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Preface 
 
Structures of proteins and protein complexes help explain biomolecular function, and 
computational methods provide an inexpensive way to predict unknown structures, manipulate 
behavior, or design new proteins or functions.  The protein structure prediction program Rosetta, 
developed by a consortium of laboratories in the Rosetta Commons, has an unmatched variety of 
functionalities and is one of the most accurate protein structure prediction and design approaches 
(Das & Baker Ann Rev Biochem 2008; Gray Curr Op Struct Biol 2006).  To make the Rosetta 
approaches broadly accessible to biologists and biomolecular engineers with varied backgrounds, 
we developed PyRosetta, a Python-based interactive platform for accessing the objects and 
algorithms within the Rosetta protein structure prediction suite.  In PyRosetta, users can measure 
and manipulate protein conformations, calculate energies in low- and high-resolution 
representations, fold proteins from sequence, model variable regions of proteins (loops), dock 
proteins or small molecules, and design protein sequences.  Furthermore, with access to the 
primary Rosetta optimization objects, users can build custom protocols for operations tailored to 
particular biomolecular applications.  Since the Python-based program can be run within the 
visualization software PyMol, search algorithms can be viewed on-screen in real time.  
 
In this book, we go over the fundamentals of molecular modeling in PyRosetta, providing both a 
cursory background into the science behind various modeling strategies as well as instruction on 
how to use the PyRosetta objects and functions.  Each unit covers a single topic in the field and 
walks the reader through the basic operations.  Interactive exercises are incorporated so that the 
reader gains hands-on experience using the variety of commands available in the toolkit.  The 
text is arranged progressively, beginning with the fundamentals of protein structure and 
energetics, and then progressing through the applications of protein folding, refinement, packing, 
design, docking, and loop modeling.  A set of tables are provided at the end of the book as a 
reference of the available commands. 
 
Additional resources on the Rosetta program are available online.  The PyRosetta web site, 
pyrosetta.org, includes additional example and application scripts.  A web-based user forum is in 
development and we hope that the PyRosetta community will share their experiences as well as 
useful scripts so that we build a repository of useful functions.  For the expert, documentation on 
the underlying C++ code is available at www.rosettacommons.org under the TikiWiki 
application (www.rosettacommons.org/tiki/tiki-index.php).  PyRosetta is built upon the Rosetta 3 
platform, so objects available in PyRosetta will have the same underlying data structures and 
functionality.   
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Unit 1: Introduction to Molecular Modeling in Rosetta 
 
1.1 Protein Structure and Function 

 
Proteins are one of the five major biological macromolecules, they are responsible for a 

variety of biochemical processes from structure, to signaling, to catalyzing essential biochemical 
reactions.  Proteins are polymers of amino acids that are encoded by genes.  In the processes of 
translation, a mRNA transcript from the nucleus is used to create the protein chain in the 
ribosome.  After translation, this amino acid polymer (also known as a polypeptide chain) adopts 
the lowest free-energy conformation in solution, through a process called protein folding.  Most 
naturally occurring proteins fold into a very specific shape or structure, and their function is 
directly a result of this structure.  A typical folding energy for a protein is -10 kcal/mol, meaning 
that well over 99% of the protein in solution adopts this lowest-free energy conformation.   

 
Fig 1.1.1 Protein synthesis 

 
Like protein folding, almost all protein functions occur as a result of this basic 

thermodynamic principle: the protein will adopt the lowest energy conformation in a given 
environment.  In almost all cases, this lowest energy conformation is a biologically-evolved, 
highly specific structure.  For example, in protein-protein binding, in which two proteins are free 
in solution, the lowest energy conformation will be a highly specific complex between the two 
partners.  The energy of a given conformation is a function of various molecular forces that act 
on that conformation, including electrostatics, Van der Waals interactions, hydrogen-bonding, 
and solvation energies.    

 
Since its inception in 1998, the Rosetta molecular modeling software has been designed 

for accurate protein structure prediction and design.  Fundamentally, its algorithms use this same 
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basic thermodynamic principle: it explores many conformations of a protein given a set of pre-
defined constraints, under an approximate free energy function, searching for the lowest-energy, 
and consequently biologically-relevant, conformation.  For each algorithm, from docking, to 
folding, to design, it is essential to understand three things: 

 
1.  What are conformational constraints to the system? 
2.  What is conformational sampling strategy within these predefined constraints? 
3.  What is the energy function/score function that is being used to identify the lowest-

energy conformation? 
 

1.2 Introduction to Protein Structure 
 
 The monomers of a polypeptide chain, called residues, form a polymer through peptide 
bonds.  The polypeptide chain itself (hereafter referred to as the backbone) is made up entirely of 
an N-Cα bond, a Cα-C bond, and a C-N bond, repeated for each amino acid.  The structure of 
this polymer can be described in two ways: first, as a set of Cartesian coordinates (x, y, z) that 
describe the position of every atom in the polymer, and second, as a internal coordinates, as a 
set of torsion angle values along all bonds (φ,ψ,ω) for each amino acid in the polymer.  

 
Fig 1.2.1 the polypeptide chain 

 
 The specificity of protein structure and function arises from its amino acid sequence.  

Although all backbone atoms for all residues are identical, each residue in the polypeptide chain 
is one of 20 amino acids, shown as R-groups in the Fig 1.2.1.  Amino acids differ from one 
another through their side-chains, defined as those non-backbone atoms bonded to the Cα atom.  
The twenty amino acids and their side-chains are shown in Fig 1.2.2. 

 
The structure of the residue side-chains can be described either in the Cartesian 

coordinates (x,y,z) of each side-chain atom, or as the torsion angle values of each rotatable bond 
in the side-chain (χ1, χ2, χ3…).  Note that because different amino acids have different side-
chains, they have a varying number of torsion angles, from no torsion angles in glycine, to four 
torsion angles in lysine.   
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Fig 1.2.2 Amino Acid types 

 
Finally, many protein systems in biology include more than a single protein chain.  A 

protein complex, for example, by definition, involves the interaction of two proteins, or two 
protein chains.  The relative spatial position and orientation of one polypeptide chain relative to 
another can be described exactly using three dimensions of translation (T) and three dimensions 
of rotation (R), based on a given fixed spatial reference frame.   

 
1.3 Introduction to Molecular Energies 
 
 The energy of a given conformation is a result of molecular forces that act on and 
between all non-bonded atoms in that conformation.  In protein biophysics, the most significant 
energy contributions that favor one conformation over another are Van der Waals energies, steric 
repulsions, electrostatic energies, solvation energies, and hydrogen bonding energies.  These 
component energies themselves functions of the atomic positions and atom types of the atoms in 
the protein structure.   
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1.4 Protein Structure and Energies in Rosetta 
 
 In Rosetta, a protein system is represented by an object called a pose.  The pose contains 
all the structural information necessary to completely define the system in both spatial 
coordinates and internal coordinates. 
 
 
 
  
  
  
 
  
 Within the pose object, the Cartesian coordinates and internal coordinates are 
synchronized, both are used in Rosetta.  Sampling is done primarily through manipulation of the 
internal coordinates (for example, perturbing a φ or ψ torsion angle), while the energy is 
calculated primarily from the Cartesian coordinates (for example, calculating the electrostatic 
interaction between two atoms, using their respective spatial coordinates).   In a process called 
“refolding”, new Cartesian coordinates are generated by ‘rebuilding’ the polypeptide chain, side-
chain conformation, and rigid-body orientations, from the internal coordinates.  Likewise, when 
a pose is first instantiated, it is typically created from a PDB file, which contains only spatial 
coordinates, and the internal coordinates are generated from the spatial coordinates 
automatically.  At all times, the spatial coordinates and internal coordinates are synchronized 
within the pose.   
 
 In Rosetta, most of the energetic components are functions of the atom types and spatial 
positions of atoms that comprise the system.  Van der Waals interactions and Pauli Exclusion 
forces are modeled using the Lennard-Jones potential, using the Cartesian coordinates of all non-
bonded atoms.  Electrostatics are modeled using a simple distance-dependent dialectric, with 
distance derived from the coordinates of charged atoms.  Solvation is modeled using the 
Lazardis-Karplus Gaussian solvent-exclusion model using the pair-wise distances of all atoms in 
the system.  There are scoring components that use the internal coordinates as well.  Hydrogen-
bonding is modeled using a backbone-dependent, orientation-dependent empirical formula that 
uses both Cartesian coordinates and bond geometries of donors and acceptors as well as the φ 
and ψ of the hydrogen-bonding residues.  Finally, there are internal energy terms, such as the 
Dunbrack side-chain energy, or the Ramachandran backbone energy, that are derived purely 
from the internal coordinates (χ and φ,ψ, respectively) directly. 

(Natoms) x (x, y, z) (Nres) x (φ, ψ, ω, χi) 
(Nchains - 1) x (R,T) 

refolding 
Cartesian 

coordinates 
Internal 

coordinates 
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1.5 Getting started in PyRosetta 
 
PyRosetta is written as a python front-end to the Rosetta molecular modeling suite.  It allows the 
user to access Rosetta functions and classes using the Python scripting language.  To get started 
you have to import all Rosetta functions and initialize the Rosetta database files: 
 
>>from rosetta import * 
>>init() 

 
PyRosetta has primarily two modes of use: interactive mode and script mode.  Interactive-mode 
uses IPython and allows the user to type in PyRosetta commands in real-time.  It is excellent for 
learning to use PyRosetta or running simple commands quickly.  Simply go to your PyRosetta 
directory and type: 
 
>>python ipython.py 
 
Once the interactive mode has loaded up, type in the previous two commands into the Python 
terminal to import the Rosetta library and initialize PyRosetta, and you are ready to go.  
Additionally, there are two help features in interactive mode: tab-completion and the ‘help’ 
command.  Double-tapping the ‘tab’ button will show a list of possible functions that match what 
has been entered in the Python terminal so far.  The help function will take in any PyRosetta 
object/function name and output a text description of what that function does as well as usage 
information, for example how it is constructed or called: 
 
>>help(Pose) 
<< Help on class Pose in module rosetta.core.pose._rosetta_core_pose: 
 
class Pose(Boost.Python.instance) 
 |  The Pose class represents a molecular system (proteindnaligand...) 
 |  as a container of librosetta Residue objects together with 
 |  an atom-tree structure that defines how internal coordinate changes 
 |  propagate through the system and an Energies object that stores 
 |  information from the last energy evaluation. 
 |  The two main ingredients are a Conformation object and an Energies 
 |  object. 
 |  The main responsibilities of the pose are 
 |  ii  Kinematic: 
 |  (a) to update the xyz coordinates in response to changes to internal 
 |  degrees of freedom, and 
 |  (b) to update  internal coordinates when the user modifes the xyz 
 |  (cartesian) coords, 
 |  ii  Scoring: 
 |  (a) to keep track of what parts of the structure have changed since 
 |  the last score evaluation, and 
 |  (b) to cache rsd and rsd-pair energies for efficient re-use 
 |  ii As a container: 
 |  The pose should provide a useful single object for passing 
 |  a molecular system and support copying of entire molecules 
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 |  or stretches of molecules from one Pose object into another. 
 |  thats way more comments than I have ever written in a single 
 |  stretch before... 
 | 
 |  Methods defined here: 
 |  __init__(...) 
 |      __init__( (object)arg1) -> None : 
 |          default constructor 
 |... 
 
The second mode of PyRosetta is script-mode.  This is the mode where most writing and 
development of PyRosetta protocols is done.  Simply add the lines import the Rosetta library and 
initializing PyRosetta to the beginning of the Python script to access the Rosetta functions and 
objects.  PyRosetta scripts can be easily viewed and edited through any major Text Editor, and 
shared, through the website at http://www.pyrosetta.org.  Sample scripts can be downloaded 
from the ‘PyRosetta Scripts’ section of the website. 
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Unit 2: Protein structure in PyRosetta 
 
The pose object contains all the necessary information to completely define a protein system, 
including the amino acid sequence, the Cartesian coordinates, and internal coordinates of all 
proteins in the system.  The Protein Databank File (PDB) is the standardized file-format for 
storing the Cartesian-coordinates for each atom in a protein, and is used in PyRosetta to input or 
output a protein structure. 
 
