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Abstract 

 Carbohydrates are essential biomolecules involved in myriad cellular processes, regulating 

protein folding, providing cellular structure, and mediating cell-cell communication. Despite their 

widespread importance across the cellular landscape, carbohydrates remain one of the least 

characterized biomolecules due to their chemical diversity, structural flexibility, and lack of a 

templated biosynthetic pathway. These intrinsic complexities result in non-covalent 

protein-carbohydrate that are inherently weak and transient, posing significant challenges to 

crystalizing and resolving experimental structures. Accordingly, computational approaches have 

advantages to predict and evaluate how novel proteins interact with carbohydrate ligands. 

However, prior to my dissertation research, no computational or experimental tools were able to 

systematically identify the protein-sugar interactome. 

In this dissertation, I present several advancements in computational glycobiology for 

predicting the protein-sugar interactome. Firstly, working alongside Dr. Sudhanshu Shanker, I 

developed a deep learning method CArbohydrate Protein Site IdentiFier (CAPSIF). CAPSIF was 

created with two variants: (1) a 3D-UNet voxel-based neural network model (CAPSIF:V) and (2) 

an equivariant graph neural network model (CAPSIF:G).  While both models outperform previous 

surrogate methods used for carbohydrate binding site prediction, CAPSIF:V performs better than 

CAPSIF:G, achieving test Dice scores of 0.597 and 0.543 and test set Matthews correlation 

coefficients (MCCs) of 0.599 and 0.538, respectively. We further tested CAPSIF:V on 

AlphaFold2-predicted protein structures. CAPSIF:V performed equivalently on both 

experimentally determined structures and AlphaFold2 predicted structures. Finally, we 

demonstrated how CAPSIF models can be used in conjunction with local glycan-docking 

protocols, such as GlycanDock, to predict bound protein-carbohydrate structures. 
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Expanding on this work, I addressed the grand challenge of identifying the human and E. 

coli protein-sugar interactomes. Given the impracticality of experimental screening of the entire 

proteome against extensive libraries of glycans, computational screening of proteins for 

carbohydrate-binding provides an attractive and ultimately testable alternative. Current estimates 

label 1.5 to 5% of proteins as carbohydrate-binding proteins; however, 50-70% of proteins are 

known to be glycosylated, suggesting a potential wealth of proteins that bind to carbohydrates. I 

therefore developed a neural network architecture, named Protein interaction of Carbohydrates 

Predictor (PiCAP), to predict whether a protein non-covalently binds to a carbohydrate. I trained 

PiCAP on a novel dataset of known carbohydrate binders and selected proteins that I identified as 

likely not to bind carbohydrates, including transcription factors, cytoskeletal components, and 

small-molecule-binding proteins. PiCAP achieves a 90% balanced accuracy on protein-level 

predictions of carbohydrate binding/non-binding. Using the same dataset, I developed a model 

named Carbohydrate Protein Site Identifier 2 (CAPSIF2) to predict protein residues that interact 

non-covalently with carbohydrates. CAPSIF2 achieves a Dice coefficient of 0.57 on residue-level 

predictions on our independent test dataset, outcompeting all previous models for this task. To 

demonstrate the biological applicability of PiCAP and CAPSIF2, I investigated cell surface 

proteins of human neural cells and further predicted the likelihood of three proteomes, notably E. 

coli, M. musculus, and H. sapiens, to bind to carbohydrates. PiCAP predicts that approximately 

35-40% of proteins in these proteomes bind carbohydrates. In the human proteome, PiCAP 

predicts that 75% of extracellular and cell surface proteins are putative carbohydrate binders. The 

PiCAP predicted binders are highly enriched for functions and processes such as growth factor 

receptor binding, inflammatory responses, and cell-cell adhesion. 
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Throughout my dissertation, I have developed a set of models to predict the protein-sugar 

interactome, with the critical next step being the structural docking of non-covalent protein-

carbohydrate complexes on a proteome-wide scale. Current all-atom structure prediction models 

like AlphaFold3 (AF3), Boltz-1, Chai-1, DiffDock, and RosettaFold-All Atom (RFAA) were 

validated on protein-small molecule complexes; however, no benchmark or evaluation exists 

specifically for noncovalent protein-carbohydrate docking. To address this, I developed a high-

quality dataset of experimental structures – Benchmark of CArbohydrate Protein Interactions 

(BCAPIN). Using BCAPIN and a novel evaluation metric, DockQC, I assessed the performance 

of all-atom structure prediction models on non-covalent protein-carbohydrate docking. I found all 

methods achieved comparable results, with an 85% success rate for structures of at least acceptable 

quality. However, I found that the predictive power of all models declined with increasing 

carbohydrate polymer length. With the capabilities and limitations assessed, I evaluated AF3’s 

ability to predict binding for a set of putative human carbohydrate binding and carbohydrate non-

binding proteins. While current models show promise, further development is needed to enable 

high-confidence, high-throughput prediction of the complete protein-sugar interactome. 

