together with
 | an atom-tree structure that defines how internal coordinate changes
 | propagate through the system and an Energies object that stores
 | information from the last energy evaluation.
 | The two main ingredients are a Conformation object and an Energies
 | object.
 | The main responsibilities of the pose are
 | ii Kinematic:
 | (a) to update the xyz coordinates in response to changes to internal
 | degrees of freedom, and
 | (b) to update internal coordinates when the user modifes the xyz
 | (cartesian) coords,
 | ii Scoring:
 | (a) to keep track of what parts of the structure have changed since
 | the last score evaluation, and
 | (b) to cache rsd and rsd-pair energies for efficient re-use
 | ii As a container:
 | The pose should provide a useful single object for passing
 | a molecular system and support copying of entire molecules

10

 | or stretches of molecules from one Pose object into another.
 | thats way more comments than I have ever written in a single
 | stretch before...
 |
 | Methods defined here:
 | __init__(...)
 | __init__((object)arg1) -> None :
 | default constructor
 |...

The second mode of PyRosetta is script-mode. This is the mode where most writing and
development of PyRosetta protocols is done. Simply add the lines import the Rosetta library and
initializing PyRosetta to the beginning of the Python script to access the Rosetta functions and
objects. PyRosetta scripts can be easily viewed and edited through any major Text Editor, and
shared, through the website at http://www.pyrosetta.org. Sample scripts can be downloaded
from the ‘PyRosetta Scripts’ section of the website.

11

Unit 2: Protein structure in PyRosetta

The pose object contains all the necessary information to completely define a protein system,
including the amino acid sequence, the Cartesian coordinates, and internal coordinates of all
proteins in the system. The Protein Databank File (PDB) is the standardized file-format for
storing the Cartesian-coordinates for each atom in a protein, and is used in PyRosetta to input or
output a protein structure.

2.1 Exploring the Pose object

To load a PDB file you have to first create an empty pose object, and then assign a PDB structure
to that pose:

>>my_pose = Pose()
>>pose_from_pdb(my_pose, “test.pdb”)

You can access a summary of the pose through:

>>print my_pose
PDB file name: test.pdb
Total residues:116
Sequence: DAITHSILDWIDNLESPLSEKVSERSGYSKWHLQRMFKKETGHSLGQYRSRK…
Fold tree:
FOLD_TREE EDGE 1 116 -1

This summary contains the pdb file name that the pose originated from, the total number of
residues in the pose, the amino acid sequence, and the fold tree. The fold tree (described in
Section 7.2) describes the path of refolding of the pose. This information can also be accessed
individually:

>>print my_pose.total_residue()
116
>>print my_pose.sequence()
DAITHSILDWIDNLESPLSEKVSERSGYSKWHLQRMFKKETGHSLGQYRSRK…
>>print my_pose.fold_tree()
FOLD_TREE EDGE 1 116 -1

Each residue in a pose is represented as a residue object within the pose. It can be accessed as
(residue #2 as an example) below. Printing the residue displays the residue type, residue number
(in pose numbering), all the atoms that make up the residue and their respective Cartesian
coordinates. Again, this information can be accessed individually as well.

>>print p.residue(2)
ALA 2:
 N : 0.764 37.858 76.239

12

 CA : 0.778 39.078 77.028
 C : -0.624 39.484 77.368
 O : -0.925 39.776 78.527
 CB : 1.474 40.216 76.301
 H : 1.417 37.762 75.474
 HA : 1.307 38.885 77.961
1HB : 1.461 41.108 76.927
2HB : 2.506 39.936 76.09
3HB : 0.955 40.422 75.367

>>print p.residue(2).name()
ALA

Residue chemical properties that have been defined in the parameter files (see Section 2.4) can
also be accessed:

>>p.residue(2).is_polymer()
>>p.residue(2).is_protein()
>>p.residue(2).is_DNA()
>>p.residue(2).is_RNA()
>>p.residue(2).is_NA()
>>p.residue(2).is_ligand()
>>p.residue(2).is_polar()
>>p.residue(2).is_aromatic()

The residue numbering in a pose object is always consecutive, beginning at residue 1. This is in
contrast to PDB files, in which each residue has both a residue number and chain letter.
PyRosetta will read a PDB file and sequentially number the residues in the file as they are listed.
The conversion between pose residue numbering and PDB residue number and chain letter can
be access as:

>>print my_pose.pdb_info().pdb2pose(‘I’,8)
239
>>print my_pose.pdb_info().pose2pdb(239)
8 I

2.2 Accessing and manipulation protein geometry through the pose

The pose object stores the protein structure as both Cartesian coordinates and internal
coordinates. We can access the internal coordinates for each residue as follows:

>>res_num = 5
>>print my_pose.phi(res_num)
>>print my_pose.psi(res_num)
>>print my_pose.chi(chi_num, res_num)

In the same way, new internal coordinates can be assigned at each residue:

>>my_pose.set_phi(res_num, new_angle)

13

>>my_pose.set_psi(res_num, new_angle)
>>my_pose.set_chi(chi_num, res_num, new_angle)

The bond lengths and angles, almost always held fixed in Rosetta algorithms, can also be
manipulated. Since this is a less-used function, it is not as easy to use and utilizes AtomID
objects based on atom numbers and residue numbers, as listed in the PDB file:

>>N = AtomID(1,res_num)
>>CA = AtomID(2, res_num)
>>C = AtomID(3, res_num)

From these AtomID objects, the bond length and angles can be accessed and manipulated for the
pose object:

>>print my_pose.conformation().bond_length(N, CA)
>>print my_pose.conformation().bond_angle(N, CA, C)
>>print my_pose.conformation().set_bond_length(N, CA, new_bond_length)
>>print my_pose.conformation().set_bond_angle(N, CA, C, new_bond_angle)

Finally, the atomic coordinates of each atom in the pose is accessible through the residue object.
The atomic coordinates are stored in atom order, with the first four atoms as N, CA, C, O. The
atom order and atom numbers can be accessed using the atom_index function:

>>print my_pose.residue(5).atom_index(CA)
2
>>print my_pose.residue(5).xyz(2)
0.010 35.998 80.515
>>print my_pose.residue(5).xyz(my_pose.residue(5).atom_index(CA))
0.010 35.998 80.515

The coordinates are returned as numeric.xyzVector’s and can be used with Python Math
functions.

2.3 Centroid and Full-atom representations of protein structure

In Rosetta there are two main ‘modes’ of representation of protein structure, centroid-mode and
full-atom mode. In full-atom mode, for each residue, all backbone and side-chain atoms are
explicitly modeled. In centroid-mode, all backbone atoms are explicitly modeled, but the side-
chain atoms are replaced with a single pseudo-atom, called a ‘centroid’. The position of the
centroid is based on the average center-of-mass of that side-chain among the low-energy side-
chain conformations; the size (radius) of the centroid is related to the average size of that side-
chain.

14

The advantage of centroid-mode is that it allows for much faster energy calculations because the
number of atoms in the simulation falls by significant amount, allowing for rapid searches
through large areas of conformational space during Monte Carlo simulations. The disadvantage
is that interactions involving the side-chain, such as side-chain hydrogen bonds, or side-chain
Van der Waals interactions, cannot be captured explicitly because doing so would require all
atoms of the side-chain to be modeled. Instead these interactions are captured implicitly using
pair-wise statistical potentials and VdW sphere approximations. These implicit measurements
can be significantly less accurate, which is why most Rosetta protocols have a low-resolution or
coarse-grain phase using centroid mode with the main responsibility of sampling a diverse range
of conformations quickly, and a high-resolution refinement phase, with the main responsibility of
assessing an accurate energy for a given structure.

The example below shows a full-atom and centroid-mode representation of a Tryptophan
residue:

 N : -7.438 37.691 87.434
 CA : -8.307 36.699 87.982
 C : -7.701 36.101 89.223
 O : -8.432 35.736 90.14
 CB : -8.62 35.581 87
 CG : -9.535 34.551 87.595
 CD1: -10.902 34.633 87.706
 CD2: -9.17 33.258 88.106
 NE1: -11.406 33.47 88.256
 CE2: -10.362 32.614 88.513
 CE3: -7.959 32.591 88.27
 CZ2: -10.372 31.333 89.063
 CZ3: -7.97 31.314 88.814
 CH2: -9.171 30.699 89.203
 H : -7.073 37.611 86.496
 HA : -9.252 37.156 88.276
1HB : -9.113 35.983 86.114
2HB : -7.702 35.072 86.705
 HD1: -11.37 35.554 87.363
 HE1: -12.381 33.28 88.44
 HE3: -7 33.024 87.988
 HZ2: -11.326 30.893 89.354
 HZ3: -7.016 30.8 88.932
 HH2: -9.142 29.695 89.626

N : -7.438 37.691 87.434
 CA : -8.307 36.699 87.982
 C : -7.701 36.101 89.223
 O : -8.432 35.736 90.14
 CB : -8.59316 35.6086 86.9479
 CEN: -9.89581 34.8776 86.0296
 H : -7.073 37.611 86.496

Figure 5.

Section 5
be querie

>>pose.i
<<True

2.4 Para

Paramete
miniros

directory

The full-
 A

.6. Full-atom

5.6 describes
ed as to whet

is_fullato

ameter files

er files descr
setta_data

y.

atom residue
As an examp

m (left) and c

s how to con
ther it is in f

om()

for residues

ribing the ch
abase/che

e parameters
ple, the param

centroid (rig

nvert a protei
full-atom mo

s in PyRoset

hemical and s
emical/res

s are stored i
meter file fo

ght) represen

in between f
ode using:

tta

structural pr
sidue_type

in the /fa_s
r Threonine

ntations for T

full-atom and

operties of e
e_sets dire

standard/

is shown be

Tryptophan

d centroid m

each residue
ectory in the

residue_t

elow:

mode. A Pos

is found in t
e PyRosetta

types direct

15

e can

the

tory.