2.1 Exploring the Pose object 
 
To load a PDB file you have to first create an empty pose object, and then assign a PDB structure 
to that pose: 
 
>>my_pose = Pose() 
>>pose_from_pdb( my_pose, “test.pdb” ) 
 
You can access a summary of the pose through: 
 
>>print my_pose 
PDB file name: test.pdb 
Total residues:116 
Sequence: DAITHSILDWIDNLESPLSEKVSERSGYSKWHLQRMFKKETGHSLGQYRSRK… 
Fold tree: 
FOLD_TREE EDGE 1 116 -1 
 
This summary contains the pdb file name that the pose originated from, the total number of 
residues in the pose, the amino acid sequence, and the fold tree.  The fold tree (described in 
Section 7.2) describes the path of refolding of the pose.  This information can also be accessed 
individually:  
 
>>print my_pose.total_residue() 
116 
>>print my_pose.sequence() 
DAITHSILDWIDNLESPLSEKVSERSGYSKWHLQRMFKKETGHSLGQYRSRK… 
>>print my_pose.fold_tree() 
FOLD_TREE EDGE 1 116 -1 
 
Each residue in a pose is represented as a residue object within the pose.  It can be accessed as 
(residue #2 as an example) below.  Printing the residue displays the residue type, residue number 
(in pose numbering), all the atoms that make up the residue and their respective Cartesian 
coordinates.  Again, this information can be accessed individually as well. 
 
>>print p.residue(2) 
ALA 2: 
 N  : 0.764 37.858 76.239 
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 CA : 0.778 39.078 77.028 
 C  : -0.624 39.484 77.368 
 O  : -0.925 39.776 78.527 
 CB : 1.474 40.216 76.301 
 H  : 1.417 37.762 75.474 
 HA : 1.307 38.885 77.961 
1HB : 1.461 41.108 76.927 
2HB : 2.506 39.936 76.09 
3HB : 0.955 40.422 75.367 
 
>>print p.residue(2).name() 
ALA 
 
Residue chemical properties that have been defined in the parameter files (see Section 2.4) can 
also be accessed: 
 
>>p.residue(2).is_polymer() 
>>p.residue(2).is_protein() 
>>p.residue(2).is_DNA() 
>>p.residue(2).is_RNA() 
>>p.residue(2).is_NA() 
>>p.residue(2).is_ligand() 
>>p.residue(2).is_polar() 
>>p.residue(2).is_aromatic() 
 
The residue numbering in a pose object is always consecutive, beginning at residue 1.  This is in 
contrast to PDB files, in which each residue has both a residue number and chain letter.  
PyRosetta will read a PDB file and sequentially number the residues in the file as they are listed.  
The conversion between pose residue numbering and PDB residue number and chain letter can 
be access as: 
 
>>print my_pose.pdb_info().pdb2pose(‘I’,8) 
239 
>>print my_pose.pdb_info().pose2pdb(239) 
8 I 
 
2.2 Accessing and manipulation protein geometry through the pose 
 
The pose object stores the protein structure as both Cartesian coordinates and internal 
coordinates.  We can access the internal coordinates for each residue as follows: 
 
>>res_num = 5 
>>print my_pose.phi(res_num) 
>>print my_pose.psi(res_num) 
>>print my_pose.chi(chi_num, res_num) 
 

In the same way, new internal coordinates can be assigned at each residue: 
 
>>my_pose.set_phi(res_num, new_angle) 
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>>my_pose.set_psi(res_num, new_angle) 
>>my_pose.set_chi(chi_num, res_num, new_angle) 
 

The bond lengths and angles, almost always held fixed in Rosetta algorithms, can also be 
manipulated.  Since this is a less-used function, it is not as easy to use and utilizes AtomID 
objects based on atom numbers and residue numbers, as listed in the PDB file: 
 
>>N = AtomID(1,res_num) 
>>CA = AtomID(2, res_num) 
>>C = AtomID(3, res_num) 
 

From these AtomID objects, the bond length and angles can be accessed and manipulated for the 
pose object: 
 
>>print my_pose.conformation().bond_length(N, CA) 
>>print my_pose.conformation().bond_angle(N, CA, C) 
>>print my_pose.conformation().set_bond_length(N, CA, new_bond_length) 
>>print my_pose.conformation().set_bond_angle(N, CA, C, new_bond_angle) 
 

Finally, the atomic coordinates of each atom in the pose is accessible through the residue object.  
The atomic coordinates are stored in atom order, with the first four atoms as N, CA, C, O.  The 
atom order and atom numbers can be accessed using the atom_index function: 
 
>>print my_pose.residue(5).atom_index(CA) 
2 
>>print my_pose.residue(5).xyz(2) 
0.010  35.998 80.515 
>>print my_pose.residue(5).xyz(my_pose.residue(5).atom_index(CA)) 
0.010  35.998 80.515 
 
The coordinates are returned as numeric.xyzVector’s and can be used with Python Math 
functions. 
 
2.3 Centroid and Full-atom representations of protein structure 
 
In Rosetta there are two main ‘modes’ of representation of protein structure, centroid-mode and 
full-atom mode.  In full-atom mode, for each residue, all backbone and side-chain atoms are 
explicitly modeled.  In centroid-mode, all backbone atoms are explicitly modeled, but the side-
chain atoms are replaced with a single pseudo-atom, called a ‘centroid’.  The position of the 
centroid is based on the average center-of-mass of that side-chain among the low-energy side-
chain conformations; the size (radius) of the centroid is related to the average size of that side-
chain. 
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The advantage of centroid-mode is that it allows for much faster energy calculations because the 
number of atoms in the simulation falls by significant amount, allowing for rapid searches 
through large areas of conformational space during Monte Carlo simulations.  The disadvantage 
is that interactions involving the side-chain, such as side-chain hydrogen bonds, or side-chain 
Van der Waals interactions, cannot be captured explicitly because doing so would require all 
atoms of the side-chain to be modeled.  Instead these interactions are captured implicitly using 
pair-wise statistical potentials and VdW sphere approximations.  These implicit measurements 
can be significantly less accurate, which is why most Rosetta protocols have a low-resolution or 
coarse-grain phase using centroid mode with the main responsibility of sampling a diverse range 
of conformations quickly, and a high-resolution refinement phase, with the main responsibility of 
assessing an accurate energy for a given structure. 
 
The example below shows a full-atom and centroid-mode representation of a Tryptophan 
residue:  
 
 N  : -7.438 37.691 87.434 
 CA : -8.307 36.699 87.982 
 C  : -7.701 36.101 89.223 
 O  : -8.432 35.736 90.14 
 CB : -8.62 35.581 87 
 CG : -9.535 34.551 87.595 
 CD1: -10.902 34.633 87.706 
 CD2: -9.17 33.258 88.106 
 NE1: -11.406 33.47 88.256 
 CE2: -10.362 32.614 88.513 
 CE3: -7.959 32.591 88.27 
 CZ2: -10.372 31.333 89.063 
 CZ3: -7.97 31.314 88.814 
 CH2: -9.171 30.699 89.203 
 H  : -7.073 37.611 86.496 
 HA : -9.252 37.156 88.276 
1HB : -9.113 35.983 86.114 
2HB : -7.702 35.072 86.705 
 HD1: -11.37 35.554 87.363 
 HE1: -12.381 33.28 88.44 
 HE3: -7 33.024 87.988 
 HZ2: -11.326 30.893 89.354 
 HZ3: -7.016 30.8 88.932 
 HH2: -9.142 29.695 89.626 
 

N  : -7.438 37.691 87.434 
 CA : -8.307 36.699 87.982 
 C  : -7.701 36.101 89.223 
 O  : -8.432 35.736 90.14 
 CB : -8.59316 35.6086 86.9479 
 CEN: -9.89581 34.8776 86.0296 
 H  : -7.073 37.611 86.496 



 

 
Figure 5.
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NAME THR 
IO_STRING THR T 
TYPE POLYMER #residue type 
AA THR 
ATOM  N   Nbb  NH1  -0.47 
ATOM  CA  CAbb CT1  0.07 
ATOM  C   CObb C    0.51 
ATOM  O   OCbb O    -0.51 
ATOM  CB  CH1  CT1  0.14 
ATOM  OG1 OH   OH1  -0.66 
ATOM  CG2 CH3  CT3  -0.27 
ATOM  H   HNbb H    0.31 
ATOM  HG1 Hpol H    0.43 
ATOM  HA  Hapo HB   0.09 
ATOM  HB  Hapo HA   0.09 
ATOM 1HG2 Hapo HA   0.09 
ATOM 2HG2 Hapo HA   0.09 
ATOM 3HG2 Hapo HA   0.09 
LOWER_CONNECT N 
UPPER_CONNECT C 
BOND  N    CA 
BOND  N    H 
BOND  CA   C 
BOND  CA   CB 
BOND  CA   HA 
BOND  C    O 
BOND  CB   OG1 
BOND  CB   CG2 
BOND  CB   HB 
BOND  OG1  HG1 
BOND  CG2 1HG2 
BOND  CG2 2HG2 
BOND  CG2 3HG2 
CHI 1  N    CA   CB   OG1 
CHI 2  CA   CB   OG1  HG1 
 
PROTON_CHI 2 SAMPLES 3 60 -60 180 EXTRA 1 20 
 
 
PROPERTIES PROTEIN POLAR 
NBR_ATOM CB 
NBR_RADIUS 3.4473 
FIRST_SIDECHAIN_ATOM CB 
ACT_COORD_ATOMS OG1 END 
ICOOR_INTERNAL    N      0.000000    0.000000    0.000000   N     CA    C 
ICOOR_INTERNAL    CA     0.000000  180.000000    1.458001   N     CA    C 
ICOOR_INTERNAL    C      0.000000   68.800049    1.523257   CA    N     C 
ICOOR_INTERNAL  UPPER  149.999954   63.800026    1.328685   C     CA    N 
ICOOR_INTERNAL    O    180.000000   59.199905    1.231016   C     CA  UPPER 
ICOOR_INTERNAL    CB  -121.983574   68.467087    1.539922   CA    N     C 
ICOOR_INTERNAL    OG1   -0.000077   70.419235    1.433545   CB    CA    N 
ICOOR_INTERNAL    HG1    0.000034   70.573135    0.960297   OG1   CB    CA 
ICOOR_INTERNAL    CG2 -120.544136   69.469185    1.520992   CB    CA    OG1 
ICOOR_INTERNAL   1HG2 -179.978256   70.557961    1.089826   CG2   CB    CA 
ICOOR_INTERNAL   2HG2  120.032188   70.525108    1.089862   CG2   CB   1HG2 
ICOOR_INTERNAL   3HG2  119.987984   70.541740    1.089241   CG2   CB   2HG2 
ICOOR_INTERNAL    HB  -120.292923   71.020676    1.089822   CB    CA    CG2 

Residue identification information 

PDB atom names, Rosetta atom 
types, and partial charges 

Polymer connectivity information 

Bond connectivity information 

Defining side-chain torsion angles 

Defining proton side-chain torsion 
angle sampling 

Residue properties 
Defining parameters for neighbor 
calculations 
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ICOOR_INTERNAL    HA  -120.513664   70.221680    1.090258   CA    N     CB 
ICOOR_INTERNAL  LOWER -149.999969   58.300030    1.328684   N     CA    C 
ICOOR_INTERNAL    H    180.000000   60.849979    1.010000   N     CA  LOWER  
 