 In summary, my work advances the field of glycobiology by enabling comprehensive 

characterization of the protein-sugar interactome on ‘omic scales.   
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Chapter 1   

Introduction 

 

 

 

 

 

 

Figure 1.1: Cartoon of protein-carbohydrate interactions and glycoproteins in the cell. (not to scale) 
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Carbohydrates are ubiquitous across life 

The unique structure and diversity of carbohydrates  

 All life is composed of an immense number of biomolecules, inorganic compounds, and 

elements; however, biology is often framed through the lens of the The Central Dogma. The 

Central Dogma states that deoxyribonucleic acid (DNA) is transcribed into ribonucleic acid (RNA) 

which is then translated into proteins, which carry out cellular functions.1 While this simplification 

of biology is incredibly useful; this model naturally overlooks the interplay among all biopolymers 

inside the cell. In particular, it fails to capture the importance of other key biopolymers in the cell, 

notably lipids and carbohydrates. Lipids are the essential components of cell membranes, defining 

what is or is not a part of an organelle, cell, or organism.2–4 Carbohydrates however serve unique 

purposes of energy metabolism and in the functional modulation of all other biopolymers.5 

  Carbohydrates, also known as sugars, are hydrated carbon-based polymers with the basic 

chemical formula Ci(H2O)j where i and j are positive integers. The foundational building blocks of 

carbohydrates are monosaccharides. Carbohydrates can exist in either a linear or cyclic (ring) form, 

with the cyclic form being the most common in biological environments. These cyclic forms can 

be five-membered rings (furanose) or a six-membered ring (pyranose). Additionally, these rings 

can adopt different conformations: where furanoses typically exist in envelope or twist 

conformations, and pyranoses in a 4C1 conformation or, less often, a 1C4 conformation. The 

conformation of these carbohydrates is further specified by (1) their stereoisomer, ʟ or ᴅ - with ᴅ 

being the primary eukaryote conformation, and (2) the anomeric carbon existing in an α or β 

conformation.6 
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 Monosaccharides are distinguished based on the (1) epimerization of the hydroxyls and (2) 

functional group modification of hydroxyls. Epimerization refers to the changes in relative 

orientation of hydroxyl groups to the carbohydrate rings, which can be either equatorial or axial. 

Common chemical modifications include acetylation, methylation, and deoxygenation which 

impart unique properties to the saccharide.6 

 Figure 1.2 shows the most common mammalian carbohydrate monosaccharides. Glucose 

(Glc), galactose (Gal), and mannose (Man) are all epimers of one another; they have the same 

stoichiometry, but differ in hydroxyl orientations. Glc has all hydroxyls equatorial, where Gal has 

C4-OH is axial and Man has C2-OH is axial (Figure 1.2A). One of the most common modifications 

is the addition of an amine group, as seen in GlcNAc and GalNAc, where the C2 position is 

modified to contain an N-acetyl group (NHAc) (Figure 1.2B). One of the most studied 

monosaccharides is sialic acid (Sia), also known as neuraminic acid (Neu), with special interest in 

the Neu5Ac variant. Neu5Ac, the only version produced by humans, boasts nine carbons, a 

negative charge, an acetyl group, a three-carbon chain decorated in hydroxyls, and a carboxyl 

group.6 
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Figure 1.2: Chemical diagram and cartoon representations of common mammalian monosaccharides. (A) 

Lewis structure, 3D sticks, and 3D surface representation of common D-pyranoses glucose, galactose, and mannose. 

(B) Lewis structures and cartoons of other common pyranoses.6 

 

 The diversity of monosaccharides arises from their chemical orientations, modifications, 

and conformations, but even greater diversity is achieved when they are linked together to 

oligosaccharides (less than 12 monosaccharides) or polysaccharides (greater than 12 
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monosaccharides). When a monosaccharide is covalently linked to another molecule, the resulting 

saccharide is called a glycan. Although the number of commonly observed unique, unmodified 

monosaccharides (10) is significantly less than unmodified amino acids (20), carbohydrate 

structures are distinguished by their myriad possible linkages. In theory, any monosaccharide can 

be covalently bonded to any other via condensation reactions between hydroxyl groups. For 

example, it is theoretically possible to connect four Glc monosaccharides together in 1,792 distinct 

structures. In practice, a very small subset of these structures is observed due to organisms lacking 

the enzymes required to create those structures. As a result, carbohydrate chains are more often 

categorized into broad categories of N-linked, O-linked structures, and glycolipids.6 

 

 

Figure 1.3: Common mammalian glycosylation patterns. (A) N-linked glycosylation patterns. (B) O-linked 

GalNAc glycosylation cores. (C) GM1 ganglioside. 