16

NAME THR
IO_STRING THR T
TYPE POLYMER #residue type
AA THR
ATOM N Nbb NH1 -0.47
ATOM CA CAbb CT1 0.07
ATOM C CObb C 0.51
ATOM O OCbb O -0.51
ATOM CB CH1 CT1 0.14
ATOM OG1 OH OH1 -0.66
ATOM CG2 CH3 CT3 -0.27
ATOM H HNbb H 0.31
ATOM HG1 Hpol H 0.43
ATOM HA Hapo HB 0.09
ATOM HB Hapo HA 0.09
ATOM 1HG2 Hapo HA 0.09
ATOM 2HG2 Hapo HA 0.09
ATOM 3HG2 Hapo HA 0.09
LOWER_CONNECT N
UPPER_CONNECT C
BOND N CA
BOND N H
BOND CA C
BOND CA CB
BOND CA HA
BOND C O
BOND CB OG1
BOND CB CG2
BOND CB HB
BOND OG1 HG1
BOND CG2 1HG2
BOND CG2 2HG2
BOND CG2 3HG2
CHI 1 N CA CB OG1
CHI 2 CA CB OG1 HG1

PROTON_CHI 2 SAMPLES 3 60 -60 180 EXTRA 1 20

PROPERTIES PROTEIN POLAR
NBR_ATOM CB
NBR_RADIUS 3.4473
FIRST_SIDECHAIN_ATOM CB
ACT_COORD_ATOMS OG1 END
ICOOR_INTERNAL N 0.000000 0.000000 0.000000 N CA C
ICOOR_INTERNAL CA 0.000000 180.000000 1.458001 N CA C
ICOOR_INTERNAL C 0.000000 68.800049 1.523257 CA N C
ICOOR_INTERNAL UPPER 149.999954 63.800026 1.328685 C CA N
ICOOR_INTERNAL O 180.000000 59.199905 1.231016 C CA UPPER
ICOOR_INTERNAL CB -121.983574 68.467087 1.539922 CA N C
ICOOR_INTERNAL OG1 -0.000077 70.419235 1.433545 CB CA N
ICOOR_INTERNAL HG1 0.000034 70.573135 0.960297 OG1 CB CA
ICOOR_INTERNAL CG2 -120.544136 69.469185 1.520992 CB CA OG1
ICOOR_INTERNAL 1HG2 -179.978256 70.557961 1.089826 CG2 CB CA
ICOOR_INTERNAL 2HG2 120.032188 70.525108 1.089862 CG2 CB 1HG2
ICOOR_INTERNAL 3HG2 119.987984 70.541740 1.089241 CG2 CB 2HG2
ICOOR_INTERNAL HB -120.292923 71.020676 1.089822 CB CA CG2

Residue identification information

PDB atom names, Rosetta atom
types, and partial charges

Polymer connectivity information

Bond connectivity information

Defining side-chain torsion angles

Defining proton side-chain torsion
angle sampling

Residue properties
Defining parameters for neighbor
calculations

17

ICOOR_INTERNAL HA -120.513664 70.221680 1.090258 CA N CB
ICOOR_INTERNAL LOWER -149.999969 58.300030 1.328684 N CA C
ICOOR_INTERNAL H 180.000000 60.849979 1.010000 N CA LOWER

The centroid residue parameters can be found in /centroid/residue_types directory. As
an example, the centroid parameter file for Threonine is shown below:

NAME THR
IO_STRING THR T
TYPE POLYMER #residue type
AA THR
ATOM N Nbb NH1 -0.47
ATOM CA CAbb CT1 0.07
ATOM C CObb C 0.51
ATOM O OCbb O -0.51
ATOM CB CB CT1 0.14
ATOM H HNbb H 0.31
LOWER_CONNECT N
UPPER_CONNECT C
BOND N CA
BOND N H
BOND CA C
BOND CA CB
BOND C O
PROPERTIES PROTEIN POLAR
NBR_ATOM CEN
NBR_RADIUS 3.025
FIRST_SIDECHAIN_ATOM CB
ICOOR_INTERNAL N 0.000000 0.000000 0.000000 N CA C
ICOOR_INTERNAL CA 0.000000 180.000000 1.458001 N CA C
ICOOR_INTERNAL C 0.000000 68.800049 1.523257 CA N C
ICOOR_INTERNAL UPPER 149.999954 63.800026 1.328685 C CA N
ICOOR_INTERNAL O 180.000000 59.199905 1.231016 C CA UPPER
ICOOR_INTERNAL CB -121.983574 68.467087 1.539922 CA N C
ICOOR_INTERNAL LOWER -149.999969 58.300030 1.328684 N CA C
ICOOR_INTERNAL H 180.000000 60.849979 1.010000 N CA LOWER

##centroid-specific
ATOM CEN CEN_THR H 0.0
BOND CA CEN
ICOOR_INTERNAL CEN -128.951279 72.516479 2.072556 CA N C

Residue structure defined in
internal coordinates

Residue identification information

PDB atom names, Rosetta atom
types, and partial charges

Polymer connectivity information

Bond connectivity information

Residue structure defined in
internal coordinates

Residue properties
Defining parameters for neighbor calculations

Centroid-specific information

18

Unit 3: Calculating energies in PyRosetta

The pose object gives us a framework for manipulating the protein structure, sampling different
conformations. The PyRosetta score functions allow us to evaluate the approximate free energy
of each conformation. In general form, the score function takes in a pose object and outputs a
score that represents its energy.

3.1 Introduction to the score functions

There are over 30 different components to the score function, and each algorithm, from docking
to loop modeling typically uses its own combination of components and component weights. A
comprehensive table of all scoring components and their abbreviations can be found in the index.
The ‘standard’ score function can be loaded up as follows:

>>name = ‘standard’
>>my_scorefxn = create_score_function(name)
>>print my_scorefxn
ScoreFunction::show()
weights: (fa_atr 0.8) (fa_rep 0.44) (fa_sol 0.65) (fa_intra_rep 0.004)…

Printing the score function information for the standard score function lists, among other things,
all non-zero weights and their respective components.

To calculate the energy of a given pose under the score function, simply pass the pose object into
the score function:

>>my_scorefxn(my_pose)
465.88104573

There are primarily two forms of representing a protein in Rosetta: full-atom and centroid mode.
Some scoring components require full-atom mode, others centroid mode, and others work for
both modes. When scoring a Pose, the centroid/full-atom representation of that Pose needs to be
compatible with all scoring components in the ScoreFunction.

The standard centroid-mode scoring function is:

>>scorefxn = create_score_function(‘cen_std’)
>>print scorefxn
<< ScoreFunction::show():
weights: (vdw 1) (pair 1) (env 1) (cbeta 1)

19

A list of the available scoring function weight sets can be found in
/minirosetta_database/scoring/weights/ in the PyRosetta directory. They can be
opened, viewed, and edited using any Text Editor and they simply list the components and their
weights. There are two types files in this folder: weight sets and patches. Weight sets can be
used as described above to create a ScoreFunction from scratch. Patches are applied to a
weight set and modify or add additional components to that weight set. In the below example,
the score12 weight patch (score12.wts_patch) is applied to the standard weight set
(standard.wts):

>>scorefxn = create_score_function_ws_patch(‘standard’, ‘score12’)

The patches allow for additional flexibility when setting up a score function. For example, the
score4L patch adds additional components for scoring loops models, such as chain-break
penalties.

3.3 Scoring components

The most common score function components are:

Note that a number of scoring components are compatible with both full-atom and centroid
mode.

 Rosetta Full-atom Scoring Functions
Van der Waals net attractive energy FA fa_atr
Van der Waals net repulsive energy FA fa_rep
Hydrogen bonds, short and long-range,
(backbone)

FA/CEN hbond_sr_bb, hbond_lr_bb

Hydrogen bonds, short and long-range,
(side-chain)

FA hbond_sc, hbond_bb_sc

Solvation (Lazaridis-Karplus) FA fa_sol
Dunbrack rotamer probability FA fa_dun
Statistical residue-residue pair potential FA fa_pair
Intra-residue repulsive Van der Waals FA fa_intra_rep
Electrostatic potential FA hack_elec
Disulfide statistical energies (S-S
distance, etc.)

FA dslf_ss_dst, dslf_cs_ang,
dslf_ss_dih, dslf_ca_dih

Amino acid reference energy (chemical
potential)

FA/CEN ref

Statistical backbone torsion potential FA/CEN rama
Van der Waals “bumps” CEN vdw
Statistical environment potential CEN env
Statistical residue-residue pair potential
(centroid)

CEN pair

Cb cbeta

20

3.3 Creating or editing a score function

Instead of using a pre-made score function, such as ‘standard’ or ‘docking’, you can also create
your own score function from scratch using the various scoring components available in Rosetta.
By definition, an empty score function is a score function in which all component weights are set
to zero. To add a component, simply set the weight of the desired component to a non-zero
number. In the following example, we build a simple score function that includes only the
repulsive LJ-potential and hydrogen bonding.

>>my_scorefxn = ScoreFunction()
>>my_scorefxn.set_weight(fa_rep, 1.0)
>>my_scorefxn.set_weight(hbond_lr_bb, 1.0)
>>my_scorefxn.set_weight(hbond_sr_bb, 1.0)

3.4 Accessing more detailed scoring information

Beyond simply returning the total energy of a given pose, you can access a comprehensive
breakdown of the contribution of each scoring component to the total score.

>>my_scorefxn.show(my_pose)
--
 Scores Weight Raw Score Wghtd.Score
--
 fa_rep 1.000 981.311 981.311
 hbond_sr_bb 1.000 -56.655 -56.655
 hbond_lr_bb 1.000 -103.050 -103.050

 Total weighted score: 821.606

The pose object also stores the latest energy calculations, and you can access this information
through the energies() object. Through energies(), you can access a further breakdown of
the scoring information on a residue by residue basis.

>>res_num = 5
>>my_pose.energies().show(res_num)
E fa_rep hbond_sr_bb hbond_lr_bb
E(i) 5 0.53 0.00 0.00

You can also access individual scoring components from individual residues directly:

>>my_pose.energies().residue_total_energies(res_num)[fa_rep]
0.532552907292

21

Unit 4: Simple simulations in PyRosetta

In molecular modeling using PyRosetta we are generally searching a conformational space under
a given energy function for the global minimum. The predominant sampling strategy used to
search this conformational space is Monte Carlo-based sampling using a large number of short
trajectories or paths. The lowest energy structure accessed in each trajectory is stored as a
‘decoy’. Theoretically, assuming adequate sampling and discrimination, the lowest energy
decoy corresponds to the global minimum.

4.1 Introduction to the Monte Carlo sampling algorithm

In Monte Carlo-base sampling, random perturbations, or ‘moves’ are made to a starting structure
and those moves are either accepted or rejected based on the resulting change of energy due to
that move.

The most common basis for accepting or rejecting a move is through the Metropolis Criterion.
The Metropolis criterion states that if the change in energy (ΔE) is less than zero, that is the
move decreased the energy, then always accept the move. If the change in energy is greater than
zero, then accept that move only some of the time. The probability of accepting that move is a
function of how much it increased the energy by:

P(ΔE) = e-ΔE/kT

 In practical terms this means:
1. A move is made to the structure
2. The energy is calculated and compared with the previous energy -> ΔE
3. If ΔE < 0 the move is accepted
4. If ΔE > 0, then:

• The probability (P) of the move is calculated based on ΔE
• A random number, i, is generated from 0 to 1
• If i < P, then the move is accepted, otherwise the move is rejected

Note the role of kT in the calculation of the probability of acceptance. For a given ΔE, as kT
increases, the probability of acceptance increases. At higher values of kT, the structure can more
easily escape local minima, but the average energy of the structure is higher; at lower values of
kT, the structure is more likely to get ‘stuck’ in a local minima, but will generally have a lower
energy. In simulated annealing, kT starts at a high value and either linearly or geometrically
decreases to a final value through the course of the simulation. This allows the structure to both
escape local minima and also settle into a global minimum.

22

4.2 Monte Carlo Object

The MonteCarlo object keeps track of all variables necessary to run Monte Carlo simulations in
Rosetta and also applies the Metropolis criterion. The MonteCarlo object is initialized with a
score function to calculate the energy, a pose object to serve as a reference structure, and the
temperature, which is used in the Metropolis Criterion:

>>kT = 1.0
>>mc = MonteCarlo(scorefxn, pose, kT)

Following a move to the pose object, the Metropolis Criterion is applied using:

>>mc.boltzmann(pose)

Within this function, the energy of inputted pose is calculated using the score function and
compared to the energy of the last accepted pose object. The Metropolis criterion is applied to
the pose; if the move was accepted than the inputted pose remains unchanged, and the last
accepted pose, within the MonteCarlo object, is updated. If the move was rejected, the inputted
pose is switched to the last accepted pose, and the last accepted pose is unchanged.