 
 
 
 
 
The centroid residue parameters can be found in /centroid/residue_types directory. As 
an example, the centroid parameter file for Threonine is shown below: 
 
NAME THR 
IO_STRING THR T 
TYPE POLYMER #residue type 
AA THR 
ATOM  N   Nbb  NH1  -0.47 
ATOM  CA  CAbb CT1  0.07 
ATOM  C   CObb C    0.51 
ATOM  O   OCbb O    -0.51 
ATOM  CB  CB    CT1  0.14 
ATOM  H   HNbb H    0.31 
LOWER_CONNECT N 
UPPER_CONNECT C 
BOND  N    CA 
BOND  N    H 
BOND  CA   C 
BOND  CA   CB 
BOND  C    O 
PROPERTIES PROTEIN POLAR 
NBR_ATOM CEN 
NBR_RADIUS 3.025  
FIRST_SIDECHAIN_ATOM CB 
ICOOR_INTERNAL    N      0.000000    0.000000    0.000000   N     CA    C 
ICOOR_INTERNAL    CA     0.000000  180.000000    1.458001   N     CA    C 
ICOOR_INTERNAL    C      0.000000   68.800049    1.523257   CA    N     C 
ICOOR_INTERNAL  UPPER  149.999954   63.800026    1.328685   C     CA    N 
ICOOR_INTERNAL    O    180.000000   59.199905    1.231016   C     CA  UPPER 
ICOOR_INTERNAL    CB  -121.983574   68.467087    1.539922   CA    N     C 
ICOOR_INTERNAL  LOWER -149.999969   58.300030    1.328684   N     CA    C 
ICOOR_INTERNAL    H    180.000000   60.849979    1.010000   N     CA  LOWER 
 
 
 
 
 
##centroid-specific 
ATOM  CEN CEN_THR H 0.0 
BOND CA CEN 
ICOOR_INTERNAL    CEN -128.951279   72.516479    2.072556    CA     N     C  
 
 
 

  

Residue structure defined in 
internal coordinates 

Residue identification information 

PDB atom names, Rosetta atom 
types, and partial charges 

Polymer connectivity information 

Bond connectivity information 

Residue structure defined in 
internal coordinates 

Residue properties 
Defining parameters for neighbor calculations 

Centroid-specific information 
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Unit 3: Calculating energies in PyRosetta 
 
The pose object gives us a framework for manipulating the protein structure, sampling different 
conformations.  The PyRosetta score functions allow us to evaluate the approximate free energy 
of each conformation.  In general form, the score function takes in a pose object and outputs a 
score that represents its energy.   
 
3.1 Introduction to the score functions 
 
There are over 30 different components to the score function, and each algorithm, from docking 
to loop modeling typically uses its own combination of components and component weights.   A 
comprehensive table of all scoring components and their abbreviations can be found in the index.  
The ‘standard’ score function can be loaded up as follows: 
 
>>name = ‘standard’ 
>>my_scorefxn = create_score_function( name ) 
>>print my_scorefxn 
ScoreFunction::show() 
weights: (fa_atr 0.8) (fa_rep 0.44) (fa_sol 0.65) (fa_intra_rep 0.004)… 
 

Printing the score function information for the standard score function lists, among other things, 
all non-zero weights and their respective components. 
 
To calculate the energy of a given pose under the score function, simply pass the pose object into 
the score function: 
 
>>my_scorefxn(my_pose) 
465.88104573 
 

There are primarily two forms of representing a protein in Rosetta: full-atom and centroid mode.  
Some scoring components require full-atom mode, others centroid mode, and others work for 
both modes.  When scoring a Pose, the centroid/full-atom representation of that Pose needs to be 
compatible with all scoring components in the ScoreFunction. 
 
The standard centroid-mode scoring function is: 
 
>>scorefxn = create_score_function(‘cen_std’) 
>>print scorefxn 
<< ScoreFunction::show(): 
weights: (vdw 1) (pair 1) (env 1) (cbeta 1) 
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A list of the available scoring function weight sets can be found in 
/minirosetta_database/scoring/weights/ in the PyRosetta directory.  They can be 
opened, viewed, and edited using any Text Editor and they simply list the components and their 
weights.  There are two types files in this folder: weight sets and patches.   Weight sets can be 
used as described above to create a ScoreFunction from scratch.  Patches are applied to a 
weight set and modify or add additional components to that weight set.  In the below example, 
the score12 weight patch (score12.wts_patch) is applied to the standard weight set 
(standard.wts): 
 
>>scorefxn = create_score_function_ws_patch(‘standard’, ‘score12’) 
 
The patches allow for additional flexibility when setting up a score function.  For example, the 
score4L patch adds additional components for scoring loops models, such as chain-break 
penalties.   
 
3.3 Scoring components 
 
The most common score function components are: 
 

 
Note that a number of scoring components are compatible with both full-atom and centroid 
mode. 
 

 

 Rosetta Full-atom Scoring Functions 
Van der Waals net attractive energy FA fa_atr
Van der Waals net repulsive energy FA fa_rep
Hydrogen bonds, short and long-range,  
(backbone) 

FA/CEN hbond_sr_bb, hbond_lr_bb 

Hydrogen bonds, short and long-range,  
(side-chain) 

FA hbond_sc, hbond_bb_sc 

Solvation (Lazaridis-Karplus) FA fa_sol
Dunbrack rotamer probability FA fa_dun
Statistical residue-residue pair potential FA fa_pair
Intra-residue repulsive Van der Waals FA fa_intra_rep
Electrostatic potential FA hack_elec
Disulfide statistical energies (S-S 
distance, etc.) 

FA dslf_ss_dst, dslf_cs_ang,  
dslf_ss_dih, dslf_ca_dih 

Amino acid reference energy (chemical 
potential) 

FA/CEN ref

Statistical backbone torsion potential FA/CEN rama
Van der Waals “bumps” CEN vdw
Statistical environment potential CEN env
Statistical residue-residue pair potential 
(centroid) 

CEN pair

Cb cbeta
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3.3 Creating or editing a score function 
 
Instead of using a pre-made score function, such as ‘standard’ or ‘docking’, you can also create 
your own score function from scratch using the various scoring components available in Rosetta.  
By definition, an empty score function is a score function in which all component weights are set 
to zero.  To add a component, simply set the weight of the desired component to a non-zero 
number.  In the following example, we build a simple score function that includes only the 
repulsive LJ-potential and hydrogen bonding.  
 
>>my_scorefxn = ScoreFunction() 
>>my_scorefxn.set_weight(fa_rep, 1.0) 
>>my_scorefxn.set_weight(hbond_lr_bb, 1.0) 
>>my_scorefxn.set_weight(hbond_sr_bb, 1.0) 
 

3.4 Accessing more detailed scoring information 
 
Beyond simply returning the total energy of a given pose, you can access a comprehensive 
breakdown of the contribution of each scoring component to the total score. 
 
>>my_scorefxn.show(my_pose) 
------------------------------------------------------------ 
 Scores                       Weight   Raw Score Wghtd.Score 
------------------------------------------------------------ 
 fa_rep                       1.000     981.311     981.311 
 hbond_sr_bb                  1.000     -56.655     -56.655 
 hbond_lr_bb                  1.000    -103.050    -103.050 
--------------------------------------------------- 
 Total weighted score:                      821.606 
 
The pose object also stores the latest energy calculations, and you can access this information 
through the energies() object.  Through energies(), you can access a further breakdown of 
the scoring information on a residue by residue basis. 
 
>>res_num = 5 
>>my_pose.energies().show(res_num) 
E       fa_rep  hbond_sr_bb     hbond_lr_bb 
E(i)   5     0.53     0.00     0.00 
 

You can also access individual scoring components from individual residues directly: 
 
>>my_pose.energies().residue_total_energies(res_num)[fa_rep] 
0.532552907292 
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Unit 4: Simple simulations in PyRosetta 

In molecular modeling using PyRosetta we are generally searching a conformational space under 
a given energy function for the global minimum.  The predominant sampling strategy used to 
search this conformational space is Monte Carlo-based sampling using a large number of short 
trajectories or paths.  The lowest energy structure accessed in each trajectory is stored as a 
‘decoy’.  Theoretically, assuming adequate sampling and discrimination, the lowest energy 
decoy corresponds to the global minimum.   
 
4.1 Introduction to the Monte Carlo sampling algorithm 

In Monte Carlo-base sampling, random perturbations, or ‘moves’ are made to a starting structure 
and those moves are either accepted or rejected based on the resulting change of energy due to 
that move.   
 
The most common basis for accepting or rejecting a move is through the Metropolis Criterion.  
The Metropolis criterion states that if the change in energy (ΔE) is less than zero, that is the 
move decreased the energy, then always accept the move.  If the change in energy is greater than 
zero, then accept that move only some of the time.  The probability of accepting that move is a 
function of how much it increased the energy by: 
 

P(ΔE) = e-ΔE/kT 

 

 In practical terms this means: 
1. A move is made to the structure 
2. The energy is calculated and compared with the previous energy -> ΔE 
3. If ΔE < 0 the move is accepted 
4. If ΔE > 0, then: 

• The probability (P) of the move is calculated based on ΔE 
• A random number, i,  is generated from 0 to 1 
• If i < P, then the move is accepted, otherwise the move is rejected 

Note the role of kT in the calculation of the probability of acceptance.  For a given ΔE, as kT 
increases, the probability of acceptance increases.  At higher values of kT, the structure can more 
easily escape local minima, but the average energy of the structure is higher; at lower values of 
kT, the structure is more likely to get ‘stuck’ in a local minima, but will generally have a lower 
energy.  In simulated annealing, kT starts at a high value and either linearly or geometrically 
decreases to a final value through the course of the simulation.  This allows the structure to both 
escape local minima and also settle into a global minimum. 
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4.2 Monte Carlo Object 

The MonteCarlo object keeps track of all variables necessary to run Monte Carlo simulations in 
Rosetta and also applies the Metropolis criterion.  The MonteCarlo object is initialized with a 
score function to calculate the energy, a pose object to serve as a reference structure, and the 
temperature, which is used in the Metropolis Criterion: 
 
>>kT = 1.0 
>>mc = MonteCarlo(scorefxn, pose, kT)  
 
Following a move to the pose object, the Metropolis Criterion is applied using: 
 
>>mc.boltzmann(pose) 
 
Within this function, the energy of inputted pose is calculated using the score function and 
compared to the energy of the last accepted pose object.  The Metropolis criterion is applied to 
the pose; if the move was accepted than the inputted pose remains unchanged, and the last 
accepted pose, within the MonteCarlo object, is updated.  If the move was rejected, the inputted 
pose is switched to the last accepted pose, and the last accepted pose is unchanged. 
 
The lowest energy structure assessed by the MonteCarlo object can be accessed as well.  The 
lowest energy structure is not only recovered at the end of the simulation, but often intermittently 
throughout the simulation as well. 
 
>>mc.recover_low(pose) 
 
For simulated annealing, the temperature (or kT) is decremented throughout the simulation.  This 
can be done by changing the temperature that the MonteCarlo object uses for evaluating the 
Metropolis Criterion: 
 
>>kT = 2.0 
>>mc.set_temperature(kT) 
 
In addition to applying the Metropolis Criterion, the Monte Carlo object stores a variety of 
information on acceptance and rejection: 
 
>>mc.show_scores() 
<<protocols.moves.MonteCarlo: MonteCarlo:: last_accepted_score,lowest_score: 

-8.02917 -8.02917 
 
>>mc.show_counters() 
<<protocols.moves.MonteCarlo:              unk trials=  60000;  accepts= 

0.6766;  energy_drop/trial=   0.00465 
 
>>mc.show_state() 
<<protocols.moves.MonteCarlo: MC: 1  -8.02917  -8.02917  -8.02917  -8.02917  

0  0  0  2 



23 
 

<<protocols.moves.MonteCarlo:              unk trials=  60000;  accepts= 
0.6766;  energy_drop/trial=   0.00465 

-8.02916688224 
 
Finally, the MonteCarlo object can be reset with a new pose.  This will wipe clean all 
information about previous scores, acceptance rates, or last-accepted and lowest-energy poses. 
 