 

 N-linked glycans, or N-glycans, are glycans that are covalently linked by an N-glycosidic 

bond to an asparagine (Asn) residue of a protein or peptide. The consensus N-glycosylation sequon 
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is always an NX(S/T) motif, where X is any amino acid that is not proline, and S and T are serine 

and threonine, respectively.7 In eukaryotes, the first monosaccharide to be attached to the Asn 

residue is always a GlcNAc. N-glycans are synthesized in the endoplasmic reticulum (ER) on 

dolichol phosphate (Dol-P), after which the glycan is transferred “en bloc” to an acceptor protein 

by an oligosaccharyltransferase (OST).6 The glycosylated protein later transported through the 

Golgi apparatus, where enzymes further modify the initial glycan bloc, growing and shrinking the 

glycan tree into unique substructures.8,9 These structures are grouped into three common categories 

(1) oligomannose, (2) complex, and (3) hybrid. Figure 1.3A shows these structures: oligomannose 

structures terminate in Man residues, complex structures terminate in Sia residues, and hybrid 

structures terminate have at least one branch ending in Sia and at least one in Man.6 

 O-linked glycans are covalently linked to Ser or Thr residues. Figure 1.3B shows the four 

well-described O-linked O-GalNAc core structures, which may be extended to linear or branched 

chains, similar to that of N-linked glycans, terminating in the ABO and Lewis blood group 

epitopes. Many mammalian O-linked glycans are initiated by the transfer of O-GalNac to Ser/Thr 

by GALNT, after which the chain is extended one monosaccharide at a time. One well established 

purpose of O-linked glycans is occupying the extracellular environment, with glycosaminoglycans 

(GAGs) such as heparan sulfate, hyaluronan, dermatan sulfate, and chondroitin sulfate. Heparan 

sulfate (HS) is a heterogenous linear polymer with a high degree of polymerization (DP). HS 

contains repeating -4GlcA1β-4GlcNAcα1- units with domains that are either highly sulfated or 

unmodified.6 Other O-linked glycans in mammals include O-mannosylation, which can account 

for 33% of tissue O-glycosylation, O-fucosylation, and O-glucosylation, typically observed in 

epidermal growth factor (EGF) and thrombospondin repeat (TSR) domains.6 



 39 

 Glycolipids are lipids covalently modified to glycans. The most abundant glycolipids in 

mammals are glycosphingolipids (GSLs), where the lipid is a sphingolipid, such as sphingomyelin. 

Glycosylation of these begins with the addition of a Glc or Gal monosaccharide to the ceramine 

(Cer) backbone, yielding a GlcCer or GalCer. These glycan chains can then be elongated and 

classified into groups, with the most well-known being gangliosides (ganglio-series lipids). 

Although official nomenclature requires a neutral ganglio-series core; all sialyated GSLs are 

colloquially referred to as gangliosides. Several example GSLs, including ganglioside GM2, are 

shown in Figure 1.3C.6 

 Other categories of glycans found throughout cells include NDP-monosaccharides (sugar 

precursors), O-GlcNAc, and glycation. Sugar precursors are monosaccharides activated by 

covalent attachment to nucleotide diphosphate (NDP), allowing for the addition to growing glycan 

chains. O-GlcNAc is a dynamic modification added by O-GlcNAc transferase (OGT) and removed 

by O-GlcNAcase (OGA) in the cytoplasm, mitochondria, and nucleus of eukaryote. Glycation 

refers to the non-enzymatic linkage of a glycan and a receptor molecule, such as proteins and 

DNA.6,10,11 

Carbohydrates in the cell 

 Glycans and carbohydrates serve many purposes within biological systems, with the most 

studied categories being (1) metabolism, (2) structural contributions, and (3) roles as information 

carriers. Carbohydrates are the preferred source of energy for cells, especially glucose, the 

ubiquitous equatorial pyranose. Cells possess enzymes to convert carbohydrates and other 

biopolymers into glucose to fuel energy production through the citric acid cycle.5 

 Carbohydrates play various structural roles to allow cellular propagation and proliferation. 

The cell wall of plant cells is composed of primarily glycans such as cellulose, with a repeating 
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unit of [4Glcβ1]n unit, and pectins (GalA polymers). The cell wall provides structural support, 

allowing the cell to withstand mechanical stress and osmostic pressure differences. The bacterial 

cell wall is primarily composed of peptidoglycan, a polymer of GlcNAc and MurNAc crosslinked 

by peptides. During neural cells differentiation, neural cell adhesion molecules (NCAMs) are 

glycosylated to have long, linear polysialic acid chains, with a degree of polymerization (DP) 

greater than 100. The high DP and negative charge of Sia saccharides repel neighboring cells, 

facilitating proper neuron migration and spacing. Additionally, on smaller scales, carbohydrates 

influence the protein structural dynamics and folding.6 

 The field of glycobiology is primarily interested in the role of carbohydrates as information 

carriers. This function is primarily mediated through cell-cell interactions, where a protein-

carbohydrate handshake is the first step in many physiological processes.12 Proteins that 

specifically bind carbohydrates for this purpose are known as glycan binding proteins (GBPs), 

with lectins and antibodies being of special interest. Lectins are a family of proteins with the 

specific purpose of carbohydrate binding.6 

 GBPs typically recognize material in the extracellular space for cell-cell interactions. 