The lowest energy structure assessed by the MonteCarlo object can be accessed as well. The
lowest energy structure is not only recovered at the end of the simulation, but often intermittently
throughout the simulation as well.

>>mc.recover_low(pose)

For simulated annealing, the temperature (or kT) is decremented throughout the simulation. This
can be done by changing the temperature that the MonteCarlo object uses for evaluating the
Metropolis Criterion:

>>kT = 2.0
>>mc.set_temperature(kT)

In addition to applying the Metropolis Criterion, the Monte Carlo object stores a variety of
information on acceptance and rejection:

>>mc.show_scores()
<<protocols.moves.MonteCarlo: MonteCarlo:: last_accepted_score,lowest_score:

-8.02917 -8.02917

>>mc.show_counters()
<<protocols.moves.MonteCarlo: unk trials= 60000; accepts=

0.6766; energy_drop/trial= 0.00465

>>mc.show_state()
<<protocols.moves.MonteCarlo: MC: 1 -8.02917 -8.02917 -8.02917 -8.02917

0 0 0 2

23

<<protocols.moves.MonteCarlo: unk trials= 60000; accepts=
0.6766; energy_drop/trial= 0.00465

-8.02916688224

Finally, the MonteCarlo object can be reset with a new pose. This will wipe clean all
information about previous scores, acceptance rates, or last-accepted and lowest-energy poses.

>>mc.reset(pose)

4.3 A simple Monte Carlo simulation for peptide folding

Here is a simple Monte Carlo algorithm that folds a small polyalanine peptide from an extended
strand to an α-helix. The score function consists purely of Hydrogen bonding and Van der Waals
terms. Perturbations are made to the structure by randomly selecting a residue and then
perturbing its φ and ψ by a random magnitude, from -25˚ to 25˚. The Monte Carlo object
evaluates the Metropolis Criterion after each application of the perturbation.

p=Pose()
pose_from_pdb(p, “mc_initial.pdb”)

#set up score function
scorefxn = ScoreFunction()
scorefxn.set_weight(hbond_sr_bb,1.0)
scorefxn.set_weight(vdw, 1.0)

#set up MonteCarlo object
mc = MonteCarlo(p, scorefxn, 1.0)

#set up mover
def perturb_bb = function(pose):
 resnum = randint(i, pose.total_residue())
 pose.set_phi(resnum, pose.phi(resnum)-25+random()*50)
 pose.set_psi(resnum, pose.psi(resnum)-25+random()*50)
 return pose

#set up protocol
def my_protocol = function(pose)
 mc.reset(pose)
 for i in range(1,60000):
 perturb_bb(pose)
 mc.boltzmann(p)

 if (i%1000 == 0):
 mc.recover_low(p)

 #output lowest-energy structure
 mc.recover_low(p)
 return pose

my_protocol(pose)
dump_pdb(p, “mc_final.pdb”)

The abov
lowest en

Figure 4.
the simpl

4.4 Job D

Unlike in
solution,
The lowe
generally
generatio
to genera

The Job D
the energ
accompa
function
can be in

>>jd = P
>>jd.nat

Once the
previous

>>while
 pose.
 my_pr
 jd.ou

ve script star
nergy structu

.3 The initial
le Monte Ca

Distributor

n the previou
Rosetta pro

est-energy st
y represents t
on and storag
ate decoys.

Distributor o
gy and other
anies all files
that all deco

nputted, from

PyJobDistr
tive_pose

e Job Distribu
protocol as

(jd.job_c
.assign(st
rotocol(p
utput_deco

rts with the s
ure that is rec

l extended st
arlo simulatio

us example o
tocols typica
tructure of ea
the global m
ge of a large

object direct
metrics of e

s output by th
oys will be e
m which an R

ributor("te
= starting

utor is set up
an example)

complete ==
tarting_pos
pose)
oy(pose)

starting struc
covered (mc

trand structu
on.

of peptide fo
ally require a
ach trajector

minimum. Th
 number of d

s decoy gene
each decoy in
he job distrib
valuated in f

RMSD to the

est_output
g_pose

p, it is used i
):

= False):
se)

cture (mc_in
c_final.pdb)

ure (left) and

olding, in wh
a large numb
ry is stored a
he Job Distr
decoys and a

eration, outp
n a score file
butor, the nu
for the score
e decoy is ca

t", 5, scor

in the follow

nitial.pdb), sh
is shown on

d the final he

hich a single
ber of short
as a ‘decoy’.
ibutor objec
allow for the

puts each dec
e. It is initia
umber of dec
e file. Option
alculated and

refxn_high

wing way wit

hown on the
n the right:

elical structu

trajectory le
independent
 The lowest

ct is designed
e use of para

coy as a PDB
alized with a
coys desired
nally, a refer
d recorded in

h)

th a protocol

lower left.

ure (right) fro

ead to a folde
t trajectories
t energy dec
d to facilitate
allel processi

B file, and st
file tag line

d, and the sco
rence structu
n the scorefil

l (using the

24

The

om

ed
s.
coy
e the
ing

tores
 that

ore
ure
le.

25

While a decoy is being generated, the Job Distributor will create a temporary file called
test_output_0001.pdb.in_progress. Once that decoy is complete, it will be renamed
test_output_0001.pdb, for decoy #1. Through the use of these temporary files, the script can
be run multiple times for multiple processors all working on the same pool of decoys. In
addition to the decoy structures, a score file is generated that lists each decoy, its RMSD to a
reference structure and a break-down of its score. This scorefile is stored as test_output.fasc
for all-atom structures and test_output.sc for centroid structures.

Additional information, such as particular measurements like a loop RMSD, or a specific
residue-residue distance can be stored as an additional line in the scorefile can be added with the
following line, just prior to outputting the decoy.

>>jd.additional_decoy_info(“loop_RMSD” + str(loop_rmsd)” + “res49A_res20B” +

str(res_dist)”)

 Note that if a MonteCarlo object is used in my_protocol, in the above example, it must be reset
each time the function is called. Otherwise information from the previous decoy will be retained
and recovered in the Monte Carlo object. This will lead to trajectories that are not independent.

26

Unit 5: Conformational sampling in PyRosetta – Movers

Rosetta uses a large variety of structural perturbations, or ‘moves’ that are specifically designed
for efficient conformational sampling for proteins. These include moves that alter backbone
torsion angles, optimize side chain conformations, manipulate rigid-body positions of multiple
protein chains. While in theory all these moves can be enacted using the functions that
manipulate protein geometry that we’ve already learned (i.e. pose.residue().set_phi()),
in practice, these moves are often very specific, complex, combinations of smaller perturbations,
that have been designed to search the conformation space in a computationally efficient manner.
These moves, called Movers, are among the most powerful features of Rosetta and have been
rigorously benchmarked and tested on protocols published in scientific literature.

 5.1 Introduction to the Mover base class

Movers are one of the main archetypal classes in PyRosetta. After construction, their basic
function is to be ‘applied’ to a pose, which, for most traditional movers, means perturbing the
structure in some way. There are a large variety of Movers in PyRosetta. Learning to use them
requires understanding three things:

1. Mover construction – what is needed to construct the mover? Some Movers are very
simple and require almost nothing for construction. Others require many other objects
that define how the Mover is implemented.

2. Mover options – what options exist to manipulate the Mover? In additional to options in
during constructions, Movers often have a large number of variables that can be altered
from the default settings.

3. Mover.apply(pose) – What does the mover do when you apply it to a Pose? The
Mover will use all the instructions given to it during construction and option-setting to
modify how the mover is implemented on a Pose object.

Just as the ScoreFunction object is principally passed a Pose object and returns its energy
with ScoreFunction(pose), a Mover is implemented on a Pose object with
Mover.apply(pose).

5.2 Limiting the search space with MoveMap

In Rosetta, we typically try to define the limits of the conformation space for a particular
molecular modeling problem in terms of which degrees of freedom (in internal coordinates) we
allow to be flexible, and which degrees of freedom we want to remain fixed. The MoveMap
gives us a way to implement that with the Movers.

27

Movers typically apply changes on a protein structure by perturbing its internal coordinates,
backbone torsion angles, side-chain torsion angles, and rigid-body jumps (see Unit 1). The
MoveMap contains instructions about internal coordinates are allowed to move (be flexible) and
which ones are to remain fixed. The MoveMap is a generic object that can be applied used with
any Pose, but it is typically used for the specific application of a Mover or set of Movers.
Construct a MoveMap as follows:

>>movemap = MoveMap()

On construction, all degrees of freedom are set to False, indicating that neither backbone
torsion angles, nor side-chain torsion angles are allowed to move. We can set specific degrees of
freedom to True, for example for residue 5. We can also set a range of residues to be true for
backbone torsion angles:

>>movemap.set_bb(2, True)
>>movemap.set_chi(2,True)
>>movemap.set_bb_true_range(5,10)

We can allow the rigid-body orientation of one protein chain relative to another to be altered by
allowing the jump (jump #1 in the example) that defines the orientation to be flexible:

>>movemap.set_jump(1, True)

Finally, you can view the instructions for the MoveMap:

>>movemap.show(10)
<<
 resnum BB CHI
 001 FALSE FALSE
 002 TRUE TRUE
 003 FALSE FALSE
 004 FALSE FALSE
 005 TRUE FALSE
 006 TRUE FALSE
 007 TRUE FALSE
 008 TRUE FALSE
 009 TRUE FALSE
 010 TRUE FALSE

5.3 Backbone Movers: SmallMover and ShearMover

The simplest movers that exist in Rosetta are the backbone movers SmallMover and
ShearMover. They are used frequently to make small perturbations to the backbone structure
for structural refinement and relaxation simulations.

28

SmallMover

The SmallMover makes small individual random perturbations on the φ and ψ backbone torsion
angles of n residues among the all residues that are allowed to move. By default, n = 1. A
MoveMap defines which residues are allowed to move. In making the perturbation, the
SmallMover does the following each time:

1. Select random residue, i
2. For φi, select a perturbation magnitude randomly between (0 and max_angle)
3. new_φi = old_ φi ± perturbation
4. Do the same as Step 2-3 for ψi
5. accept or reject (new_ φi, new_ ψi) based on Metropolis Criterion, where kT is user

inputted, and ΔE = rama(new_ φi, new_ ψi) – rama(old_ φi, old_ ψi). If move is
accepted, apply move and continue. If move is rejected, go back to Step 2.

In the above description, rama is the Ramachandran score component (rama), based on the
statistical probability of observing a given (φ,ψ) for a given residue type. This biases backbone
torsion angle sampling towards allowable regions of the Ramachandran space and ensures that
the simulation isn’t wasting time sampling in disallowed regions.