>>mc.reset(pose) 
 
4.3 A simple Monte Carlo simulation for peptide folding 
 
Here is a simple Monte Carlo algorithm that folds a small polyalanine peptide from an extended 
strand to an α-helix.  The score function consists purely of Hydrogen bonding and Van der Waals 
terms.  Perturbations are made to the structure by randomly selecting a residue and then 
perturbing its φ and ψ by a random magnitude, from -25˚ to 25˚.  The Monte Carlo object 
evaluates the Metropolis Criterion after each application of the perturbation. 
 
p=Pose() 
pose_from_pdb(p, “mc_initial.pdb”) 
 
#set up score function 
scorefxn = ScoreFunction() 
scorefxn.set_weight(hbond_sr_bb,1.0) 
scorefxn.set_weight(vdw, 1.0) 
 
#set up MonteCarlo object 
mc = MonteCarlo(p, scorefxn, 1.0) 
 
#set up mover 
def perturb_bb = function(pose): 
 resnum = randint(i, pose.total_residue())  
 pose.set_phi(resnum, pose.phi(resnum)-25+random()*50) 
 pose.set_psi(resnum, pose.psi(resnum)-25+random()*50) 
 return pose 
 
#set up protocol 
def my_protocol = function(pose) 
 mc.reset(pose) 
 for i in range(1,60000): 
  perturb_bb(pose)  
  mc.boltzmann(p) 
  
  if (i%1000 == 0): 
      mc.recover_low(p) 
 
 #output lowest-energy structure 
 mc.recover_low(p) 
 return pose 
 
my_protocol(pose) 
dump_pdb(p, “mc_final.pdb”) 
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While a decoy is being generated, the Job Distributor will create a temporary file called 
test_output_0001.pdb.in_progress.  Once that decoy is complete, it will be renamed 
test_output_0001.pdb, for decoy #1.  Through the use of these temporary files, the script can 
be run multiple times for multiple processors all working on the same pool of decoys.   In 
addition to the decoy structures, a score file is generated that lists each decoy, its RMSD to a 
reference structure and a break-down of its score.  This scorefile is stored as test_output.fasc 
for all-atom structures and test_output.sc for centroid structures.   
 
Additional information, such as particular measurements like a loop RMSD, or a specific 
residue-residue distance can be stored as an additional line in the scorefile can be added with the 
following line, just prior to outputting the decoy. 
 
>>jd.additional_decoy_info(“loop_RMSD” + str(loop_rmsd)” + “res49A_res20B” + 

str(res_dist)”) 
 
 Note that if a MonteCarlo object is used in my_protocol, in the above example, it must be reset 
each time the function is called.  Otherwise information from the previous decoy will be retained 
and recovered in the Monte Carlo object.  This will lead to trajectories that are not independent.   
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Unit 5: Conformational sampling in PyRosetta – Movers 
 
Rosetta uses a large variety of structural perturbations, or ‘moves’ that are specifically designed 
for efficient conformational sampling for proteins.  These include moves that alter backbone 
torsion angles, optimize side chain conformations, manipulate rigid-body positions of multiple 
protein chains.  While in theory all these moves can be enacted using the functions that 
manipulate protein geometry that we’ve already learned (i.e. pose.residue().set_phi()), 
in practice, these moves are often very specific, complex, combinations of smaller perturbations, 
that have been designed to search the conformation space in a computationally efficient manner.  
These moves, called Movers, are among the most powerful features of Rosetta and have been 
rigorously benchmarked and tested on protocols published in scientific literature. 
 
 5.1 Introduction to the Mover base class 
 
Movers are one of the main archetypal classes in PyRosetta.  After construction, their basic 
function is to be ‘applied’ to a pose, which, for most traditional movers, means perturbing the 
structure in some way.  There are a large variety of Movers in PyRosetta.  Learning to use them 
requires understanding three things: 
 

1. Mover construction – what is needed to construct the mover?  Some Movers are very 
simple and require almost nothing for construction.  Others require many other objects 
that define how the Mover is implemented. 

2. Mover options – what options exist to manipulate the Mover?  In additional to options in 
during constructions, Movers often have a large number of variables that can be altered 
from the default settings. 

3. Mover.apply(pose) – What does the mover do when you apply it to a Pose?  The 
Mover will use all the instructions given to it during construction and option-setting to 
modify how the mover is implemented on a Pose object.   

 
Just as the ScoreFunction object is principally passed a Pose object and returns its energy 
with ScoreFunction(pose), a Mover is implemented on a Pose object with 
Mover.apply(pose). 
 
5.2 Limiting the search space with MoveMap 
 
In Rosetta, we typically try to define the limits of the conformation space for a particular 
molecular modeling problem in terms of which degrees of freedom (in internal coordinates) we 
allow to be flexible, and which degrees of freedom we want to remain fixed.  The MoveMap 
gives us a way to implement that with the Movers. 
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Movers typically apply changes on a protein structure by perturbing its internal coordinates, 
backbone torsion angles, side-chain torsion angles, and rigid-body jumps (see Unit 1).  The 
MoveMap contains instructions about internal coordinates are allowed to move (be flexible) and 
which ones are to remain fixed.  The MoveMap is a generic object that can be applied used with 
any Pose, but it is typically used for the specific application of a Mover or set of Movers. 
Construct a MoveMap as follows: 
 
>>movemap = MoveMap() 
 
On construction, all degrees of freedom are set to False, indicating that neither backbone 
torsion angles, nor side-chain torsion angles are allowed to move.  We can set specific degrees of 
freedom to True, for example for residue 5.  We can also set a range of residues to be true for 
backbone torsion angles: 
 
>>movemap.set_bb(2, True) 
>>movemap.set_chi(2,True) 
>>movemap.set_bb_true_range(5,10) 
 
We can allow the rigid-body orientation of one protein chain relative to another to be altered by 
allowing the jump (jump #1 in the example) that defines the orientation to be flexible: 
 
>>movemap.set_jump(1, True)  
 
Finally, you can view the instructions for the MoveMap: 
 
>>movemap.show(10) 
<< 
  resnum       BB      CHI 
     001    FALSE    FALSE 
     002    TRUE     TRUE 
     003    FALSE    FALSE 
     004    FALSE    FALSE 
     005    TRUE     FALSE 
     006    TRUE     FALSE 
     007    TRUE     FALSE 
     008    TRUE     FALSE 
     009    TRUE     FALSE 
     010    TRUE     FALSE 
 
 
5.3 Backbone Movers: SmallMover and ShearMover 
 
The simplest movers that exist in Rosetta are the backbone movers SmallMover and 
ShearMover.  They are used frequently to make small perturbations to the backbone structure 
for structural refinement and relaxation simulations.   
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SmallMover 
 
The SmallMover makes small individual random perturbations on the φ and ψ backbone torsion 
angles of n residues among the all residues that are allowed to move.  By default, n = 1.  A 
MoveMap defines which residues are allowed to move.  In making the perturbation, the 
SmallMover does the following each time: 
 

1. Select random residue, i 
2. For φi, select a perturbation magnitude randomly between (0 and max_angle) 
3. new_φi = old_ φi ± perturbation  
4. Do the same as Step 2-3 for ψi 
5. accept or reject (new_ φi, new_ ψi ) based on Metropolis Criterion, where kT is user 

inputted, and ΔE = rama(new_ φi, new_ ψi ) – rama(old_ φi, old_ ψi ).  If move is 
accepted, apply move and continue.  If move is rejected, go back to Step 2. 

 
In the above description, rama is the Ramachandran score component (rama), based on the 
statistical probability of observing a given (φ,ψ) for a given residue type.  This biases backbone 
torsion angle sampling towards allowable regions of the Ramachandran space and ensures that 
the simulation isn’t wasting time sampling in disallowed regions. 
 
The construction of a SmallMover requires a MoveMap, the number of moves the SmallMover 
should make for each SmallMover.apply(pose), and the temperature that the SmallMover 
should use when applying the Metropolis Criterion during torsion angle selection.  Additionally, 
the max_angle can be set for all residues, both in a secondary structure-specific, and secondary-
structure independent manner: 
 
>>movemap = MoveMap() 
>>movemap.set_bb(True) 
>>n_moves = 5 
>>kT = 1.0 
>>smallmover = SmallMover(movemap, n_moves, kT) 
>>smallmover.angle_max(10) 
>>smallmover.angle_max(‘E’, 5) #beta-strand residues 
>>smallmover.angle_max(‘H’, 10) #helix residues 
>>smallmover.angle_max(‘L’, 20) #loop residues 
 
Finally, as with all Movers, a SmallMover is applied to a Pose with: 
 
>>smallmover.apply(pose) 
 
The SmallMover can be used to replace the perturb_BB function in the example peptide 
folding script in Section 4.3. 
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ShearMover 
 
Most backbone movers in Rosetta sample backbone conformations by perturbing the internal 
coordinates of the protein.  One drawback to this approach is that, in a continuous polypeptide 
chain, even small torsion angle perturbations in the beginning or middle of the chain can have 
large downstream consequences on the protein structure in Cartesian coordinates once the chain 
is ‘refolded’ with the new torsion angles.  To accommodate this, Rosetta has a number of 
backbone movers that are designed to allow local perturbations of backbone conformation while 
minimizing global changes in the protein structure as a consequence.  The most simple of these 
movers is the ShearMover. 
 
In many respects the ShearMover is similar to the SmallMover.  They both use the same 
arguments in construction.  The difference is that while the SmallMover perturbs φi and ψi, the 
ShearMover perturbs, φi and ψi-1.  The reason for this is a mathematical relationship that allows 
one of those two torsion angles to be perturbed and the other to be perturbed in such a way as to 
partially eliminate the downstream effect of the torsion angle perturbation, thus altering the 
torsion angle while minimizing the changes to the overall global structure.  The syntax and usage 
of the ShearMover is identical to the SmallMover: 
 
>>shearmover = ShearMover(movemap, n_moves, kT) 
>>shearmover.angle_max(10) 
>>shearmover.angle_max(‘E’, 5) #beta-strand residues 
>>shearmover.angle_max(‘H’, 10) #helix residues 
>>shearmover.angle_max(‘L’, 20) #loop residues 
>>shearmover.apply(pose) 
 
5.4 Backbone Movers: FragmentMovers 
 
The SmallMover and ShearMover perturb the existing backbone torsion angles by a random 
amount.  There is a second type of backbone mover that changes the torsion angle not by 
perturbing the original torsion angle of a single residue by some small amount, but by replacing 
the torsion angles for a set of consecutive residues, known as a’fragment’ with a new set of 
torsion angles for those residues (a new fragment) derived from a database of low-energy 
fragments for that sequence of residues, known as a fragment library. 
 
This method, known as fragment insertion is critical to Rosetta’s ab initio structure prediction 
and loop modeling methods and allows for a fast, efficient, search of a much wide range of 
conformational space than SmallMovers and ShearMovers.  In Rosetta we primarily use two 
lengths of fragments, 3mer fragments and 9mer fragments.  3mer fragments are predominantly 
used for most modeling applications as 9mer fragment insertion is generally too disruptive for all 
applications but protein folding. 
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A fragment library can be generated for a given protein sequence by going to Robetta website 
(http://robetta.bakerlab.org/fragmentsubmit.jsp) and submitting the desired sequence in FASTA 
format.  The method for generating a fragment library involves searching a non-redundant subset 
of the Protein Data Bank for the 100 highest-frequency fragments that contain a similar sequence 
profile to the input sequence, in window-lengths of the same size as the fragment size.  
Theoretically, this method relies on the observation that local low-energy backbone 
conformations are partially a result of the local sequence.  The fragment insertion method biases 
backbone sampling towards known low-energy conformations for a given local sequence.   
 