Intrinsic GBPs recognize self-glycans and mediate cell-cell interactions. The mammalian 

sialoadhesin protein (Siglec-1, CD169) binds Sia, preferentially α2-3Sia, on neighboring cells and 

is implicated in macrophages for antigen presentation.13,14 Extrinsic GBPs originate from 

exogenous organisms and viruses, recognizing non-self-glycans in parasitic or symbiotic 

relationships. For example, the SARS-COV2 viral spike protein interacts with heparan sulfate, 

suggesting a mechanism for targeting the human ACE2 receptor.15 

Common GBPs include lectins, carbohydrate active enzymes (e.g. glycosyltransferases and 

glycosylsidases), and antibodies. Formal definitions of lectins and GBPs however exclude other 
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enzymes, carriers, or native sugar sensors.6 For example, the human tetraspanins and integrins 

interact with cis gangliosides, but they exist outside the canonical lectin/GBP nomenclature.16,17 

Figure 1.1 provides a cartoon depiction of glycosylation and protein-carbohydrate interactions at 

a cellular level. 

The molecular mechanisms and experimental identification of 

protein-carbohydrate interactions 

 Protein-carbohydrate interactions are typically weak, with dissociation constants (Kd) in 

the mM to µM range. Protein-carbohydrate interactions however are usually multivalent. GBPs 

can possess multiple binding sites for a carbohydrate epitope, and carbohydrates themselves often 

present repeating binding units clustered on extracellular surfaces. Therefore, these interactions 

are commonly measured in vitro by the more biologically relevant avidity (combined binding 

strength) rather than affinity (single-site strength).6 

 The molecular mechanism of protein-carbohydrate binding often involves a fold or motif 

containing β-sheets. This binding mechanism uses hydrogen bonds with saccharide hydroxyls, 

indirect (water mediated) interactions, and/or π orbital interactions to bind a carbohydrate. In 

Figure 1.4, I show a direct hydrogen bond (1.4A), indirect hydrogen bond (1.4B), and CH-π bond 

(1.4C). In the polysialic acid binding antibody scFv735, the protein is stabilized by six (6) direct 

hydrogen bonds and eleven (11) indirect water mediated interactions. 18,19 Due to the number of 

indirect interactions, protein-carbohydrate interactions have proved challenging to 

computationally model.18,19 In a structural analysis of the protein data bank (PDB), Hudson et al. 

(2015) found that the carbohydrate-binding pockets of proteins have a higher preference for 

aromatic residues, notably Trp and Tyr, for CH- π bonding.20 
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Figure 1.4: Mechanisms of protein-carbohydrate interactions. (A) Hydrogen bond of a Tyrosine-Sia (pink) 

interaction (PDB: 3WBD). (B) indirect (water mediated) interaction of Aspargine-Sia (pink) (PDB: 3WBD) (C) CH-

π interaction of Tryptophan-GlcNAc (blue) (PDB: 8AD2). 

 

 While structural information is critical for understanding protein-carbohydrate 

interactions, traditional methods like crystallography are labor-intensive and not high throughput. 

Currently, the state-of-the-art methods for identifying protein-carbohydrate interactions without 

structural data include glycan arrays and diazirine linkers. Glycan arrays are solid supports with 

immobilized saccharides, enabling the non-covalent binding of a protein of interest.21 Diazirine 

linkers are photoaffinity probes that can be attached to most glycans (provided the correct 

chemistry), delivered into a cell in vivo, and then irradiated to crosslink with the nearby (potentially 

binding) protein.22 Recently, Zhang et al. performed the first diazirine linker experiments on 

gangliosides, identifying the first ever ganglioside interactome of 873 putative proteins.17,23 Both 

glycan arrays and diazirine linkers allow high-throughput screening of protein-carbohydrate 

interactions; however, these methods are qualitative and thus fail to provide quantitative binding 

values and the precise carbohydrate-binding region of these proteins. 

 Although scientists have discovered many proteins that bind to carbohydrates through 

specific motifs, experimentally identifying these proteins, or the residues that bind the 
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carbohydrates, remains difficult. As a result, identification of the entire protein-sugar interactome 

(the complete set of carbohydrate-binding proteins in a species) has not yet been possible. 

In this dissertation, I computationally explore carbohydrate-binding proteins without 

restricting by protein family or function. My goal is to identify the protein-sugar 

interactome: to find all proteins that interact with carbohydrates across metabolic, 

structural, and molecular recognition functions. Throughout this dissertation, I use deep 

learning methods, which are explored in the following section. 

Computational methods 

Deep Learning Overview 

 Deep learning (DL) is a subset of machine learning (ML) leveraging a data-driven approach 

to classify input data with mathematical models of neurons (nodes). DL achieved remarkable 

performance in all areas of science, including image recognition and language processing, and is 

now emerging as a powerful tool in biology. In my dissertation research on glycobiology, I 

leveraged novel DL techniques. Here I provide a brief overview of DL fundamentals to familiarize 

readers. 