The construction of a SmallMover requires a MoveMap, the number of moves the SmallMover
should make for each SmallMover.apply(pose), and the temperature that the SmallMover
should use when applying the Metropolis Criterion during torsion angle selection. Additionally,
the max_angle can be set for all residues, both in a secondary structure-specific, and secondary-
structure independent manner:

>>movemap = MoveMap()
>>movemap.set_bb(True)
>>n_moves = 5
>>kT = 1.0
>>smallmover = SmallMover(movemap, n_moves, kT)
>>smallmover.angle_max(10)
>>smallmover.angle_max(‘E’, 5) #beta-strand residues
>>smallmover.angle_max(‘H’, 10) #helix residues
>>smallmover.angle_max(‘L’, 20) #loop residues

Finally, as with all Movers, a SmallMover is applied to a Pose with:

>>smallmover.apply(pose)

The SmallMover can be used to replace the perturb_BB function in the example peptide
folding script in Section 4.3.

29

ShearMover

Most backbone movers in Rosetta sample backbone conformations by perturbing the internal
coordinates of the protein. One drawback to this approach is that, in a continuous polypeptide
chain, even small torsion angle perturbations in the beginning or middle of the chain can have
large downstream consequences on the protein structure in Cartesian coordinates once the chain
is ‘refolded’ with the new torsion angles. To accommodate this, Rosetta has a number of
backbone movers that are designed to allow local perturbations of backbone conformation while
minimizing global changes in the protein structure as a consequence. The most simple of these
movers is the ShearMover.

In many respects the ShearMover is similar to the SmallMover. They both use the same
arguments in construction. The difference is that while the SmallMover perturbs φi and ψi, the
ShearMover perturbs, φi and ψi-1. The reason for this is a mathematical relationship that allows
one of those two torsion angles to be perturbed and the other to be perturbed in such a way as to
partially eliminate the downstream effect of the torsion angle perturbation, thus altering the
torsion angle while minimizing the changes to the overall global structure. The syntax and usage
of the ShearMover is identical to the SmallMover:

>>shearmover = ShearMover(movemap, n_moves, kT)
>>shearmover.angle_max(10)
>>shearmover.angle_max(‘E’, 5) #beta-strand residues
>>shearmover.angle_max(‘H’, 10) #helix residues
>>shearmover.angle_max(‘L’, 20) #loop residues
>>shearmover.apply(pose)

5.4 Backbone Movers: FragmentMovers

The SmallMover and ShearMover perturb the existing backbone torsion angles by a random
amount. There is a second type of backbone mover that changes the torsion angle not by
perturbing the original torsion angle of a single residue by some small amount, but by replacing
the torsion angles for a set of consecutive residues, known as a’fragment’ with a new set of
torsion angles for those residues (a new fragment) derived from a database of low-energy
fragments for that sequence of residues, known as a fragment library.

This method, known as fragment insertion is critical to Rosetta’s ab initio structure prediction
and loop modeling methods and allows for a fast, efficient, search of a much wide range of
conformational space than SmallMovers and ShearMovers. In Rosetta we primarily use two
lengths of fragments, 3mer fragments and 9mer fragments. 3mer fragments are predominantly
used for most modeling applications as 9mer fragment insertion is generally too disruptive for all
applications but protein folding.

30

A fragment library can be generated for a given protein sequence by going to Robetta website
(http://robetta.bakerlab.org/fragmentsubmit.jsp) and submitting the desired sequence in FASTA
format. The method for generating a fragment library involves searching a non-redundant subset
of the Protein Data Bank for the 100 highest-frequency fragments that contain a similar sequence
profile to the input sequence, in window-lengths of the same size as the fragment size.
Theoretically, this method relies on the observation that local low-energy backbone
conformations are partially a result of the local sequence. The fragment insertion method biases
backbone sampling towards known low-energy conformations for a given local sequence.

A FragmentMover requires a fragment library (a FragSet) from which to select fragments,
and a MoveMap, which specifies which residues are allowed to be altered. A fragment library
can be read in as follows, in this example, for a 3mer fragment library file named
test_in_3mer.frag:

>>fragset = ConstantLengthFragSet(3)
>>fragset.read_fragment_file(“test_in_3mer.frag”)

>>movemap = MoveMap()
>>movemap.set_bb(True)
>>frag_mover = ClassicFragmentMover(fragset, movemap)
>>frag_mover.apply(pose)

Like the SmallMover, standard fragment insertion that replace a 3-residue or 9-residue window
of backbone torsion angles can have large downstream effects on the protein structure during the
re-folding step, leading to drastic changes in the global structure. To address this, there is a
fragment mover called SmoothFragmentMover, which selects fragments that minimize
downstream effects. This leads to sampling of diverse local conformations without massively
altering the global structure, making it ideal for structural refinement or relaxation.

>>frag_mover = SmoothFragmentMover(fragset, movemap)
>>frag_mover.apply(pose)

5.5 Energy Minimization

Minimizing the energy with respect to certain flexible degrees of freedom is a quick and easy
way to lower the energy of a given structure without altering its structure substantially. Often
significant decreases in energy can be achieved with minute changes in backbone or side-chain
torsions. Energy minimization is common in Rosetta and often follows explicit perturbations
and precedes a Monte Carlo Metropolis Criterion step. Essentially, it provides the lowest energy
structure in the immediate local vicinity of a conformation just after an explicit perturbation step.

31

Energy Minimization in Rosetta is carried out primarily through the MinMover. In the
construction of the MinMover, one mainly needs to supply the energy function that is to be
minimized and a MoveMap which defines which conformational degrees of freedom to minimize
over. Additionally, one can provide the minimization type used and the threshold for
minimization (i.e. when minimization is considered complete), also known as the ‘tolerance’.

>>movemap = MoveMap()
>>movemap.set_bb(True)
>>scorefxn = create_score_function(‘standard’)
>>tolerance = 0.01
>>min_type = “dfp_min”

>>minmover = MinMover(movemap, scorefxn, min_type, tolerance, True)
>>minmover.apply(pose)

The MinMover can also be constructed with default settings where only specific options are
changed later:

>>minmover = MinMover()
>>minmover.score_function(scorefxn)
>>minmover.movemap(movemap)
>>minmover.tolerance(tolerance)

There are primarily two minimization methods used in Rosetta: Linear minimization, or steepest-
descent minimization (linmin), and Davidson-Fletcher-Powell minimization (dfp_min).
Linmin is computational cheaper than dfp_min, but generally minimizes less well.

5.6 Other types of movers

In addition to the traditional movers that directly perturb the protein structure by altering their
internal coordinates, there are other types of movers as well. Combination movers, such as the
SequenceMover and RepeatMover, are essentially ‘mover containers’ that execute the mover(s)
within them with some instruction. SequenceMover is a mover with a list of movers within it;
when applied, it applies all the movers within it consecutively.

>>sequence_mover = SequenceMover()
>>sequence_mover.add_mover(small_mover)
>>sequence_mover.add_mover(minmover)
>>sequence_mover.apply(pose)

In the above example, when sequence_mover.apply(pose) is called, the SequenceMover
will apply small_mover and then minmover.

RepeatMover is a mover that repeats the mover within it a user-specified number of times, in
this case it will repeat the small_mover 5 times when it is applied to the pose.

32

>>repeats = 5
>>repeat_mover = RepeatMover(small_mover, repeats)
>>repeat_mover.apply(pose)

The most important of these ‘container’ movers is the TrialMover. The TrialMover contains
a user-inputted Mover and MonteCarlo object. On TrialMover.apply(pose), it executes
the mover contained within it, and then applies MonteCarlo.boltzmann() on the resulting
pose, accepting or rejecting that move based on the Metropolis Criterion.

>>mc = MonteCarlo(scorefxn, pose, kT)
>>trial_mover = TrialMover(small_mover, mc)
>>trial_mover.apply(pose)

The most common trial movers used in Rosetta involve using a sequence mover that makes one
or more explicit perturbations, followed by energy minimization, followed by the
TrialMover’s Metropolis Criterion:

>>smallmin = SequenceMover()
>>smallmin.add_mover(small_mover)
>>smallmin.add_mover(minmover)
>>smallmintrial = TrialMover(smallmin, mc)
>>smallmintrial.apply(pose)

Finally, we have a mover that switches a Pose between full-atom and centroid-mode
representation. This is useful during multi-scale protocols in which a protein starts out in
centroid-mode for most of the conformational search and then is converted into full-atom mode
for refinement.

>>to_centroid = SwitchResidueTypeSetMover(‘centroid’)
>>to_centroid.apply(pose)

>>to_fullatom = SwitchResidueTypeSetMover(‘fa_standard’)
>>to_fullatom.apply(pose)

A pose that has just been converted into a full-atom pose has coordinates for all atoms at all side-
chains but the torsion values for the side-chains is initialized to ‘0’. From here either the side-
chain torsion angle conformations can be optimized to sensible values using side-chain packing
(Unit 6), or they can be recovered from a reference full-atom structure, such as a starting
structure (in the example below, starting_pose) using the ReturnSidechainMover:

>>recover_sidechains = ReturnSidechainMover(starting_pose)
>>recover_sidechains.apply(pose)

33

Unit 6: Side-chain Packing and Design

The main internal coordinates that define a protein structure are the backbone φ and ψ angles and
the side-chain torsion angles χn. In Rosetta, the optimization of side-chain conformations is
primarily handled through side-chain packing. The ‘packer’ is a self-contained algorithm that is
called by many protocols and functions within Rosetta. The packer takes an input protein
backbone structure, and uses a simulated-annealing Monte Carlo algorithm to identify the lowest
energy side-chain conformations for each residue. Sampling in the packer is carried out by
selecting ‘rotamers’ or distinct low-energy side-chain conformations, from a rotamer library.
Like the MoveMap that the backbone movers used in the previous unit, the side-chain packer
movers use an object called a PackerTask, to provide instructions to the packer about what
residues are allowed to move.

For a given residue, the side-chain packer selects the optimum rotamer from a set of rotamers for
that residue, based its interactions with surrounding residues. In the case of simply optimizing
the side-chain conformation, this rotamer set comprises exclusively of low-energy side-chain
conformations for that residue type. In the case of protein design, however, the rotamer set used
for packing will include the rotamers for all residue-types allowed in that position by the design
instructions (again provided by the PackerTask). In this manner, the same algorithm is used
for side-chain packing and protein design.

6.1 The PackRotamersMover

Side-chain packing in Rosetta is primarily carried out using a mover called the
PackRotamersMover. Construction of a PackRotamersMover requires a score function that will
be used in the side-chain packing algorithm within the packer, and a PackerTask, which specifies
which residues are allowed to move. We will go over the PackerTask in the following section.

>>packer_task = standard_packer_task(pose)
>>scorefxn = create_score_function(‘standard’)
>>pack_mover = PackRotamersMover(scorefxn, packer_task)
>>pack_mover.apply(pose)

On ‘apply’, the PackRotamersMover will optimize the side-chain conformations in the inputted
pose while following any instructions from the PackerTask.

6.2 The PackerTask

The PackerTask provides the packer with restrictions by defining the rotamer set allowed for
packing for each residue in the Pose. The standard_packer_task function creates a standard
packer task that can be subsequently manipulated:

34

>>packer_task = standard_packer_task(pose)
>>print packer_task
<<
#Packer_Task

resid pack? design? allowed_aas
1 1 1 ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET...
2 1 1 ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET...
3 1 1 ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET...
4 1 1 ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET...
5 1 1 ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET...
6 1 1 ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET...
….