A FragmentMover requires a fragment library (a FragSet) from which to select fragments, 
and a MoveMap, which specifies which residues are allowed to be altered.  A fragment library 
can be read in as follows, in this example, for a 3mer fragment library file named 
test_in_3mer.frag: 
 
>>fragset = ConstantLengthFragSet(3) 
>>fragset.read_fragment_file(“test_in_3mer.frag”) 
 
>>movemap = MoveMap() 
>>movemap.set_bb(True) 
>>frag_mover = ClassicFragmentMover(fragset, movemap) 
>>frag_mover.apply(pose) 

 
Like the SmallMover, standard fragment insertion that replace a 3-residue or 9-residue window 
of backbone torsion angles can have large downstream effects on the protein structure during the 
re-folding step, leading to drastic changes in the global structure.  To address this, there is a 
fragment mover called SmoothFragmentMover, which selects fragments that minimize 
downstream effects.  This leads to sampling of diverse local conformations without massively 
altering the global structure, making it ideal for structural refinement or relaxation. 
 
>>frag_mover = SmoothFragmentMover(fragset, movemap) 
>>frag_mover.apply(pose) 

 
5.5 Energy Minimization 
 
Minimizing the energy with respect to certain flexible degrees of freedom is a quick and easy 
way to lower the energy of a given structure without altering its structure substantially.  Often 
significant decreases in energy can be achieved with minute changes in backbone or side-chain 
torsions.  Energy minimization is common in Rosetta and often follows explicit perturbations 
and precedes a Monte Carlo Metropolis Criterion step.  Essentially, it provides the lowest energy 
structure in the immediate local vicinity of a conformation just after an explicit perturbation step. 
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Energy Minimization in Rosetta is carried out primarily through the MinMover.  In the 
construction of the MinMover, one mainly needs to supply the energy function that is to be 
minimized and a MoveMap which defines which conformational degrees of freedom to minimize 
over.  Additionally, one can provide the minimization type used and the threshold for 
minimization (i.e. when minimization is considered complete), also known as the ‘tolerance’. 
 
>>movemap = MoveMap() 
>>movemap.set_bb(True) 
>>scorefxn = create_score_function(‘standard’) 
>>tolerance = 0.01 
>>min_type = “dfp_min” 
 
>>minmover = MinMover(movemap, scorefxn, min_type, tolerance, True) 
>>minmover.apply(pose) 
 
The MinMover can also be constructed with default settings where only specific options are 
changed later: 
 
>>minmover = MinMover() 
>>minmover.score_function(scorefxn) 
>>minmover.movemap(movemap) 
>>minmover.tolerance(tolerance) 
 
There are primarily two minimization methods used in Rosetta: Linear minimization, or steepest-
descent minimization (linmin), and Davidson-Fletcher-Powell minimization (dfp_min).  
Linmin is computational cheaper than dfp_min, but generally minimizes less well. 
 
5.6 Other types of movers 
 
In addition to the traditional movers that directly perturb the protein structure by altering their 
internal coordinates, there are other types of movers as well.  Combination movers, such as the 
SequenceMover and RepeatMover, are essentially ‘mover containers’ that execute the mover(s) 
within them with some instruction.  SequenceMover is a mover with a list of movers within it; 
when applied, it applies all the movers within it consecutively.   
 
>>sequence_mover = SequenceMover() 
>>sequence_mover.add_mover(small_mover) 
>>sequence_mover.add_mover(minmover) 
>>sequence_mover.apply(pose) 
 
In the above example, when sequence_mover.apply(pose) is called, the SequenceMover 
will apply small_mover and then minmover. 
 
RepeatMover is a mover that repeats the mover within it a user-specified number of times, in 
this case it will repeat the small_mover 5 times when it is applied to the pose. 
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>>repeats = 5 
>>repeat_mover = RepeatMover(small_mover, repeats) 
>>repeat_mover.apply(pose) 
 
The most important of these ‘container’ movers is the TrialMover.  The TrialMover contains 
a user-inputted Mover and MonteCarlo object.  On TrialMover.apply(pose), it executes 
the mover contained within it, and then applies MonteCarlo.boltzmann() on the resulting 
pose, accepting or rejecting that move based on the Metropolis Criterion. 

 
>>mc = MonteCarlo(scorefxn, pose, kT) 
>>trial_mover = TrialMover(small_mover, mc) 
>>trial_mover.apply(pose) 
 
The most common trial movers used in Rosetta involve using a sequence mover that makes one 
or more explicit perturbations, followed by energy minimization, followed by the 
TrialMover’s Metropolis Criterion:   
 
>>smallmin = SequenceMover() 
>>smallmin.add_mover(small_mover) 
>>smallmin.add_mover(minmover) 
>>smallmintrial = TrialMover(smallmin, mc) 
>>smallmintrial.apply(pose) 

 
Finally, we have a mover that switches a Pose between full-atom and centroid-mode 
representation.  This is useful during multi-scale protocols in which a protein starts out in 
centroid-mode for most of the conformational search and then is converted into full-atom mode 
for refinement. 
 
>>to_centroid = SwitchResidueTypeSetMover(‘centroid’) 
>>to_centroid.apply(pose) 
 
>>to_fullatom = SwitchResidueTypeSetMover(‘fa_standard’) 
>>to_fullatom.apply(pose)    
 
A pose that has just been converted into a full-atom pose has coordinates for all atoms at all side-
chains but the torsion values for the side-chains is initialized to ‘0’.  From here either the side-
chain torsion angle conformations can be optimized to sensible values using side-chain packing 
(Unit 6), or they can be recovered from a reference full-atom structure, such as a starting 
structure (in the example below, starting_pose) using the ReturnSidechainMover: 
 
>>recover_sidechains = ReturnSidechainMover(starting_pose) 
>>recover_sidechains.apply( pose ) 
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Unit 6: Side-chain Packing and Design 
 
The main internal coordinates that define a protein structure are the backbone φ and ψ angles and 
the side-chain torsion angles χn.  In Rosetta, the optimization of side-chain conformations is 
primarily handled through side-chain packing.  The ‘packer’ is a self-contained algorithm that is 
called by many protocols and functions within Rosetta.  The packer takes an input protein 
backbone structure, and uses a simulated-annealing Monte Carlo algorithm to identify the lowest 
energy side-chain conformations for each residue.  Sampling in the packer is carried out by 
selecting ‘rotamers’ or distinct low-energy side-chain conformations, from a rotamer library.  
Like the MoveMap that the backbone movers used in the previous unit, the side-chain packer 
movers use an object called a PackerTask, to provide instructions to the packer about what 
residues are allowed to move.    
 
For a given residue, the side-chain packer selects the optimum rotamer from a set of rotamers for 
that residue, based its interactions with surrounding residues.  In the case of simply optimizing 
the side-chain conformation, this rotamer set comprises exclusively of low-energy side-chain 
conformations for that residue type.  In the case of protein design, however, the rotamer set used 
for packing will include the rotamers for all residue-types allowed in that position by the design 
instructions (again provided by the PackerTask).  In this manner, the same algorithm is used 
for side-chain packing and protein design.  
 
6.1 The PackRotamersMover 
 
Side-chain packing in Rosetta is primarily carried out using a mover called the 
PackRotamersMover.  Construction of a PackRotamersMover requires a score function that will 
be used in the side-chain packing algorithm within the packer, and a PackerTask, which specifies 
which residues are allowed to move.  We will go over the PackerTask in the following section. 
 
>>packer_task = standard_packer_task(pose) 
>>scorefxn = create_score_function(‘standard’) 
>>pack_mover = PackRotamersMover(scorefxn, packer_task) 
>>pack_mover.apply(pose) 
 
On ‘apply’, the PackRotamersMover will optimize the side-chain conformations in the inputted 
pose while following any instructions from the PackerTask.   
 
6.2 The PackerTask 
 
The PackerTask provides the packer with restrictions by defining the rotamer set allowed for 
packing for each residue in the Pose.  The standard_packer_task function creates a standard 
packer task that can be subsequently manipulated: 
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>>packer_task = standard_packer_task(pose) 
>>print packer_task 
<<  
#Packer_Task 
 
resid   pack?   design?  allowed_aas 
1       1       1       ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET... 
2       1       1       ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET... 
3       1       1       ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET... 
4       1       1       ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET... 
5       1       1       ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET... 
6       1       1       ALA,CYS,ASP,GLU,PHE,GLY,HIS,HIS_D,ILE,LYS,LEU,MET... 
…. 
 
Printing the PackerTask shows the instructions that are currently contained within the task.  For 
each residue in the Pose (resid), it shows whether that residue is allowed to be packed, and 
allowed to be designed.  A residue that is forbidden from being packed will maintain its original 
rotamer throughout the packing.  A residue that is allowed to be packed, but not allowed to be 
designed, will maintain its original residue-type, and the packer will use a rotamer set containing 
only rotamers for that residue-type.  A residue that is allowed to be packed and designed will be 
optimized for both residue-type and side-chain conformation, the packer will use a rotamer set 
containing rotamers from all allow-able residue-types.  The allowable residue-types for each 
residue position are displayed as allowed_aas. 
  
The ‘standard’ task has essentially no restrictions – it will allow both repacking and redesign of 
all residues in the Pose to any residue-type.  This is the default PackerTask, all additional 
instructions serve to restrict the task in specific ways, such as by holding certain residues fixed.  
There are a number of functions that manipulate the PackerTask: 
 
>>packer_task.restrict_to_repacking() 
>>print packer_task 
<< 
resid   pack?   design? allowed_aas 
1       1       0       ALA_p:NtermProteinFull, 
2       1       0       GLU, 
3       1       0       ALA, 
4       1       0       LYS, 
… 
 
Restrict_to_repacking forbids all residues from being designed, thus allowing only the original 
residue-type for each residue.  
 
>>packer_task.temporarily_fix_everything() 
>>packer_task.temporarily_set_pack_residue(7, True) 
>>packer_task.temporarily_set_pack_residue(8, True) 
>>print packer_task 
<< 
resid   pack?   design? allowed_aas 
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... 
5       0       0       SER 
6       0       0       GLY 
7       1       0       CYS 
8       1       0       THR 
9       0       0       ASP 
... 
 
The above functions fix all residues to their original rotamer, and allow repacking of only 
specific residues. 
 
6.3 The Resfile 
 
One way to input specific, custom, instructions for side-chain packing is by using an input file 
called the resfile.  The resfile contains the same information as the pack_task and allows the user 
to directly manipulate each residue.  A resfile can be generated for a given pose or PDB file as 
follows: 
 
>>generate_resfile_from_pose( pose, “test.resfile”) 
>>generate_resfile_from_pdb( pdb_file, “test.resfile”) 
 
In order to edit the resfile you will have to open it with a Text Editor of your choice: 
 
start 
   1  A  NATRO  
   2  A  NATRO  
   3  A  NATRO  
   4  A  NATRO  
   5  A  NATRO  
   6  A  NATRO  
   7  A  NATRO  
   8  A  NATRO 
 
The first column is the residue number, the second column is the chain letter, and the third 
column contains instructions for that residue: 
 
NATRO – instructs the packer to keep the sidechain conformation fixed.  The rotamer set for that 
residue contains only the native rotamer. 
NATAA – instructs the packer to maintain the original residue type, but allow the sidechain 
conformation of that residue to be optimized by the packer.  The rotamer set for that residue 
contains all the rotamers from the rotamer library for that residue-type only. 
PIKAA XXXX – instructs the packer to allow the side-chain to be mutated into any one of the 
proceeding amino acids (one-letter codes).  The rotamer set for this residue contains all the 
rotamers from the rotamer library for all of the allowable residue-types. 
ALLAA – instructs the packer to allow the side-chain to be mutated into any of the 20 amino 
acids.  The rotamer set contains all of the rotamers in the rotamer library for all 20 amino acids.  
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A task can be created from the resfile using: 
 
>>packer_task = standard_packer_task( pose ) 
>>packer_task.read_resfile(“test.resfile”) 
>>packer = PackRotamersMover(scorefxn, packer_task) 
>>packer.apply(pose) 
 
Now, when you print the packer_task, it will reflect all of the instructions from the resfile.   
 