Fundamentals and Dense Neural Network Framework 

 The most common and simplest neural network is the fully connected (FC) dense neural 

network (DNN). A simple multilayer DNN takes input features (X) and performs successive matrix 

multiplications to generate a series of hidden (h) representations and ultimately produce a predicted 

output (𝑌") that estimates the true value Y. A single dense layer takes the form: 

ℎ!"# = 𝜎!(	𝑊!ℎ! + 𝑏! 	) , 
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where ℎ! is the hidden embedding at layer i, 𝑊! is the weights of layer i, and 𝑏! is the bias of layer 

i, and 𝜎 is the activation function.24–26 The input X is ℎ$, the embedding at layer 0, and 𝑌"  is ℎ%, the 

final embedding of the model. The embeddings ℎ! are typically n x 1 vectors, with 𝑊! matrices 

shaping the output of each layer. 𝑊!ℎ! + 𝑏! 	is a linear equation; therefore, activation functions 𝜎 

are used to introduce non-linearity to the model. Several example activation functions, such as 

rectified linear unit (ReLU) and sigmoid are shown in Figure 1.5D. In Figure 1.5A, I show a 

schematic of a DNN. 
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Figure 1.5: Annotated neural network architectures. (A) Simple three-layer dense neural network (DNN). (B) 

Simple convolutional neural network on an image. (C) A cartoon representation of an equivariant graph convolution. 

(D) Example activation functions. 

 

 Neural networks are not manually tuned equations: they are highly parametrized 

algorithms. Therefore, finding an optimal solution for 𝑊! and 𝑏! (the weights and biases) requires 

non-trivial methods. For this process, neural networks use back propagation to determine the 

parameters of the weights. The goal of a neural network is to map input features 𝑋 to an output 𝑌" 
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within some margin of error of the true value 𝑌. We measure the difference between 𝑌"  and 𝑌 using 

a loss function (ℒ). A simple loss function is the mean squared error (MSE), which is the loss 

function of linear regression, shown below. 

ℒ = .𝑌 −	𝑌".& 

The difference between the predicted and true values are measured by the loss is then used to 

update the weights of the neural network through backpropagation. Backpropagation leverages 

calculus, most notably the chain rule, to update the weights to reduce the error.27 One algorithm 

for iterative backpropagation is stochastic gradient descent (SGD), shown below: 

𝑊 = 𝑊 − 	𝜂	∇ℒ(𝑤) 

where 𝜂 is the learning rate. With these equations, we can construct a simple DNN to predict or 

classify input data of fixed size.27 

Although the framework described above is simple, in practice, many variations have been 

developed to improve performance. The earliest activation functions were rectified linear units 

(ReLU) and sigmoid; however, more recent activation functions such as leaky ReLU, Gaussian 

error linear units (GeLU), and SoftMax are now common.28 To improve generalization, batches 

(e.g. predicting on multiple inputs at once) are often be used for training alongside batch 

normalization, layer normalization, and dropout.29,30 Finally, common variations of weight 

updating include the Adam optimizer,31 weight decay, and stochastic weight averaging (SWA). 32 

Convolutions capture patterns 

 DNNs are fantastic tools for one-dimensional data, showing strong predictive power on 

many non-trivial tasks. Despite their power on 1D data, DNNs are not optimal for higher 

dimensional data, such as images, because object position can vary tremendously throughout the 
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inputs. To better capture patterns in such data, convolutional neural networks (CNNs) are used. 

CNNs employ the common mathematical operation of a convolution: 

(𝑓 ∗ 𝑔)(𝑡) = 7𝑓(𝑥)𝑔(𝑥 − 𝑡)𝑑𝑥 

where 𝑔(𝑡) is the function (or input) and f is the convolving function (or filter). However, because 

digital images are discrete (composed of pixels, or voxels in 3D images); a discrete convolution 

operation is used: 

ℎ',)"# =::𝑓',)[𝑚, 𝑛] ∗ ℎ)[𝑖 − 𝑚, 𝑗 − 𝑛]
*+

 

where 𝑓',) is the k’th convolutional filter at layer l, ℎ) is the embedding at layer l which is a 

concatenation of all ℎ',) values - the result of the filter k on ℎ).24–26 This convolution process is 

illustrated in Figure 1.5B. 

 A typical CNN stacks several convolutional layers, before “flattening” the result 

(converting from the 2D or 3D matrix to a 1D vector) for forward propagation by dense           

layers.24–26 Common convolutional layer variations include padding, dilation, stride, and pooling.33 

3-Dimensional data requires equivariant information 

Protein structures are typically represented in the protein data bank (PDB) format, which 

lists the fixed-point Cartesian coordinates of each atom in Angstroms (Å). Cartesian coordinates 

are versatile, allowing the calculation of protein features that are invariant or equivariant to rotation 

and translation, such as dihedral angles, bond angles, bond lengths, and residue-residue contacts. 

These invariant and equivariant properties reflect the intrinsic features of the protein and are 

independent of any position or orientation in Cartesian space. Therefore, I leverage equivariant 

algebra to describe protein structures, mapping values from the input coordinate domain to an 
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equivariant codomain defined by the appropriate symmetry group. Formally, a function 𝑓(𝑥) is 

equivariant if, for a symmetry operation 𝐺: 

𝐺C𝑓(𝑥)D = 𝑓C𝐺(𝑥)D 

 For proteins, 𝐺 is the 3-dimensional roto-translation group 𝑆𝐸(3) = 𝑆𝑂(3)	⋉	ℝ,.34 To 

model 3D proteins in their native 3D space, we require frameworks that only use equivariant and 

invariant features to these symmetry operations. Predictions on raw Cartesian space would depend 

entirely on the arbitrary placement of the protein in space, not its true intrinsic properties. 