Printing the PackerTask shows the instructions that are currently contained within the task. For
each residue in the Pose (resid), it shows whether that residue is allowed to be packed, and
allowed to be designed. A residue that is forbidden from being packed will maintain its original
rotamer throughout the packing. A residue that is allowed to be packed, but not allowed to be
designed, will maintain its original residue-type, and the packer will use a rotamer set containing
only rotamers for that residue-type. A residue that is allowed to be packed and designed will be
optimized for both residue-type and side-chain conformation, the packer will use a rotamer set
containing rotamers from all allow-able residue-types. The allowable residue-types for each
residue position are displayed as allowed_aas.

The ‘standard’ task has essentially no restrictions – it will allow both repacking and redesign of
all residues in the Pose to any residue-type. This is the default PackerTask, all additional
instructions serve to restrict the task in specific ways, such as by holding certain residues fixed.
There are a number of functions that manipulate the PackerTask:

>>packer_task.restrict_to_repacking()
>>print packer_task
<<
resid pack? design? allowed_aas
1 1 0 ALA_p:NtermProteinFull,
2 1 0 GLU,
3 1 0 ALA,
4 1 0 LYS,
…

Restrict_to_repacking forbids all residues from being designed, thus allowing only the original
residue-type for each residue.

>>packer_task.temporarily_fix_everything()
>>packer_task.temporarily_set_pack_residue(7, True)
>>packer_task.temporarily_set_pack_residue(8, True)
>>print packer_task
<<
resid pack? design? allowed_aas

35

...
5 0 0 SER
6 0 0 GLY
7 1 0 CYS
8 1 0 THR
9 0 0 ASP
...

The above functions fix all residues to their original rotamer, and allow repacking of only
specific residues.

6.3 The Resfile

One way to input specific, custom, instructions for side-chain packing is by using an input file
called the resfile. The resfile contains the same information as the pack_task and allows the user
to directly manipulate each residue. A resfile can be generated for a given pose or PDB file as
follows:

>>generate_resfile_from_pose(pose, “test.resfile”)
>>generate_resfile_from_pdb(pdb_file, “test.resfile”)

In order to edit the resfile you will have to open it with a Text Editor of your choice:

start
 1 A NATRO
 2 A NATRO
 3 A NATRO
 4 A NATRO
 5 A NATRO
 6 A NATRO
 7 A NATRO
 8 A NATRO

The first column is the residue number, the second column is the chain letter, and the third
column contains instructions for that residue:

NATRO – instructs the packer to keep the sidechain conformation fixed. The rotamer set for that
residue contains only the native rotamer.
NATAA – instructs the packer to maintain the original residue type, but allow the sidechain
conformation of that residue to be optimized by the packer. The rotamer set for that residue
contains all the rotamers from the rotamer library for that residue-type only.
PIKAA XXXX – instructs the packer to allow the side-chain to be mutated into any one of the
proceeding amino acids (one-letter codes). The rotamer set for this residue contains all the
rotamers from the rotamer library for all of the allowable residue-types.
ALLAA – instructs the packer to allow the side-chain to be mutated into any of the 20 amino
acids. The rotamer set contains all of the rotamers in the rotamer library for all 20 amino acids.

36

A task can be created from the resfile using:

>>packer_task = standard_packer_task(pose)
>>packer_task.read_resfile(“test.resfile”)
>>packer = PackRotamersMover(scorefxn, packer_task)
>>packer.apply(pose)

Now, when you print the packer_task, it will reflect all of the instructions from the resfile.

6.4 TaskFactory

A PackerTask is fairly limited. It applies only to the Pose it was constructed for and is
difficult to modify on the fly. If the Pose amino-acid sequence is changed, the original
PackerTask that was constructed with it becomes obsolete. In some cases the exact residues
that are to be packed varies as the structure changes. For example, in protein-protein docking,
only the interface residues are supposed to be packed, but the residues that make up the interface
change throughout the docking process. In these cases, a TaskFactory can be used, to create a
task on the fly, each time PackRotamers.apply(pose) is called.

A TaskFactory’s primary job is to create a PackerTask based on a list of instructions, called
TaskOperations, that given to it. Most instructions that can be given to a PackerTask, have
analogous instructions for the TaskFactory.

>>tf = standard_task_factory()
>>tf.push_back(RestrictToRepacking())
>>tf.push_back(ReadResfile(“test.resfile”)
>>tf.push_back(RestrictToInterface(jump_num)
>>packer_task = tf.create_task_and_apply_taskoperations(pose)

In the above example, the TaskFactory will generate a task that restricts all residues to
repacking, puts in additional restrictions based on a user-inputted resfile, and finally restricts
packing to residues at the interface defined by the Jump ‘jump_num’.

Additionally, the TaskFactory can be sent to a PackRotamersMover. The Mover will then
create a new PackerTask each time PackRotamers is applied:

>>packer_mover = PackRotamersMover(scorefxn)
>>packer_mover.task_factory(tf)
>>packer_mover.apply(pose)

A list of some of the TaskOperations available include:

37

TaskFactory TaskOperations
tf = standard_task_factory() Creates a default TaskFactory
tf.push_back(IncludeCurrent()) includes the current rotamers in the Pose to the

rotamer sets used for packing. Defaulted on
tf.push_back(ReadResFile(“test.resfile”)) applies instructions from the resfile when

creating a PackerTask
tf.push_back(NoRepackDisulfides()) holds disulfide bond cysteine side-chains fixed.

Defaulted on.

tf.push_back(RestrictToInterface(1)) allows repacking only at the interface defined
by the jump number (in example jump# 1)

pr = PreventRepacking()
 pr.include_residue(5)
 tf.push_back(pr)

turns off repacking for specified residues
(residue #5 in example)

rr = RestrictResidueToRepacking()
rr.include_residue(5)
tf.push_back(rr)

turns on repacking for specified residues
(residue #5 in example)

6.5 Other side-chain movers

Besides side-chain packing there are two other side-chain movers. The first is the RotamerTrials
mover. This mover acts as a ‘cheap’ version of the standard packer. It’s much faster than
standard packing and quickly finds local minima in side-chain conformation space. The standard
PackRotamersMover is much better at finding the global minimum in side-chain conformation
space. RotamerTrialsMinMover is a variation of the RotamerTrialsMover that is uses
energy minimization to minimize the torsion angles while selecting rotamers. It is the only
mover capable of going off-rotamer in search of low-energy side-chain conformations.

>>rot_trials = RotamerTrialsMover(scorefxn, tf)
>>rot_trials.apply(pose)
>>rt_min = RotamerTrialsMinMover(scorefxn, tf)
>>rt_min.apply(pose)

Finally, there are a number of wrapper functions that use the previous movers in highly specific,
but commonly used ways. For example, the mutate_residue function creates a point
mutation at a user-specified position on the pose. Below, residue #5 in the Pose is mutated to a
Serine.

>>mutate_residue(pose, 5, ‘S’)

38

Unit 7: Methods and Protocols

There are a number of standardized methods and protocols that use various movers to
accomplish certain modeling objectives. These protocols, such as loop modeling, protein-protein
docking, or protein design, are published in the scientific literature, rigorously benchmarked, and
already in frequent use by many in the molecular modeling community. Here we will introduce
some of the protocols that are available in PyRosetta. Please see the PyRosetta scripts section of
the PyRosetta website (http://www.pyrosetta.org) an updated list of available protocols and a
sample script demonstrating their usage.

7.1 Loop Modeling

In loop modeling, the objective is to sample low-energy conformations over a defined loop, or
range of residues. The challenge in this method is the loop residues are being sampled by
altering their backbone torsion angles, but the overall global structure of the protein (the non-
loop residues) are to remain fixed in space. The range of torsion angles in the loop residues that
satisfies this constraint is significantly smaller than the entire range of space accessible in the
allowable region of Ramachandran space. Any local torsional perturbation, mid-loop,
implemented by a SmallMover or FragmentMover, will alter the downstream global structure
of the protein during refolding. Rosetta addresses this by allowing chain-breaks to form in the
loop during loop modeling that allow local structures to be sampled while maintaining the global
structure of the protein. Then it uses a second algorithm to mend the chain-breaks, leading to
structures with varying low-energy, closed-loop conformations, that all have the same global
structure.

For a protein of length n, Rosetta defines a ‘loop’ between residues i and j, a ‘jump’ connecting
residues i and j, and a ‘cutpoint’ within the loop, in between residues i and j where the chain-
break will occur (see Figure 7.1). As was mentioned in Unit 2, the jump defines the position of
the second jump point in rigid body space relative to the first jump point. During refolding, the
Pose is refolded via its φ,ψ,ω values, placing residues in Cartesian space residue-by-residue, in
the standard N→C direction starting from residue 1 until it hits a cutpoint. Once it arrives at the
cutpoint residue, it uses the jump to place the position of residue j in Cartesian space, relative to
residue i, which has already been placed in Cartesian space through refolding. Then it refolds
from residue j, to the cutpoint, in the C→N direction, and refolds from residue j to residue n, in
the N→C direction. In this manner, φ/ψ perturbations between residues i and j will affect only
the structure of residues between i and j without altering the rest of the structure. The
downstream impact of torsional perturbations is eliminated by the presence of a ‘chain-break’.

Figure 7.

In Rosett
= a - 2 an
and j), an

>>i = 70
>>j = 80
>>cutpoi
>>n = po
>>loop1

Addition
use a Loo

>>loop_l
>>loop_l

7.2 Loop

In Rosett
list of ‘ed
(type n).

>>print
<<

A new fo
of the fol

.1: The refol

ta, by conven
nd j = b + 2.
nd the cutpoi

0
0
int = 75
ose.total_
= Loop(i,

nally, a set of
ops object as

_list = Loo
_list.add_l

p-modeling F

ta, a FoldTr
dges’ that ca
 A Pose alw

pose.fold

oldtree can b
ld tree descr

lding process

ntion, a loop
 The Loop o

int between

_residue()
, j, cutpoi

f loops can b
s an input an

ops()
loop(loop1)

Fold Tree

ree is used t
an each be of
ways contain

dtree()

be constructe
ibed in Figu

s using a loo

p between re
object in Ro
the loop (a r

int)

be specified b
nd can be use

)

to define ins
f one of two
ns a FoldTr

ed and then p
ure 7.1. The

op modeling

esidues a and
osetta is defin
residue in be

by the Loop
ed for single

structions for
types, a ‘pe

ree directing

passed in to
syntax for a

fold tree

d b, is define
ned by the re
etween i and

ps object. M
e loops or mu

r refolding.
ptide edge’

g its refoldin

the Pose obj
adding an edg

ed by residue
esidues that
j).

Most Loop pr
ultiple loops

A FoldTre
(type -1), or

ng which can

ject. Below
ge is:

es i and j, wh
define the lo

rotocol move
s:

ee consists o
r a jump edge
n be accessed

is a construc

39

here i
oop (i

ers

of a
e,
d:

ction

40

FoldTree().add_edge(node1, node2, edge_type). Note that all ‘peptide’ edges have
an type of -1, while the jump has an edge of type that is a positive integer, corresponding to the
jump number, in this case, 1. Also note that the direction of folding (N→C or C→N) is
described by the order of nodes used to define the edge. For N→C folding, node1 < node2, for
C→N folding, node1 > node2.