6.4 TaskFactory 
 
A PackerTask is fairly limited.  It applies only to the Pose it was constructed for and is 
difficult to modify on the fly.  If the Pose amino-acid sequence is changed, the original 
PackerTask that was constructed with it becomes obsolete.  In some cases the exact residues 
that are to be packed varies as the structure changes.  For example, in protein-protein docking, 
only the interface residues are supposed to be packed, but the residues that make up the interface 
change throughout the docking process.  In these cases, a TaskFactory can be used, to create a 
task on the fly, each time PackRotamers.apply(pose) is called. 
 
A TaskFactory’s primary job is to create a PackerTask based on a list of instructions, called 
TaskOperations, that given to it.  Most instructions that can be given to a PackerTask, have 
analogous instructions for the TaskFactory.    
 
>>tf = standard_task_factory() 
>>tf.push_back(RestrictToRepacking()) 
>>tf.push_back(ReadResfile(“test.resfile”) 
>>tf.push_back(RestrictToInterface( jump_num ) 
>>packer_task = tf.create_task_and_apply_taskoperations( pose ) 
 
In the above example, the TaskFactory will generate a task that restricts all residues to 
repacking, puts in additional restrictions based on a user-inputted resfile, and finally restricts 
packing to residues at the interface defined by the Jump ‘jump_num’. 
 
Additionally, the TaskFactory can be sent to a PackRotamersMover.  The Mover will then 
create a new PackerTask each time PackRotamers is applied: 
 
>>packer_mover = PackRotamersMover(scorefxn) 
>>packer_mover.task_factory(tf) 
>>packer_mover.apply(pose) 
 
A list of some of the TaskOperations available include: 
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TaskFactory TaskOperations 
tf = standard_task_factory() Creates a default TaskFactory 
tf.push_back(IncludeCurrent()) includes the current rotamers in the Pose to the 

rotamer sets used for packing.  Defaulted on 
tf.push_back(ReadResFile(“test.resfile”)) applies instructions from the resfile when 

creating a PackerTask 
tf.push_back(NoRepackDisulfides()) holds disulfide bond cysteine side-chains fixed.  

Defaulted on. 
 

tf.push_back(RestrictToInterface(1)) allows repacking only at the interface defined 
by the jump number (in example jump# 1) 

pr = PreventRepacking() 
  pr.include_residue( 5 ) 
  tf.push_back(pr) 

turns off repacking for specified residues 
(residue #5 in example) 

rr = RestrictResidueToRepacking()
rr.include_residue(5) 
tf.push_back(rr) 

turns on repacking for specified residues 
(residue #5 in example) 

 
6.5 Other side-chain movers 
 
Besides side-chain packing there are two other side-chain movers.  The first is the RotamerTrials 
mover.  This mover acts as a ‘cheap’ version of the standard packer.  It’s much faster than 
standard packing and quickly finds local minima in side-chain conformation space.  The standard 
PackRotamersMover is much better at finding the global minimum in side-chain conformation 
space.  RotamerTrialsMinMover is a variation of the RotamerTrialsMover that is uses 
energy minimization to minimize the torsion angles while selecting rotamers.  It is the only 
mover capable of going off-rotamer in search of low-energy side-chain conformations. 
 
>>rot_trials = RotamerTrialsMover(scorefxn, tf) 
>>rot_trials.apply( pose ) 
>>rt_min = RotamerTrialsMinMover(scorefxn, tf) 
>>rt_min.apply( pose ) 
 
Finally, there are a number of wrapper functions that use the previous movers in highly specific, 
but commonly used ways.  For example, the mutate_residue function creates a point 
mutation at a user-specified position on the pose.  Below, residue #5 in the Pose is mutated to a 
Serine. 
 
>>mutate_residue( pose, 5, ‘S’) 
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Unit 7: Methods and Protocols 
 
There are a number of standardized methods and protocols that use various movers to 
accomplish certain modeling objectives.  These protocols, such as loop modeling, protein-protein 
docking, or protein design, are published in the scientific literature, rigorously benchmarked, and 
already in frequent use by many in the molecular modeling community.  Here we will introduce 
some of the protocols that are available in PyRosetta.  Please see the PyRosetta scripts section of 
the PyRosetta website (http://www.pyrosetta.org) an updated list of available protocols and a 
sample script demonstrating their usage. 
 
7.1 Loop Modeling 
 
In loop modeling, the objective is to sample low-energy conformations over a defined loop, or 
range of residues.  The challenge in this method is the loop residues are being sampled by 
altering their backbone torsion angles, but the overall global structure of the protein (the non-
loop residues) are to remain fixed in space.  The range of torsion angles in the loop residues that 
satisfies this constraint is significantly smaller than the entire range of space accessible in the 
allowable region of Ramachandran space.  Any local torsional perturbation, mid-loop, 
implemented by a SmallMover or FragmentMover, will alter the downstream global structure 
of the protein during refolding.  Rosetta addresses this by allowing chain-breaks to form in the 
loop during loop modeling that allow local structures to be sampled while maintaining the global 
structure of the protein.  Then it uses a second algorithm to mend the chain-breaks, leading to 
structures with varying low-energy, closed-loop conformations, that all have the same global 
structure. 
 
For a protein of length n, Rosetta defines a ‘loop’ between residues i and j, a ‘jump’ connecting 
residues i and j, and a ‘cutpoint’ within the loop, in between residues i and j where the chain-
break will occur (see Figure 7.1).  As was mentioned in Unit 2, the jump defines the position of 
the second jump point in rigid body space relative to the first jump point.  During refolding, the 
Pose is refolded via its φ,ψ,ω values, placing residues in Cartesian space residue-by-residue, in 
the standard N→C direction starting from residue 1 until it hits a cutpoint.  Once it arrives at the 
cutpoint residue, it uses the jump to place the position of residue j in Cartesian space, relative to 
residue i, which has already been placed in Cartesian space through refolding.  Then it refolds 
from residue j, to the cutpoint, in the C→N direction, and refolds from residue j to residue n, in 
the N→C direction.  In this manner, φ/ψ perturbations between residues i and j will affect only 
the structure of residues between i and j without altering the rest of the structure.  The 
downstream impact of torsional perturbations is eliminated by the presence of a ‘chain-break’.   
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FoldTree().add_edge(node1, node2, edge_type).  Note that all ‘peptide’ edges have 
an type of -1, while the jump has an edge of type that is a positive integer, corresponding to the 
jump number, in this case, 1.  Also note that the direction of folding (N→C or C→N) is 
described by the order of nodes used to define the edge.  For N→C folding, node1 < node2, for 
C→N folding, node1 > node2. 
 
>>ft = FoldTree() 
>>ft.add_edge(1,i,-1) 
>>ft.add_edge(i,cutpoint,-1) 
>>ft.add_edge(i,j,1) 
>>ft.add_edge(cutpoint, j, -1) 
>>ft.add_edge(j,n) 
 
>>pose.foldtree( ft ) 
 
Finally you can check if a FoldTree is valid: 
 
>>ft.check_fold_tree() 
<<True 
 
In the above example, we have defined a FoldTree manually and entered it into the Pose.  For 
most PyRosetta protocols, functions exist to define the fold tree for that particular protocol 
automatically.  A user would only manually define a fold tree for highly customized algorithms 
where automatically generated, protocol-specific fold trees cannot be used.  
 
A single loop fold tree can be defined using the Loop object for a Pose: 
 
>>set_single_loop_fold_tree(pose, loop1) 
>>print p.foldtree() 
<< 
 
7.3 Loop Modeling protocol movers 
 
Cyclic-Coordinate Descent (CCD) Loop Closure 
 
During sampling, using SmallMovers, ShearMovers, and/or FragmentMovers on loop 
residues on a Pose with a loop-modeling FoldTree, a chain break will form at the cutpoint.  
Rosetta primarily uses CCD loop closure to close that chain-break to recover a continuous chain 
along the polypeptide, from the N to the C terminus.  CCD loop closure is carried out using the 
CcdLoopClosureMover.  It uses Cyclic-coordinate descent to sample the torsion angles of the 
loop residues in a way that minimizes the chain-break.  On construction it requires a Loop 
object, and a MoveMap that allows the loop residues to move: 
 
>>movemap = MoveMap() 
>>movemap.set_bb_true_range(i,j) 
>>ccd = CcdLoopClosureMover(loop1, movemap)  
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7.5 Rigid Body Movers 
 
A jump defines the relative orientation of two residues (jump points) in rigid-body space.  This 
requires three dimensions in Cartesian coordinates define the relative position of one residue to 
the other, and three dimensions in polar coordinates that define the relative orientation of one 
residue to the other.  Finally, a rigid-body center, which defines the coordinate frame of the jump 
is also defined.  These values can be accessed and set as vectors (R and T) for each jump: 
 
>>print pose.jump(1) 
>>pose.jump(1).get_translation() 
>>pose.jump(1).get_rotation() 
 
For rigid body perturbations, we generally use RigidBodyMovers that perturb the Jump rather 
than manually altering the R and T values themselves.  For example, the 
RigidBodyTransMover moves the partners along the axis defined by the jump between the 
two partners.  It can be used to move the partners towards or away from each other. 
 
>>trans_mover = RigidBodyTransMover( pose, jump_num ) 
>>trans_mover.step_size(50) 
>>trans_mover.apply( pose ) 
 
Additionally, a translation axis can be manually accessed and modified. 
 
>>new_axis = xyzVector() 
>>new_axis = trans_mover.trans_axis() 
>>new_axis.negate() 
>>trans_mover.trans_axis(new_axis) 
 
In the following section there are additional examples of RigidBodyMovers, including 
RigidBodyPerturbMover, RigidBodyRandomizeMover, and RigidBodySpinMover. 
 
7.6 Docking Protocol Movers 
 
In the standard protein-protein docking algorithm we have three stages: 1) the initial 
perturbation, 2) low-resolution search and 3) high-resolution refinement.  The first two stages are 
carried out in centroid-mode, the final stage is in full-atom mode.   
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>>scorefxn_low = create_score_function(‘interchain_cen’) 
>>docking_low = DockingLowRes(scorefxn_low, jump_num) 
>>docking_low.apply( pose ) 
 
Following the low-resolution phase of docking, the structure must be converted into a full-atom 
structure for the high-resolution refinement step.  This can be done as described in Section 5.5, 
or with a DockingProtocol() function written specifically for this purpose (in the example 
below recovering the side-chains from a full-atom starting structure called starting_pose): 
 
>>DockingProtocol().recover_sidechains(pose, starting_pose) 
 
Finally, high-resolution refinement is carried out using the DockingHighRes mover: 
 
>>scorefxn_high = create_score_function(‘docking’) 
>>docking_high = DockingHighRes(scorefxn_high, jump_num) 
>>docking_high.apply( pose ) 
 
Additionally, there are a number of options that can be set that modify the 
DockingHighResMover.  The MoveMap in this mover is primarily used during minimization – 
inputting a custom MoveMap can allow for energy minimization along additional degrees of 
freedom beyond rigid-body minimization, for example, backbone minimization. 
 