 In this dissertation, I leverage a 𝑆𝐸(3)–equivariant neural network framework called 

equivariant graph neural network (EGNN). EGNN employs equivariant graph convolutional layers 

(EGCLs) to recognize patterns of graphs. The foundational equations used by EGCLs are: 

𝑚!- = 𝜎.(ℎ!) , ℎ-) , ||𝑥! − 𝑥-||&	, 𝑎!-)	 

𝑚! =	:𝑚!-
!/-

 

ℎ!)"# =	𝜎0(ℎ!) , 𝑚!) 

Where ℎ!) is the embedding of node i at layer l, 𝑚!- is the message from node j to node i, 𝑥! is the 

coordinates of node i, 𝑎!- is the edge attributes of nodes i and j, 𝜎. is the message activation 

function, and 𝜎0 is the node activation function.35 Messages are calculated for all neighboring 

nodes, typically determined by a distance cutoff or by k-nearest neighbors. Edge attributes for 

proteins often include distance (represented by a radial basis function (RBF)), orientation, and 

direction between neighboring nodes.36 Using this approach, I develop models that propagate and 

process protein structural information in the natural 3D graph space. 

 3D equivariant graph neural networks are an area of active study. EGNN is one of the 

simplest frameworks for 3D graph predictions; most alternative methods use spherical harmonics 
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to propagate information.37 I chose EGNN for its straightforward mathematics and improved 

performance relative to the spherical harmonics-based methods. 

   

Biophysical Deep Learning Models 

Although DL theory has existed since the 1950s, the advent of GPU acceleration has finally 

enabled the practical applications of DL algorithms. Since 2020, DL applications in biophysics 

have grown exponentially. Two recent general biophysical models of interest are AlphaFold2 and 

ESM (evolutionary scale modeling).38,39 

 Google DeepMind employees recently received the 2024 Nobel Prize in Chemistry for the 

development of AlphaFold2 (shared with Dr. David Baker for his pioneering work in de novo 

protein design).40 AlphaFold2 (AF2) is a DL model that inputs a protein sequence and predicts the 

complete 3D protein structure.38 AF2 uses a dual-track approach, integrating  multiple sequence 

alignment (MSA) information with 2D representations to predict amino acid positions in a 

canonical frame.38 

 AF2 was evaluated in the 14th Critical Assessment of Protein Structure Prediction 

(CASP14) challenge, where it outperformed every competing method and predicted the best model 

for 89 of 97 targets.41 AF2’s strong performance is due in large part to  training on the entire PDB, 

a testament to the open scientific sharing of innumerable independent researchers across the world 

for the past 50+ years. 

 Recently, AF2 was updated to AlphaFold 3 (AF3), which uses a generative diffusion 

network for protein coordinate prediction.42 AF3 improves on AF2 as it does require inputs to be 

canonical amino acids, enabling it to model post-translational modifications (PTMs), DNA, and 

ligands of arbitrary input.42 AF3 achieves a 76% success rate on the small molecule docking 
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PoseBusters benchmark, but, prior to this dissertation research, had not been evaluated for 

carbohydrate docking prediction tasks.42 

 Following the release of ChatGPT, computational biologists adapted transformer 

architectures to protein sequence data. One notable transformer-based deep learning model is 

evolutionary scale modeling (ESM).39 ESM is a large language model (LLM) trained on masked 

protein sequences (where certain amino acids were hidden), with the goal of predicting the identify 

of those masked residues.39 

 The strength of ESM is in its representation of proteins. ESM2 has a 34-layer architecture, 

where its final layer provides a 1280-dimensional embedding that can be extracted and used as 

input for other deep learning models.39 This embedding contains evolutionary information about 

the protein, similar to an MSA, improving downstream performance.39,43 

 

Advances in Computational Glycobiology 

 Due to the scarcity of experimental data, computational glycobiology has also been 

constrained, but is currently poised for significant growth and advancement. Here I provide a non-

extensive list of the current algorithms and methods for computational glycobiology, spanning 

from glycosite prediction, glycosylation prediction, binding prediction, and protein-carbohydrate 

docking. 

 Although the only N-linked glycosylation sequon is the well-known NX(S/T) motif, 

glycosylation events are not homogenously distributed across all such motifs in a protein. Different 

regions are preferentially glycosylated by various enzymes. LMNglyPred is a neural network using 

an LLM to predict N-linked glycosylation sites.44 Similarly Stack-OglyPred-PLM predicts O-

linked glycosylation sites.45  
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Given a glycosylation site, determining which glycan is preferentially expressed at the 

position is imperative. The (proprietary) InSaNNE neural network was trained on the GlyConnect 

database46 to predict the specific glycan given the surrounding sequence (n-5 to n+5) of the 

NX(S/T) motif. 