>>ft = FoldTree()
>>ft.add_edge(1,i,-1)
>>ft.add_edge(i,cutpoint,-1)
>>ft.add_edge(i,j,1)
>>ft.add_edge(cutpoint, j, -1)
>>ft.add_edge(j,n)

>>pose.foldtree(ft)

Finally you can check if a FoldTree is valid:

>>ft.check_fold_tree()
<<True

In the above example, we have defined a FoldTree manually and entered it into the Pose. For
most PyRosetta protocols, functions exist to define the fold tree for that particular protocol
automatically. A user would only manually define a fold tree for highly customized algorithms
where automatically generated, protocol-specific fold trees cannot be used.

A single loop fold tree can be defined using the Loop object for a Pose:

>>set_single_loop_fold_tree(pose, loop1)
>>print p.foldtree()
<<

7.3 Loop Modeling protocol movers

Cyclic-Coordinate Descent (CCD) Loop Closure

During sampling, using SmallMovers, ShearMovers, and/or FragmentMovers on loop
residues on a Pose with a loop-modeling FoldTree, a chain break will form at the cutpoint.
Rosetta primarily uses CCD loop closure to close that chain-break to recover a continuous chain
along the polypeptide, from the N to the C terminus. CCD loop closure is carried out using the
CcdLoopClosureMover. It uses Cyclic-coordinate descent to sample the torsion angles of the
loop residues in a way that minimizes the chain-break. On construction it requires a Loop
object, and a MoveMap that allows the loop residues to move:

>>movemap = MoveMap()
>>movemap.set_bb_true_range(i,j)
>>ccd = CcdLoopClosureMover(loop1, movemap)

>>ccd.ap

Low-reso

The low-
LoopMov
and the L
that is us
sampling

>> score
>>fragse

>>loop_p
>>loop_p

Addition

>>loop_p

Note: Th
loop mod
loops wit

High-res

The high
mover. O
under wh

>>scoref
>>loop_r
>>loop_r

pply(pose)

olution Loop

-resolution p
ver_Perturb_

Loops object
ed by Fragm

g is carried o

efxn = cre
et = Const

_perturb =
_perturb.ap

nally a numb

_perturb.ra

he LoopMove
deling examp
thout this mo

solution Loop

h-resolution p
On construct
hich samplin

fxn = crea
_refine = L
_refine.app

p Modeling

phase of loop
_CCD. This
t. On constru
ment movers
out.

eate_score_
tantLengthF

LoopMover_
pply(pose

er of options

andomize_lo

er_Pertur

ple on the w
over.

p Refinemen

phase of loop
tion it requir

ng is carried

ate_score_f
LoopMover_R
ply(pose)

p-modeling,
s mover auto
uction it req
during samp

function
FragSet(3,

_Perturb_C
)

s can be set,

oop(True)

b_CCD mov
website (http:

nt

p modeling
res a Loops
out.

function(‘
Refine_CCD
)

described in
omatically se
quires a Loop
pling, and th

_ws_patch(‘
,“test_in_3

CCD(loop_li

including ra

ver does not w
//www.pyro

is carried ou
object to de

‘standard’,
D(loop_list

n (Rohl et al.
ets up a fold
ps object to
he ScoreFun

‘cen_std’,
3mer.frag”

ist, score

andomizing

work in PyR
osetta.org/scr

ut using the L
fine the loop

, ‘score12
t, scorefx

.) can be acc
d tree based o

define the lo
nction und

 ‘score4L’
”)

efxn, frag_

the input loo

Rosetta v1.0.
ripts.html) fo

LoopMover

ps, and a Sco

2’)
xn)

cessed using
on an input p
oops, a Frag
der which

’)

_set)

op conforma

 Please see
or how to mo

_Refine_C

oreFuncti

41

the
pose
gSet

ation:

the
odel

CCD
ion

Figure 7.
LoopMov
the Loop

7.4 Prote

Protein-p
unbound
the two p
correspon
resolution

The Fold
points are
the jump
i and j, re
modeling

Figure 7.

The dock

>>Dockin
>>print
<<FOLD_T

EDGE

By defau
partners,
below, pa

>>Dockin

.3 Five struc
ver_Perturb_

pMover_Refi

ein-protein

protein docki
components

partners are s
nds to a near
n perturbatio

dTree used in
e defined dif
 points corre
espectively).
g:

.4 Docking f

king Foldtr

ngProtocol
pose.fold

_TREE EDGE
285 301 -

ult it will cre
such as anti

artner 1 is co

ngProtocol

ctures genera
_CCD move
ine_CCD mo

docking

ing is used t
s. In dockin
sampled, and
r-native prot
on/search ph

n docking is
fferently. A
espond to res
. The fold tr

fold tree

ree can be s

l(jump_num)
dtree()
E 1 190 -1
-1

ate a jump b
i-bodies, the
onsists of ch

l(jump_num)

ated from the
er (left) after
over (right).

o predict the
ng, different
d, theoretica
tein complex
hase and a hi

identical to
A chain-break

sidues closes
ree is as follo

set up autom

).setup_fo

 EDGE 190

between the f
chains for e

hains ‘H’ and

).setup_fo

e same starti
r randomizin

e structure o
docked conf

ally, the lowe
x structure.
igh-resolutio

the one used
k is set in bet
st to the cent
ows, and the

matically usin

oldtree(pos

0 238 -1 E

first two cha
each partner
d ‘L’, and pa

oldtree(pos

ing structure
ng the startin

f protein com
figurations, o
est-energy do
Like in Loop

on refinemen

d in loop mo
tween the tw
ter of masse

e refolding p

ng the Docki

se)

EDGE 190 2

ains in the Po
must be spe

artner 2 cons

se, ‘HL_A’

e using the
ng loop confo

mplexes star
or rigid-body
ocked config
p Modeling,

nt phase.

odeling excep
wo partners (
es for each pa
process is the

ingProtoco

285 1 EDGE

ose. For mu
ecified. In th
sists of chain

)

ormation, an

rting from th
y orientation
guration
, there is a lo

pt that the ju
(A and B), an
artner, (resid
e same as in

ol():

E 285 239

ulti-chain
he example
n ‘A’:

42

nd

heir
ns of

ow-

ump
nd
dues
loop

-1

43

7.5 Rigid Body Movers

A jump defines the relative orientation of two residues (jump points) in rigid-body space. This
requires three dimensions in Cartesian coordinates define the relative position of one residue to
the other, and three dimensions in polar coordinates that define the relative orientation of one
residue to the other. Finally, a rigid-body center, which defines the coordinate frame of the jump
is also defined. These values can be accessed and set as vectors (R and T) for each jump:

>>print pose.jump(1)
>>pose.jump(1).get_translation()
>>pose.jump(1).get_rotation()

For rigid body perturbations, we generally use RigidBodyMovers that perturb the Jump rather
than manually altering the R and T values themselves. For example, the
RigidBodyTransMover moves the partners along the axis defined by the jump between the
two partners. It can be used to move the partners towards or away from each other.

>>trans_mover = RigidBodyTransMover(pose, jump_num)
>>trans_mover.step_size(50)
>>trans_mover.apply(pose)

Additionally, a translation axis can be manually accessed and modified.

>>new_axis = xyzVector()
>>new_axis = trans_mover.trans_axis()
>>new_axis.negate()
>>trans_mover.trans_axis(new_axis)

In the following section there are additional examples of RigidBodyMovers, including
RigidBodyPerturbMover, RigidBodyRandomizeMover, and RigidBodySpinMover.

7.6 Docking Protocol Movers

In the standard protein-protein docking algorithm we have three stages: 1) the initial
perturbation, 2) low-resolution search and 3) high-resolution refinement. The first two stages are
carried out in centroid-mode, the final stage is in full-atom mode.

Figure 7.
for a doc
refineme

In the ini
starting p
For a loc
one of th
to the oth
terms tha

>>jump_n
>>random
>>random
>>random
>>random

>>dock_p
>>spin =
>>dock_p
>>spin.a

Finally, f
another i

>>slide_
>>slide_

This func

>>slide_

Once the
using the

.6. Relative
k_pert 3 8, t
nt phase of d

itial perturba
position. For
cal docking p
he partners ca
her. Note th
at refer to pa

_num = 1
mize1 = Ri
mize2 = Ri
mize1.appl
mize2.appl

_pert = Rig
= RigidBod
_pert.apply
apply(pos

following a p
f any of the

_into_cont
_into_cont

ction works

_into_cont

e initial pertu
e DockingLo

size of pertu
the centroid-
docking (rig

ation stage, t
r a global do

perturbation,
an be ‘spun’
at ‘partner

artner 1 and 2

igidBodyRan
igidBodyRan
ly(pose)
ly(pose)

gidBodyPert
dySpinMover
y(pose)
se)

perturbation
perturbation

tact = Dock
tact.apply(

only for cen

tact = FaDo

urbation is co
owRes mov

urbations du
-mode phase

ght).

the position o
ocking run, o
, it is perturb
 about an ax
r_upstrea

2.

ndomizeMov
ndomizeMov

turbMover(
r(jump_nu

, the two par
ns moved the

kingSlideI
(pose)

ntroid mode,

ockingSlid

omplete, the
er:

uring the initi
e of docking

of partner 2
one or both o
bed by 3A an
xis defined b
m’ and ‘par

ver(pose, j
ver(pose, j

(jump_num,
um)

rtners must b
e partners aw

IntoContact

but there is

deTogether(

e low-resolut

ial perturbat
(middle), an

relative to p
of the partne
nd 8 degrees
by the jump b
tner_down

jump_num,
jump_num,

3, 8)

be brought b
way from eac

t(jump_nu

also a full-a

(jump_num

tion phase do

tion phase of
nd the high-r

partner 1 is p
ers orientatio
s on average.
by a random
nstream’ ar

partner_up
partner_do

back into con
ch other:

um)

atom version

m)

ocking can b

f docking (le
resolution

perturbed fro
on is random
. Additional

m amount rela
re hard-code

pstream)
ownstream)

ntact with on

n of this mov

be carried ou

44

eft)

om its
mized.

lly,
ative
ed

ne

ver:

ut

45

>>scorefxn_low = create_score_function(‘interchain_cen’)
>>docking_low = DockingLowRes(scorefxn_low, jump_num)
>>docking_low.apply(pose)

Following the low-resolution phase of docking, the structure must be converted into a full-atom
structure for the high-resolution refinement step. This can be done as described in Section 5.5,
or with a DockingProtocol() function written specifically for this purpose (in the example
below recovering the side-chains from a full-atom starting structure called starting_pose):

>>DockingProtocol().recover_sidechains(pose, starting_pose)

Finally, high-resolution refinement is carried out using the DockingHighRes mover:

>>scorefxn_high = create_score_function(‘docking’)
>>docking_high = DockingHighRes(scorefxn_high, jump_num)
>>docking_high.apply(pose)

Additionally, there are a number of options that can be set that modify the
DockingHighResMover. The MoveMap in this mover is primarily used during minimization –
inputting a custom MoveMap can allow for energy minimization along additional degrees of
freedom beyond rigid-body minimization, for example, backbone minimization.