>>docking_high.set_move_map( movemap ) 
>>docking_high.set_min_type( ‘dfpmin’ ) 
 
The DockingHighRes mover uses a variation of the RigidBodyPerturbMover that uses the center 
of masses of the interface residues to define the reference frame for rigid body perturbations 
instead of the center of masses of the entire partners which is the default behavior.  It also uses 
translation and rotation magnitudes of 0.1Ǻ and 5.0˚ respectively. 
 
>>use_interface = True 
>>rbmover = RigidBodyPerturbMover( jump_num, 0.1, 5.0, partner_downstream, 

use_interface) 
 
 
7.7 Modeling small molecules in PyRosetta 
 
PyRosetta is generally set up to model proteins using the 20 standard amino acids.  Small-
molecules and other non-amino acids moieties, such as post-translational modifications and 
cofactors, are often critical to accurate modeling certain systems.  In PyRosetta, these non-
standard molecules are treated as additional ‘residues’ to the standard residue set. 
 
Parameters describing the chemical and atomic properties of the standard residue set are stored in 
the minirosetta_database directory within PyRosetta.  In order to use non-standard 
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molecules, a parameter file must first be created so that PyRosetta can properly model the 
structure and energies of the non-standard molecule.  A parameter file (called a .params file) 
must be generated from an MDL Molfile format (.mol file) which contains the necessary 
structural and connectivity information and can be created from a PDB file containing the atomic 
coordinates for the molecule (.pdb): 
 

1. Isolate the atomic coordinates of the non-standard molecule into a PDB file 
2. Generate a .mol file from the .pdb file.  This can be done with the free web tool 

MN.CONVERT at http://www.molecular-networks.com/demos 
3. Use the molfile_to_params.py (found in the ligand docking download at 

http://www.pyrosetta.org/scripts.html) on the .mol file to generate 1) a .params file and 2) 
a PDB file containing the atomic coordinates of the non-standard molecule using Rosetta-
standardized atom-types. 

 
 >>molfile_to_params.py ATP.mdl –n ATP 
   outputs: ATP_0001.pdb ATP.params 
 

4. Replace the coordinates of the non-standard molecule in the PDB file of the starting 
structure with the coordinates output from the script in the previous step. 

 
To load the nonstandard-molecule, first create a list of all nonstandard-molecule parameter files, 
then create a residue set that includes them, and finally, use that expanded residue set to read in 
the PDB file: 
 
>>params_list = Vector1[‘ATP.params’] 
>>res_set = generate_nonstandard_residue_set(params_list) 
 
>>pose_from_pdb(pose, res_set, “PKA.pdb”) 
 
It is important to note that non-standard molecules are currently only supported in a full-atom 
representation.   
 
Finally, as the small molecule is modeled as a residue in the Pose object, a residue in the Pose 
object can be queried as to whether it is a ligand or is one of the standard 20 amino acids.  In the 
example below, residue 105 is a small molecule: 
 
>>pose.residue(105).is_protein() 
<<False 
>>pose.residue(105).is_ligand()  
<<True 
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7.8 Modeling DNA and RNA 
 
Parameters for all the standard nucleotides in DNA and RNA are already loaded into the 
minirosetta_database, so modeling DNA and RNA is straightforward in PyRosetta.  Each 
nucleotide in the DNA or RNA is considered a ‘residue’ in the Pose object.  Like with small 
molecules, DNA and RNA is only supported in the full-atom mode, parameters do not currently 
exist for modeling it in centroid mode. 
 
As with the small molecule, a residue can be queried as to whether it is a standard amino acid, or 
a nucleotide (again, in the case of residue 105): 
 
>>pose.residue(105).is_protein() 
<<False 
>>pose.residue(105).is_ligand() 
<<True 
 
Note that the names of the atoms in the DNA or RNA have to follow a standardized form.  
Please see the DNA modeling example in the scripts section of the PyRosetta website 
(http://www.pyrosetta.org/scripts.html) for more information. 
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Appendix: PyRosetta Reference Sheet 
 

Python Commands and Syntax 
i = 1  
j = "Bob"  

variable assignments 

print j, " thinks ", i, " = 0." prints Bob thinks 1 = 0. 
for i in range(1,10):  
 print i 

The newly defined variable “i” ranges from 1 up to,(but not 
including) 10 and the command print i is executed for 
each value. 

if x < 0: 
 x = 0 
 print  
elif x==0: 
 print "zero"  
else:  
 print "positive" 

Conditional statement that executes lines only if Boolean 
statements are true.   
 
Use indenting to indicate blocks of code executed together 
under the conditional 

def myfunc(a, b)  
 # code here 
return c,d,e 

Defines a function.  Also acceptable, return(c, d, 
e), but not return[c, d, e] 

returned_values = myfunc(a, b)
value_of_c = returned_values[0] 
value_of_d = returned_values[1] 
value_of_e = returned_values[2] 

syntax for using multiple values returned by a function 
called with variables a and b. 

outfile = open('out.txt','w')
print >>outfile "hello"  
outfile.close() 

prints hello to a new file named out.txt 

outfile.write( 
  str(i)+";"+str(score) +"\n") 

alternate way to write to a (previously opened) file  

 
 

Python Math 
import random imports random number functions from Python 
random.random() returns a random float between 0 and 1 
random.randint(5,10) returns a random integer between 5 and 10 (inclusive) 
random.gauss(5,10) returns a random number from a Gaussian distribution with 

a median of 5 and a standard deviation of 10 
import math imports math functions from Python 
math.exp(5) returns the value of e5

 
 

Rosetta: Vector 
rosetta.utility.vector1_string creates a C++ string vector in Python 
rosetta.utility.vector1_float creates a C++ float vector in Python 
rosetta.utility.vector1_int creates a C++ int vector in Python 
rosetta.utility.vector1_bool creates a C++ bool vector in Python 

v1 = rosetta.utility.vector1_int
   v1.append(5) 

Appends an element to a C++ vector 

v1 = numeric.xyzVector(x,y,z)  Creates a C++ xyz vector used for Cartesian coordinates 
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Rosetta: Pose Object 
pose = Pose() Creates a an empty pose object. 
pose_from_pdb(pose,"/path/to/ 

input_file.pdb") 
Creates new object called pose from the pdb 
file. 

make_pose_from_sequence(pose, "AAAAAA",
"fa_standard") 

Creates a pose from the given sequence string 
using standard residue type templates 

print pose Displays PDB filename, sequence, and fold tree
pose.assign(otherpose) Copies ‘otherpose’ onto ‘pose’. You cannot 

simply write “pose = otherpose”, as that will only 
point ‘pose’ to ‘otherpose’ and not actually copy 
it. 

dump_pdb(pose, 
"/path/to/output_file.pdb") 

Creates pdb file named output_file.pdb using 
information from pose object. 

pose.total_residue() Returns number of residues in pose 
pose.phi(5) 
pose.psi(5) 
pose.chi(2,5) 

Returns the Ԅ or ψ angle of the 5th residue in 
the pose; returns 2nd χ of the 5th residue 

pose.set_phi(5,60.0)  
pose.set_psi(5,60.0) 
pose.set_chi(2,5, 60.0) 

Sets the Ԅ or ψ angle of the 5th residue in pose 
to 60°; sets the 2nd χ of the 5th residue to 60° 

print pose.residue(5)  Prints the amino acid details of residue 5 
print pose.residue(5).xyz(2) Prints the numeric.xyzVector for the second 

atom (CA) of residue 5 
pose.conformation().set_bond_length(atom1

,atom2,length) 
Sets the bond length between objects “atom1” 
and “atom2” to a value of “length”. 

pose.conformation().set_bond_angle(atom1,
atom2,atom3,bond_angle) 

Sets the bond angle of objects “atom1,” “atom2” 
and “atom3” to a value of “bond _angle”. 

atomN = pose.residue(5).atom('N') Creates a pointer to the N atom object of 
residue 5 

coord = atomN.xyz() 
print coord.x, coord.y, coord.z 

Prints the Cartesian coordinates of atomN 

NCbond = atomN.xyz() – atomC.xyz()
print NCbond.norm() 

Calculates and prints the distance between 
atomN and atomC 

for i in range 
(1,pose.total_residue()+1): 

 <command> # on pose.residue(i) 

Loops through all residues in pose and runs 
<command> on each one 

pose.pdb_info().name() Gives the name of the PDB file input to pose 
pose.pdb_info().number(i) Gives the PDB number of residue i 
pose.pdb_info().chain(i) Gives the PDB chain of residue i 
pose.pdb_info().icode() Gives the PDB insert code of residue i 
pose.pdb_info().pdb2pose("A",100) Gives the pose’s internal residue 
pose.pdb_info().pose2pdb(25) Gives the PDB chain/number from pose 

number 
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Rosetta: Scoring 
scorefxn = 

create_score_function('standard') 
Defines a score function with standard full-atom 
energy terms and weights 

scorefxn2=core.scoring.ScoreFunction()
scorefxn2.set_weight(core.scoring.fa_atr, 
                      1.0) 

Defines a function called “scorefxn,” in which the 
energies accounted for are:  
 
The numbers are the relative weights assigned 
to each energy and can be set to any real value. 
This is not an inclusive list of energies. 

print scorefxn Shows score function weights and details 
scorefxn(pose) 
 

Returns the score of pose with the defined 
function “scorefxn”. 

scorefxn.show(pose) 
 

Returns the score of pose with the defined 
function “scorefxn”. 

pose.energies().show()  
pose.energies().show(resnum) 

Shows the breakdown of the energies by 
residue 

emap = 
rosetta.core.scoring.TwoBodyEMapVector
()  

Creates an energy map object to store a vector 
of scores 

scorefxn.eval_ci_2b(rsd1,rsd2,pose,emap) 
 

Evaluates context-independent two-body 
energies between residues rsd1 and rsd2 and 
stores the energies in the energy map 

print emap[rosetta.core.scoring.fa_atr]    Print fa_atr term from the energy map 
hbond_set = 

rosetta.core.scoring.hbonds.HBondSet() 
Creates an HBond set object for storing 
hydrogen bonding information 

pose.update_residue_neighbors();
rosetta.core.scoring.hbonds.fill_hbond_se

t(pose,False,hbond_set) 

Stores H-bond info from pose in the Hbond_set 
object. 

hbond_set.show(pose) Prints H-bond info from the hbond_set 
calc_total_sasa(pose, 1.5) Calculates the total solvent-accessible surface 

area using a 1.5A probe 
 

 Rosetta Full-atom Scoring Functions 
Van der Waals net attractive energy FA fa_atr
Van der Waals net repulsive energy FA fa_rep
Hydrogen bonds, short and long-range,  
(backbone) 

FA/CEN hbond_sr_bb, hbond_lr_bb 

Hydrogen bonds, short and long-range,  
(side-chain) 

FA hbond_sc, hbond_bb_sc 

Solvation (Lazaridis-Karplus) FA fa_sol
Dunbrack rotamer probability FA fa_dun
Statistical residue-residue pair potential FA fa_pair
Intra-residue repulsive Van der Waals FA fa_intra_rep
Electrostatic potential FA hack_elec
Disulfide statistical energies (S-S 
distance, etc.) 