InSaNNE uses an LLM, named SweetNet,47 which is trained on biologically observed 

glycans. SweetNet represents each glycan as a graph, with saccharides as nodes and their covalent 

connections as edges. LectinOracle concatenates SweetNet glycan embeddings and ESM-1b 

protein embeddings to predict which glycans a provided lectin can bind.48 

 Currently, most carbohydrate research is fueled by protein sequences; however, my 

predecessor in the lab, Dr. Morgan Nance, concentrated on structural modeling of protein-

carbohydrate interactions. Nance developed the Rosetta-based method of GlycanDock, a local 

refinement technique for protein-carbohydrate docking.49 GlycanDock was the first algorithm 

designed specifically for docking carbohydrate-protein complexes within the Rosetta suite. 

Previous tools, such as AutoDock,50 required stand-alone protocols requiring manual interventions 

for pipelines such as protein design. 

 While the aforementioned methods are critical to better understand structural glycobiology, 

no high-throughput approach exists to identify the protein-sugar interactome. Next-

generation sequencing has made available more than 25,000 reference genomes, with high 

confidence de novo structures for over 80 of those species. Although numerous protein-protein 

interactome maps have been generated, no equivalent map exists for the protein-sugar interactome. 

Here, in this dissertation, I have developed a new method to uncover the protein-sugar 

interactome for any species. 
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Dissertation Overview 

 Prior to my doctoral work, no publicly available methods existed for predicting non-

covalent binding of proteins and carbohydrates – either for determining whether a protein binds 

carbohydrates or for identifying specific binding residues. The Gray lab focuses on de novo 

therapeutic development, with a long-term goal of engineering proteins that bind glycoproteins, 

such as viral receptors, with high specificity. However, with only a limited understanding of 

protein-glycan interactions, de novo protein design of is constrained by our basic scientific 

understanding of the protein-sugar interactome. Therefore, the objectives of my research are to 

elucidate how proteins bind to carbohydrates, to discover all proteins capable of 

carbohydrate-binding, and to identify current limitations in de novo protein-carbohydrate 

docking predictions. 

 Chapter 1 summarizes the biological roles of carbohydrates and the computational 

techniques employed in my doctoral studies. Chapter 2 details a method I developed in 

collaboration with Dr. Sudhanshu Shanker: CArbohydrate Protein Site IdentiFier (CAPSIF). 

Chapter 3 presents two deep learning algorithms I developed: CAPSIF2, an updated version of 

CAPSIF, and Protein interaction of CArbohydrate Predictor (PiCAP), which predicts whether a 

protein binds carbohydrates. Additionally, Chapter 3 analyzes the E. coli, M. musculus, and H. 

sapiens proteomes for carbohydrate binding. Chapter 4 evaluates the performance of current de 

novo all-atom structure prediction on protein-carbohydrate docking. Chapter 5 summarizes my 

contributions to the field of protein-carbohydrate modeling and highlights potential directions for 

future research in the field of computational glycobiology.  
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Chapter 2  

CAPSIF: Structure-based neural network protein-

carbohydrate predictions at a residue level 

Adapted from: Canner, S. W.‡, Shanker, S.‡ & Gray, J. J. Structure-based neural network protein–carbohydrate 

interaction predictions at the residue level. Frontiers in Bioinformatics. 3:1186531, (2023). 

 

 

 

Figure 2.1: CArbohydrate Protein Site IdentiFier (CAPSIF) analyzes protein structures to identify 

carbohydrate binding pockets. 

 

 

 

Attribution of credit: SWC (Writing, Methods, Analysis, Figures), SS (Conceptualization, Methods, Analysis), JJG 

(Conceptualization, Writing, Analysis). 
‡indicates equal contribution of the work. As this work was performed in equal contribution with Dr. Shanker, I will use the term 

“we” and “our” in this chapter to properly attribute credit to Dr. Shanker’s efforts. 
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Overview 

Carbohydrates dynamically and transiently interact with proteins for cell-cell recognition, 

cellular differentiation, immune response, and many other cellular processes. Despite the 

molecular importance of these interactions, there are currently few reliable computational tools to 

predict potential carbohydrate binding sites on any given protein. Here, we present two deep 

learning models named CArbohydrate-Protein interaction Site IdentiFier (CAPSIF) that predict 

non-covalent carbohydrate binding sites on proteins: (1) a 3D-UNet voxel-based neural network 

model (CAPSIF:V) and (2) an equivariant graph neural network model (CAPSIF:G).  While both 

models outperform previous surrogate methods used for carbohydrate binding site prediction, 

CAPSIF:V performs better than CAPSIF:G, achieving test Dice scores of 0.597 and 0.543 and test 

set Matthews correlation coefficients (MCCs) of 0.599 and 0.538, respectively. We further tested 

CAPSIF:V on AlphaFold2-predicted protein structures. CAPSIF:V performed equivalently on 

both experimentally determined structures and AlphaFold2 predicted structures. Finally, we 

demonstrate how CAPSIF models can be used in conjunction with local glycan-docking protocols, 

such as GlycanDock, to predict bound protein-carbohydrate structures. 