>>docking_high.set_move_map(movemap)
>>docking_high.set_min_type(‘dfpmin’)

The DockingHighRes mover uses a variation of the RigidBodyPerturbMover that uses the center
of masses of the interface residues to define the reference frame for rigid body perturbations
instead of the center of masses of the entire partners which is the default behavior. It also uses
translation and rotation magnitudes of 0.1Ǻ and 5.0˚ respectively.

>>use_interface = True
>>rbmover = RigidBodyPerturbMover(jump_num, 0.1, 5.0, partner_downstream,

use_interface)

7.7 Modeling small molecules in PyRosetta

PyRosetta is generally set up to model proteins using the 20 standard amino acids. Small-
molecules and other non-amino acids moieties, such as post-translational modifications and
cofactors, are often critical to accurate modeling certain systems. In PyRosetta, these non-
standard molecules are treated as additional ‘residues’ to the standard residue set.

Parameters describing the chemical and atomic properties of the standard residue set are stored in
the minirosetta_database directory within PyRosetta. In order to use non-standard

46

molecules, a parameter file must first be created so that PyRosetta can properly model the
structure and energies of the non-standard molecule. A parameter file (called a .params file)
must be generated from an MDL Molfile format (.mol file) which contains the necessary
structural and connectivity information and can be created from a PDB file containing the atomic
coordinates for the molecule (.pdb):

1. Isolate the atomic coordinates of the non-standard molecule into a PDB file
2. Generate a .mol file from the .pdb file. This can be done with the free web tool

MN.CONVERT at http://www.molecular-networks.com/demos
3. Use the molfile_to_params.py (found in the ligand docking download at

http://www.pyrosetta.org/scripts.html) on the .mol file to generate 1) a .params file and 2)
a PDB file containing the atomic coordinates of the non-standard molecule using Rosetta-
standardized atom-types.

 >>molfile_to_params.py ATP.mdl –n ATP
 outputs: ATP_0001.pdb ATP.params

4. Replace the coordinates of the non-standard molecule in the PDB file of the starting
structure with the coordinates output from the script in the previous step.

To load the nonstandard-molecule, first create a list of all nonstandard-molecule parameter files,
then create a residue set that includes them, and finally, use that expanded residue set to read in
the PDB file:

>>params_list = Vector1[‘ATP.params’]
>>res_set = generate_nonstandard_residue_set(params_list)

>>pose_from_pdb(pose, res_set, “PKA.pdb”)

It is important to note that non-standard molecules are currently only supported in a full-atom
representation.

Finally, as the small molecule is modeled as a residue in the Pose object, a residue in the Pose
object can be queried as to whether it is a ligand or is one of the standard 20 amino acids. In the
example below, residue 105 is a small molecule:

>>pose.residue(105).is_protein()
<<False
>>pose.residue(105).is_ligand()
<<True

47

7.8 Modeling DNA and RNA

Parameters for all the standard nucleotides in DNA and RNA are already loaded into the
minirosetta_database, so modeling DNA and RNA is straightforward in PyRosetta. Each
nucleotide in the DNA or RNA is considered a ‘residue’ in the Pose object. Like with small
molecules, DNA and RNA is only supported in the full-atom mode, parameters do not currently
exist for modeling it in centroid mode.

As with the small molecule, a residue can be queried as to whether it is a standard amino acid, or
a nucleotide (again, in the case of residue 105):

>>pose.residue(105).is_protein()
<<False
>>pose.residue(105).is_ligand()
<<True

Note that the names of the atoms in the DNA or RNA have to follow a standardized form.
Please see the DNA modeling example in the scripts section of the PyRosetta website
(http://www.pyrosetta.org/scripts.html) for more information.

48

Appendix: PyRosetta Reference Sheet

Python Commands and Syntax
i = 1
j = "Bob"

variable assignments

print j, " thinks ", i, " = 0." prints Bob thinks 1 = 0.
for i in range(1,10):
 print i

The newly defined variable “i” ranges from 1 up to,(but not
including) 10 and the command print i is executed for
each value.

if x < 0:
 x = 0
 print
elif x==0:
 print "zero"
else:
 print "positive"

Conditional statement that executes lines only if Boolean
statements are true.

Use indenting to indicate blocks of code executed together
under the conditional

def myfunc(a, b)
 # code here
return c,d,e

Defines a function. Also acceptable, return(c, d,
e), but not return[c, d, e]

returned_values = myfunc(a, b)
value_of_c = returned_values[0]
value_of_d = returned_values[1]
value_of_e = returned_values[2]

syntax for using multiple values returned by a function
called with variables a and b.

outfile = open('out.txt','w')
print >>outfile "hello"
outfile.close()

prints hello to a new file named out.txt

outfile.write(
 str(i)+";"+str(score) +"\n")

alternate way to write to a (previously opened) file

Python Math
import random imports random number functions from Python
random.random() returns a random float between 0 and 1
random.randint(5,10) returns a random integer between 5 and 10 (inclusive)
random.gauss(5,10) returns a random number from a Gaussian distribution with

a median of 5 and a standard deviation of 10
import math imports math functions from Python
math.exp(5) returns the value of e5

Rosetta: Vector
rosetta.utility.vector1_string creates a C++ string vector in Python
rosetta.utility.vector1_float creates a C++ float vector in Python
rosetta.utility.vector1_int creates a C++ int vector in Python
rosetta.utility.vector1_bool creates a C++ bool vector in Python

v1 = rosetta.utility.vector1_int
 v1.append(5)

Appends an element to a C++ vector

v1 = numeric.xyzVector(x,y,z) Creates a C++ xyz vector used for Cartesian coordinates

49

Rosetta: Pose Object
pose = Pose() Creates a an empty pose object.
pose_from_pdb(pose,"/path/to/

input_file.pdb")
Creates new object called pose from the pdb
file.

make_pose_from_sequence(pose, "AAAAAA",
"fa_standard")

Creates a pose from the given sequence string
using standard residue type templates

print pose Displays PDB filename, sequence, and fold tree
pose.assign(otherpose) Copies ‘otherpose’ onto ‘pose’. You cannot

simply write “pose = otherpose”, as that will only
point ‘pose’ to ‘otherpose’ and not actually copy
it.

dump_pdb(pose,
"/path/to/output_file.pdb")

Creates pdb file named output_file.pdb using
information from pose object.

pose.total_residue() Returns number of residues in pose
pose.phi(5)
pose.psi(5)
pose.chi(2,5)

Returns the Ԅ or ψ angle of the 5th residue in
the pose; returns 2nd χ of the 5th residue

pose.set_phi(5,60.0)
pose.set_psi(5,60.0)
pose.set_chi(2,5, 60.0)

Sets the Ԅ or ψ angle of the 5th residue in pose
to 60°; sets the 2nd χ of the 5th residue to 60°

print pose.residue(5) Prints the amino acid details of residue 5
print pose.residue(5).xyz(2) Prints the numeric.xyzVector for the second

atom (CA) of residue 5
pose.conformation().set_bond_length(atom1

,atom2,length)
Sets the bond length between objects “atom1”
and “atom2” to a value of “length”.

pose.conformation().set_bond_angle(atom1,
atom2,atom3,bond_angle)

Sets the bond angle of objects “atom1,” “atom2”
and “atom3” to a value of “bond _angle”.

atomN = pose.residue(5).atom('N') Creates a pointer to the N atom object of
residue 5

coord = atomN.xyz()
print coord.x, coord.y, coord.z

Prints the Cartesian coordinates of atomN

NCbond = atomN.xyz() – atomC.xyz()
print NCbond.norm()

Calculates and prints the distance between
atomN and atomC

for i in range
(1,pose.total_residue()+1):

 <command> # on pose.residue(i)

Loops through all residues in pose and runs
<command> on each one

pose.pdb_info().name() Gives the name of the PDB file input to pose
pose.pdb_info().number(i) Gives the PDB number of residue i
pose.pdb_info().chain(i) Gives the PDB chain of residue i
pose.pdb_info().icode() Gives the PDB insert code of residue i
pose.pdb_info().pdb2pose("A",100) Gives the pose’s internal residue
pose.pdb_info().pose2pdb(25) Gives the PDB chain/number from pose

number

50

Rosetta: Scoring
scorefxn =

create_score_function('standard')
Defines a score function with standard full-atom
energy terms and weights

scorefxn2=core.scoring.ScoreFunction()
scorefxn2.set_weight(core.scoring.fa_atr,
 1.0)

Defines a function called “scorefxn,” in which the
energies accounted for are:

The numbers are the relative weights assigned
to each energy and can be set to any real value.
This is not an inclusive list of energies.

print scorefxn Shows score function weights and details
scorefxn(pose)

Returns the score of pose with the defined
function “scorefxn”.

scorefxn.show(pose)

Returns the score of pose with the defined
function “scorefxn”.

pose.energies().show()
pose.energies().show(resnum)

Shows the breakdown of the energies by
residue

emap =
rosetta.core.scoring.TwoBodyEMapVector
()

Creates an energy map object to store a vector
of scores

scorefxn.eval_ci_2b(rsd1,rsd2,pose,emap)

Evaluates context-independent two-body
energies between residues rsd1 and rsd2 and
stores the energies in the energy map

print emap[rosetta.core.scoring.fa_atr] Print fa_atr term from the energy map
hbond_set =

rosetta.core.scoring.hbonds.HBondSet()
Creates an HBond set object for storing
hydrogen bonding information

pose.update_residue_neighbors();
rosetta.core.scoring.hbonds.fill_hbond_se

t(pose,False,hbond_set)

Stores H-bond info from pose in the Hbond_set
object.

hbond_set.show(pose) Prints H-bond info from the hbond_set
calc_total_sasa(pose, 1.5) Calculates the total solvent-accessible surface

area using a 1.5A probe

 Rosetta Full-atom Scoring Functions
Van der Waals net attractive energy FA fa_atr
Van der Waals net repulsive energy FA fa_rep
Hydrogen bonds, short and long-range,
(backbone)

FA/CEN hbond_sr_bb, hbond_lr_bb

Hydrogen bonds, short and long-range,
(side-chain)

FA hbond_sc, hbond_bb_sc

Solvation (Lazaridis-Karplus) FA fa_sol
Dunbrack rotamer probability FA fa_dun
Statistical residue-residue pair potential FA fa_pair
Intra-residue repulsive Van der Waals FA fa_intra_rep
Electrostatic potential FA hack_elec
Disulfide statistical energies (S-S
distance, etc.)