FA dslf_ss_dst, dslf_cs_ang,  
dslf_ss_dih, dslf_ca_dih 

Amino acid reference energy (chemical 
potential) 

FA/CEN ref

Statistical backbone torsion potential FA/CEN rama
Van der Waals “bumps” CEN vdw
Statistical environment potential CEN env
Statistical residue-residue pair potential 
(centroid) 

CEN pair

Cb CEN cbeta
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Residue Type Set Mover 
switch =   
 SwitchResidueTypeSetMover('centroid') 

creates a mover which will change poses to the 
centroid residue type set (‘fa_standard’ also avail.) 

switch.apply(pose) changes pose to the centroid residue types 
 

MoveMap 
movemap = MoveMap() creates a MoveMap 
movemap.show(Nres) prints the MoveMap contents for residues 1-Nres 
movemap.set_bb(True) Allows all backbone torsion angles to vary when 

movemap is applied 
movemap.set_chi(True) Allows all side chain torsion angles (χ) to vary 

when movemap is applied 
movemap.set_bb(10,False) 
movemap.set_chi(10,False) 

Forbid residue 10’s backbone and side chain 
torsion angles from varying 

movemap.set_bb_true_range(10,20) Allows backbone torsion angles to vary in 
residues 10 to 20, inclusive; sets all other 
residues to False. 

movemap.set_jump(1, True) Allows jump #1 to be flexible 
  

Fragment Movers 
fragset = ConstantLengthFragSet(3, 

"aatestA03_05.200_v1_3") 
creates a fragment set and loads 
the fragments from the data file 

mover_3mer = ClassicFragmentMover(fragset,movemap)
 

Creates a fragment mover using 
the fragset and the movemap 

mover_3mer.apply(pose) inserts a random 3-mer fragment from the fragset into 
the pose, only in positions allowed by the movemap 

smoothmover = 
SmoothFragmentMover(fragset, 
movemap) 

Fragment insertions are followed by a second, 
downstream fragment insertion chosen to minimize 
global disruption 

 
Small and Shear Movers 

kT = 1.0 
n_moves = 1 
smallmover = SmallMover(movemap,kT,n_moves) 
shearmover = ShearMover(movemap,kT,n_moves) 

creates a small or shear mover with a 
movemap, a temperature, and the number 
of moves 

smallmover = SmallMover() 
shearmover = ShearMover() 

Default settings are all backbone moves 
allowed, kT = 0.5, and n_moves = 1 

smallmover.apply(pose)  
shearmover.apply(pose)  

applies the movers 

 
Minimize Mover 

minmover = MinMover() creates a minimize mover with default 
arguments 

minmover = MinMover(movemap, scorefxn, 
min_type, tolerance, True) 

Creates a minimize mover with a particular 
MoveMap,ScoreFunction, minimization type, or 
score tolerance 

minmover.movemap(movemap) Set a movemap 
minmover.score_function(scorefxn) Set a scorefunction 
minmover.min_type('linmin') Set a the minimization type to a line 

minimization (one direction in the space) 
minmover.min_type('dfpmin') Set a the minimization type to a David-

Fletcher-Powell minimization (multiple 
iterations of linmin in conjugate directions) 
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minmover.tolerance(0.5) Set the mover to iterate until within 0.5 score 
points of the minimum 

minmover.apply(pose) Apply the minmover to a pose 
 
 

MonteCarlo 
mc = MonteCarlo(pose,scorefxn,kT) creates a MonteCarlo object 
mc.set_temperature(1.0) Sets the temperature in the MonteCarlo object 
mc.boltzmann(pose) Accepts or rejects the pose object, compared to the 

pose last time the mc object was called, according to the 
standard Metropolis criterion. 

mc.show_scores() 
mc.show_counters() 
mc.show_state() 

Shows stored scores, counts of moves 
accepted/rejected, or both. 

mc.recover_low(pose) Sets the pose to the lowest-energy configuration ever 
seen during the search 

mc.reset(pose) Resets all counters and sets the low- and last-pose to 
the current pose state. 

 
 

TrialMover 
smalltrial = TrialMover(smallmover,mc) Creates a mover which will apply the small 

mover, then call the MonteCarlo object mc.  This 
mover will also give more explicit tags for the 
mc.show_state() output. 

smalltrial.num_accepts() Number of times the move was accepted 
smalltrial.acceptance_rate() Acceptance rate of the moves 
 
 

SequenceMover and RepeatMover 
seqmover = SequenceMover() 
seqmover.addmover(smallmover) 
seqmover.addmover(shearmover) 
seqmover.addmover(minmover)  

Creates a mover which will call a series of other 
movers in sequence. 

repeatmover = RepeatMover(fragmover,10) Creates a mover that will call the fragmover 10 
times 

randommover = RandomMover() 
randmover.addmover(smallmover) 
randmover.addmover(shearmover) 
randmover.addmover(minmover) 

Creates a mover which will randomly apply one 
of a set of movers each time it is applied. 

 
Rigid Body movers 

pert_mover = 
RigidBodyPerturbMover(jump_num,3,8) 

pert_mover.apply(pose) 

Makes a random rigid body move of the 
downstream partner.  Random rotation chosen 
from a Gaussian of standard deviation of 8°, and 
translation chosen from a Gaussian of standard 
deviation 3 Å 

transmover = RigidBodyTransMover(pose, 
jump_num)   

  transmover.trans_axis(a) 
  transmover.step_size(5) 
  transmover.apply(pose) 

Creates a mover that will translate two partners, 
defined by jump_num, along an axis defined by 
numeric.xyzVector a, by 5 Angstroms. 

spinmover = Creates a mover that will spin partner 2 relative 
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RigidBodySpinMover(jump_num)
  spinmover.spin_axis(a) 
  spinmover.rot_center(b) 
  spinmover.angle_size(45) 

to partner1, defined by jump_num, according to a 
spin axis and rotation center defined by 
numeric.xyzVectors a and b respectively, by 45 
degrees.  No specified angle_size randomizes 
the spin. 

 
Sidechain Packing Movers 

pack_mover = 
PackRotamersMover(scorefxn, task) 

pack_mover.apply(pose) 

Creates a mover that will use instructions from 
the ‘task’ to do packing to optimize side chain 
conformations in the pose  

rot_trial = RotamerTrials(scorefxn, 
task) 

rot_trial.apply(pose) 

Creates a mover that will use instructions from 
the ‘task’ to do Rotamer Trials to optimize side 
chain conformations in the pose  

task = standard_packer_task( pose ) Creates a packer task based on a pose 
task.or_include_current(True) Includes current rotamers in pose to packer 
task.restrict_to_repacking() Restricts all residues to repacking 
task.temporarily_fix_everything() Sets all residues to no repacking 
task.temporarily_set_pack_residue(i) Sets residue i to allow repacking 
task.read_resfile(“resfile”) Sets task based on instructions in resfile 
generate_resfile_from_pdb(test.pdb, 

“resfile”) 
generate_resfile_from_pose(pose, 

“resfile”) 

Generates a resfile from a pdb file or a pose, 
respectively 

 
TaskFactory TaskOperations 

tf = standard_task_factory() Creates a default TaskFactory 
Tf.create_task_and_apply_taskoperations(pose) Creates a task based on the list of 

TaskOperations  
tf.push_back(IncludeCurrent()) includes the current rotamers in the Pose 

to the rotamer sets used for packing.  
Defaulted on 

tf.push_back(ReadResFile(“test.resfile”)) applies instructions from the resfile when 
creating a PackerTask 

tf.push_back(NoRepackDisulfides()) holds disulfide bond cysteine side-chains 
fixed.  Defaulted on. 
 

tf.push_back(RestrictToInterface(1)) allows repacking only at the interface 
defined by the jump number (in example 
jump# 1) 

pr = PreventRepacking() 
  pr.include_residue( 5 ) 
  tf.push_back(pr) 

turns off repacking for specified residues 
(residue #5 in example) 

rr = RestrictResidueToRepacking()
rr.include_residue(5) 
tf.push_back(rr) 

turns on repacking for specified residues 
(residue #5 in example) 

 
 

Docking Movers 
DockingProtocol() Protocol for a full, multiscale docking 

run 
DockingProtocol().setup_foldtree(pose)
DockingProtocol().setup_foldtree(pose,’HL_A’) 

Sets up a fold tree for docking, based 
on chain labels in the pose 

movemap = MoveMap() 
movemap.set_jump(jump_num,True) 

Sets up a mover to minimize over the 
rigid-body coordinates 
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minmover = MinMover()  
minmover.movemap(movemap) 
dock_lowres = DockingLowRes(scorefxn_low, 

jump_num) 
dock_lowres.apply(pose) 

low-resolution, centroid based MC 
search (50 RigidBodyPerturbMoves 
with adaptable step sizes) 

dock_hires = DockingHighRes(scorefxn_high, 
jump_num) 

dock_hires.apply(pose) 

high-resolution, all-atom based MCM 
search with rigid-body moves, side-
chain packing, and minimization 

cs = ConformerSwitchMover(start,end, 
jump_num,scorefxn,"1aaa.pdb") 

cs.apply(pose) 

Picks a new backbone conformation 
from the ensemble (conformer 
selection docking).  start and end 
indicate residue number range for 
backbone swapping. 

randomize1 = RigidBodyRandomizeMover(pose, 
jump_num, partner_upstream) 

When applied, globally randomizes the 
rotation of the upstream partner. 

randomize2 = RigidBodyRandomizeMover(pose, 
jump_num, partner_downstream) 

When applied, globally randomizes the 
rotation of the downstream partner. 

DockingProtocol().calc_Lrmsd(pose1, pose2) Calculates RMSD of smaller partner 
after superposition of larger partner 

 
 

Job Distributor 
jd = PyJobDistributor("output", 1000, 

scorefxn_high) 
Creates a job distributor which will create 
1000 model structures named 
output_1.pdb to output1000.pdb. 
Files include scorefxn_high energies. 

Pose native_pose("1aaa.pdb") 
jd.native_pose = native_pose 

Sets the native pose (loaded from 
1aaa.pdb) for rmsd comparisons 

jd.job_complete Boolean indicating whether all decoys have 
been output.  

jd.output_decoy(pose) Outputs the pose to a file and increments 
the decoy number.  

while (jd.job_complete == False):
  #[create the decoy called pose] 
  jd.output_decoy(pose)  

Loop to create decoys until all have been 
output 

jd.additional_info = "Created by Andy" Sets a string to be output to the pdb file 
 
 

RMSD 
print CA_rmsd(pose1, pose2) calculates and prints the root-mean-

squared deviation of the location of Cα 
atoms between the two poses 

 
 

Fold Tree 
ft = FoldTree() 
ft = pose.fold_tree() 

Extracts the current fold tree from the pose 

pose.fold_tree(ft) Attaches the fold tree ft into the pose. 
ft.add_edge(1,30,-1) Creates a peptide edge (code -1) from residues 1 to 

30.  This edge will build N-to-C. 
ft.add_edge(100,31,-1) Creates a peptide edge from residues 100 to 31.  

This edge will build C-to-N. 
ft.add_edge(30,100,1) Creates a jump (rigid-body connection) between 
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residues 30 and 100.  
ft.add_edge(100,101,2) Creates a second jump between residues 100 and 

101 (note the jump number is 2.  Each jump needs a 
unique, sequential jump number).  

ft.check_fold_tree() Returns True only for valid trees. 
print ft Prints the fold tree 
ft.simple_tree(100) Creates a single-peptide-edge tree for a 100-residue 

protein 
ft.new_jump(40,60,50) Creates a jump from residues 40 to 60, a cutpoint 

between 50 and 51, and splits up the original edges 
as needed to finish the tree. 

ft.clear() Deletes all edges in the fold tree. 
 
 
 
 
 

Loops 
loop1 = Loop(15,24,20) Defines a loop with stems at residues 15 and 24, 

and a cut point at residue 20 
loops = Loops() 
loops.add_loop(loop1) 

Creates an object to contain a set of loops 

set_single_loop_fold_tree(pose, loop) Sets the pose’s fold tree for single-loop optimization 
ccd = 

CcdLoopClosureMover(loop1,movemap) 
Creates a mover which performs Canutescu & 
Dunbrack’s cyclic coordinate descent loop closure 
algorithm 

loop_refine = 
LoopMover_Refine_CCD(loops) 

Creates a high-resolution refinement protocol 
consisting of cycles of small and shear moves, side-
chain packing, CCD loop closure, and minimization. 

Lrms = loop_rmsd(pose,reference_pose, 
loops, True) 

Calculates the rmsd of all loops in the reference 
frame of the fixed protein structure 
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