FA dslf_ss_dst, dslf_cs_ang,
dslf_ss_dih, dslf_ca_dih

Amino acid reference energy (chemical
potential)

FA/CEN ref

Statistical backbone torsion potential FA/CEN rama
Van der Waals “bumps” CEN vdw
Statistical environment potential CEN env
Statistical residue-residue pair potential
(centroid)

CEN pair

Cb CEN cbeta

51

52

Residue Type Set Mover
switch =
 SwitchResidueTypeSetMover('centroid')

creates a mover which will change poses to the
centroid residue type set (‘fa_standard’ also avail.)

switch.apply(pose) changes pose to the centroid residue types

MoveMap
movemap = MoveMap() creates a MoveMap
movemap.show(Nres) prints the MoveMap contents for residues 1-Nres
movemap.set_bb(True) Allows all backbone torsion angles to vary when

movemap is applied
movemap.set_chi(True) Allows all side chain torsion angles (χ) to vary

when movemap is applied
movemap.set_bb(10,False)
movemap.set_chi(10,False)

Forbid residue 10’s backbone and side chain
torsion angles from varying

movemap.set_bb_true_range(10,20) Allows backbone torsion angles to vary in
residues 10 to 20, inclusive; sets all other
residues to False.

movemap.set_jump(1, True) Allows jump #1 to be flexible

Fragment Movers
fragset = ConstantLengthFragSet(3,

"aatestA03_05.200_v1_3")
creates a fragment set and loads
the fragments from the data file

mover_3mer = ClassicFragmentMover(fragset,movemap)

Creates a fragment mover using
the fragset and the movemap

mover_3mer.apply(pose) inserts a random 3-mer fragment from the fragset into
the pose, only in positions allowed by the movemap

smoothmover =
SmoothFragmentMover(fragset,
movemap)

Fragment insertions are followed by a second,
downstream fragment insertion chosen to minimize
global disruption

Small and Shear Movers

kT = 1.0
n_moves = 1
smallmover = SmallMover(movemap,kT,n_moves)
shearmover = ShearMover(movemap,kT,n_moves)

creates a small or shear mover with a
movemap, a temperature, and the number
of moves

smallmover = SmallMover()
shearmover = ShearMover()

Default settings are all backbone moves
allowed, kT = 0.5, and n_moves = 1

smallmover.apply(pose)
shearmover.apply(pose)

applies the movers

Minimize Mover

minmover = MinMover() creates a minimize mover with default
arguments

minmover = MinMover(movemap, scorefxn,
min_type, tolerance, True)

Creates a minimize mover with a particular
MoveMap,ScoreFunction, minimization type, or
score tolerance

minmover.movemap(movemap) Set a movemap
minmover.score_function(scorefxn) Set a scorefunction
minmover.min_type('linmin') Set a the minimization type to a line

minimization (one direction in the space)
minmover.min_type('dfpmin') Set a the minimization type to a David-

Fletcher-Powell minimization (multiple
iterations of linmin in conjugate directions)

53

minmover.tolerance(0.5) Set the mover to iterate until within 0.5 score
points of the minimum

minmover.apply(pose) Apply the minmover to a pose

MonteCarlo
mc = MonteCarlo(pose,scorefxn,kT) creates a MonteCarlo object
mc.set_temperature(1.0) Sets the temperature in the MonteCarlo object
mc.boltzmann(pose) Accepts or rejects the pose object, compared to the

pose last time the mc object was called, according to the
standard Metropolis criterion.

mc.show_scores()
mc.show_counters()
mc.show_state()

Shows stored scores, counts of moves
accepted/rejected, or both.

mc.recover_low(pose) Sets the pose to the lowest-energy configuration ever
seen during the search

mc.reset(pose) Resets all counters and sets the low- and last-pose to
the current pose state.

TrialMover
smalltrial = TrialMover(smallmover,mc) Creates a mover which will apply the small

mover, then call the MonteCarlo object mc. This
mover will also give more explicit tags for the
mc.show_state() output.

smalltrial.num_accepts() Number of times the move was accepted
smalltrial.acceptance_rate() Acceptance rate of the moves

SequenceMover and RepeatMover
seqmover = SequenceMover()
seqmover.addmover(smallmover)
seqmover.addmover(shearmover)
seqmover.addmover(minmover)

Creates a mover which will call a series of other
movers in sequence.

repeatmover = RepeatMover(fragmover,10) Creates a mover that will call the fragmover 10
times

randommover = RandomMover()
randmover.addmover(smallmover)
randmover.addmover(shearmover)
randmover.addmover(minmover)

Creates a mover which will randomly apply one
of a set of movers each time it is applied.

Rigid Body movers

pert_mover =
RigidBodyPerturbMover(jump_num,3,8)

pert_mover.apply(pose)

Makes a random rigid body move of the
downstream partner. Random rotation chosen
from a Gaussian of standard deviation of 8°, and
translation chosen from a Gaussian of standard
deviation 3 Å

transmover = RigidBodyTransMover(pose,
jump_num)

 transmover.trans_axis(a)
 transmover.step_size(5)
 transmover.apply(pose)

Creates a mover that will translate two partners,
defined by jump_num, along an axis defined by
numeric.xyzVector a, by 5 Angstroms.

spinmover = Creates a mover that will spin partner 2 relative

54

RigidBodySpinMover(jump_num)
 spinmover.spin_axis(a)
 spinmover.rot_center(b)
 spinmover.angle_size(45)

to partner1, defined by jump_num, according to a
spin axis and rotation center defined by
numeric.xyzVectors a and b respectively, by 45
degrees. No specified angle_size randomizes
the spin.

Sidechain Packing Movers

pack_mover =
PackRotamersMover(scorefxn, task)

pack_mover.apply(pose)

Creates a mover that will use instructions from
the ‘task’ to do packing to optimize side chain
conformations in the pose

rot_trial = RotamerTrials(scorefxn,
task)

rot_trial.apply(pose)

Creates a mover that will use instructions from
the ‘task’ to do Rotamer Trials to optimize side
chain conformations in the pose

task = standard_packer_task(pose) Creates a packer task based on a pose
task.or_include_current(True) Includes current rotamers in pose to packer
task.restrict_to_repacking() Restricts all residues to repacking
task.temporarily_fix_everything() Sets all residues to no repacking
task.temporarily_set_pack_residue(i) Sets residue i to allow repacking
task.read_resfile(“resfile”) Sets task based on instructions in resfile
generate_resfile_from_pdb(test.pdb,

“resfile”)
generate_resfile_from_pose(pose,

“resfile”)

Generates a resfile from a pdb file or a pose,
respectively

TaskFactory TaskOperations

tf = standard_task_factory() Creates a default TaskFactory
Tf.create_task_and_apply_taskoperations(pose) Creates a task based on the list of

TaskOperations
tf.push_back(IncludeCurrent()) includes the current rotamers in the Pose

to the rotamer sets used for packing.
Defaulted on

tf.push_back(ReadResFile(“test.resfile”)) applies instructions from the resfile when
creating a PackerTask

tf.push_back(NoRepackDisulfides()) holds disulfide bond cysteine side-chains
fixed. Defaulted on.

tf.push_back(RestrictToInterface(1)) allows repacking only at the interface
defined by the jump number (in example
jump# 1)

pr = PreventRepacking()
 pr.include_residue(5)
 tf.push_back(pr)

turns off repacking for specified residues
(residue #5 in example)

rr = RestrictResidueToRepacking()
rr.include_residue(5)
tf.push_back(rr)

turns on repacking for specified residues
(residue #5 in example)

Docking Movers
DockingProtocol() Protocol for a full, multiscale docking

run
DockingProtocol().setup_foldtree(pose)
DockingProtocol().setup_foldtree(pose,’HL_A’)

Sets up a fold tree for docking, based
on chain labels in the pose

movemap = MoveMap()
movemap.set_jump(jump_num,True)

Sets up a mover to minimize over the
rigid-body coordinates

55

minmover = MinMover()
minmover.movemap(movemap)
dock_lowres = DockingLowRes(scorefxn_low,

jump_num)
dock_lowres.apply(pose)

low-resolution, centroid based MC
search (50 RigidBodyPerturbMoves
with adaptable step sizes)

dock_hires = DockingHighRes(scorefxn_high,
jump_num)

dock_hires.apply(pose)

high-resolution, all-atom based MCM
search with rigid-body moves, side-
chain packing, and minimization

cs = ConformerSwitchMover(start,end,
jump_num,scorefxn,"1aaa.pdb")

cs.apply(pose)

Picks a new backbone conformation
from the ensemble (conformer
selection docking). start and end
indicate residue number range for
backbone swapping.

randomize1 = RigidBodyRandomizeMover(pose,
jump_num, partner_upstream)

When applied, globally randomizes the
rotation of the upstream partner.

randomize2 = RigidBodyRandomizeMover(pose,
jump_num, partner_downstream)

When applied, globally randomizes the
rotation of the downstream partner.

DockingProtocol().calc_Lrmsd(pose1, pose2) Calculates RMSD of smaller partner
after superposition of larger partner

Job Distributor
jd = PyJobDistributor("output", 1000,

scorefxn_high)
Creates a job distributor which will create
1000 model structures named
output_1.pdb to output1000.pdb.
Files include scorefxn_high energies.

Pose native_pose("1aaa.pdb")
jd.native_pose = native_pose

Sets the native pose (loaded from
1aaa.pdb) for rmsd comparisons

jd.job_complete Boolean indicating whether all decoys have
been output.

jd.output_decoy(pose) Outputs the pose to a file and increments
the decoy number.

while (jd.job_complete == False):
 #[create the decoy called pose]
 jd.output_decoy(pose)

Loop to create decoys until all have been
output

jd.additional_info = "Created by Andy" Sets a string to be output to the pdb file

RMSD
print CA_rmsd(pose1, pose2) calculates and prints the root-mean-

squared deviation of the location of Cα
atoms between the two poses

Fold Tree
ft = FoldTree()
ft = pose.fold_tree()

Extracts the current fold tree from the pose

pose.fold_tree(ft) Attaches the fold tree ft into the pose.
ft.add_edge(1,30,-1) Creates a peptide edge (code -1) from residues 1 to

30. This edge will build N-to-C.
ft.add_edge(100,31,-1) Creates a peptide edge from residues 100 to 31.

This edge will build C-to-N.
ft.add_edge(30,100,1) Creates a jump (rigid-body connection) between

56

residues 30 and 100.
ft.add_edge(100,101,2) Creates a second jump between residues 100 and

101 (note the jump number is 2. Each jump needs a
unique, sequential jump number).

ft.check_fold_tree() Returns True only for valid trees.
print ft Prints the fold tree
ft.simple_tree(100) Creates a single-peptide-edge tree for a 100-residue

protein
ft.new_jump(40,60,50) Creates a jump from residues 40 to 60, a cutpoint

between 50 and 51, and splits up the original edges
as needed to finish the tree.

ft.clear() Deletes all edges in the fold tree.

Loops
loop1 = Loop(15,24,20) Defines a loop with stems at residues 15 and 24,

and a cut point at residue 20
loops = Loops()
loops.add_loop(loop1)

Creates an object to contain a set of loops

set_single_loop_fold_tree(pose, loop) Sets the pose’s fold tree for single-loop optimization
ccd =

CcdLoopClosureMover(loop1,movemap)
Creates a mover which performs Canutescu &
Dunbrack’s cyclic coordinate descent loop closure
algorithm

loop_refine =
LoopMover_Refine_CCD(loops)

Creates a high-resolution refinement protocol
consisting of cycles of small and shear moves, side-
chain packing, CCD loop closure, and minimization.

Lrms = loop_rmsd(pose,reference_pose,
loops, True)

Calculates the rmsd of all loops in the reference
frame of the fixed protein structure

57

References and Further Reading