Introduction 

The carbohydrate-protein handshake is the first step of many pathological and 

physiological processes.12 Pathogens attach to host cells after their lectins successfully bind to 

surface carbohydrates (or glycans)6,51–53. The innate and adaptive immune systems utilize 

carbohydrate signatures present on cellular and subcellular surfaces to recognize and destroy 

foreign components54,55. Glycosaminoglycans (GAGs) bind to membrane proteins of adjacent cells 

for cell-cell adhesion and to regulate intracellular processes56–58. Despite the biological importance 
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of these carbohydrate-protein interactions, there are few carbohydrate-specific tools leveraging the 

vast Protein DataBank (PDB) and recent advances in machine learning (ML) to elucidate the 

binding of carbohydrates at a residue level.  

Knowledge of carbohydrate-protein interactions has been leveraged to develop therapeutic 

candidates to neutralize infections and inspire proper health function.59 One bottleneck in 

designing carbohydrate-mimetic drugs is obtaining residue-level interaction knowledge through 

methods such as structural data and/or mutational scanning profiles 60–62. Further, in some studies, 

computational tools have been used to predict docked structures, refine bound carbohydrates, or 

extract dynamic information62–64. 

Recent developments in deep learning (DL) have substantially enhanced the theoretical 

modeling of proteins and protein-protein interactions. For example, neural networks can design 

stable proteins with unique folds using graph representations.36 3D structures can be predicted with 

programs such as IgFold 65 and Alphafold2 (AF2).40 Predicted 3D atomic coordinates can be 

probed to determine ligand or protein binding capabilities using neural networks such as Kalasanty 

or dMaSIF.66,67 

Recent computational studies have demonstrated new ways to explore protein-

carbohydrate interactions. Our lab has also contributed to the advancement of this field by adding 

the following, (1) a shotgun scanning glycomutagenesis protocol to predict the stability and 

activity of protein glycovariants,68 and (2) the GlycanDock algorithm to refine protein-glycoligand 

bound structures.49 

Recently there have been developments in small molecule binding site predictors. Small 

molecule binding site predictors typically fall into four categories: template, geometry, energy, or 

machine learning based.69 Template based strategies, such as 3DLigandSite,70 search datasets for 
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sequence and/or structurally related ligand binding proteins to assess prospective binding sites. 

Geometry based methods, like FPocket,71 search the surface of proteins for pockets and cavities. 

Energy based methods, such as FTMap,72 use probe molecules to scan the surface of a protein to 

determine the energetic favorability of binding. Recently, machine learning techniques, such as 

Kalasanty,66 have emerged and outperformed previous classical site prediction algorithms, 

commonly with convolutions on a 3D voxel grid containing atomistic information.73,74 

Although there are many general small molecule binding site predictors,66,72,75 few tailored 

algorithms exist for prediction of protein-carbohydrate sites. In 2000, Taroni et al. performed an 

analysis of carbohydrate binding spots using the solvation potential, residue propensity, 

hydrophobicity, planarity, protrusion, and relative accessible surface area to construct a function 

to predict carbohydrate binding sites.76 In 2007, Malik and Ahmad created a neural network to 

predict the carbohydrate binding sites using their constructed Procarb40 dataset, a collection of 40 

proteins, with leave one out validation.77 In 2009, Kulharia built InCa-SiteFinder to predict 

carbohydrate and inositol binding sites by leveraging a grid to construct an energy-based method 

for predicting binding sites.78 Tsai et al. constructed carbohydrate binding probability density maps 

using an encoding of 30 protein atom types as an input to a machine learning algorithm.79 Later, 

Zhou, Yang and colleagues developed two methods to predict carbohydrate binding sites, (1) a 

template-based approach named SPOT-Struc80 and (2) a support vector machine (SVM) named 

SPRINT-CBH that leverages sequence-based features.81 Tsia79 and SPOT-Struc80 have achieved 

Matthews correlation coefficients (MMCs) of 0.45 on test sets of 108 and 14 proteins, respectively. 

The increased size of the protein databank and the improvements in deep learning methods now 

presents an opportunity to train and test more broadly. 
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Larger protein-carbohydrate structural databases now include UniLectin3D82 and 

ProCaff.83 UniLectin3D focuses on lectins bound to carbohydrates, containing 2406 structures; 

however, it contains many redundant structures and is currently limited to 592 unique sequences. 

ProCaff lists 552 carbohydrate-binding protein structures and their binding affinities under various 

conditions; however, many structures are only available in the unbound form. 

Many drug targets, from pathogen-lectins to aberrant selectins, are carbohydrate binding 

proteins. 59,84 Understanding the physiological response and determining a glycomimetic drug to 

neutralize the infection requires residue-level knowledge. 84 Currently, DL algorithms 

LectinOracle48 and GlyNet85 predict lectin-carbohydrate binding on a protein level; however, 

pharmaceutical development requires residue-level information. 

In this work, we develop two DL methods for residue-level carbohydrate-binding site 

prediction for non-covalently bound carbohydrates. The two methods have different architectures, 

one using voxel convolutions and one using graph convolutions. We also present a dataset of 808 

non-covalently bound nonhomologous protein chain-carbohydrate structures and use it to train and 

test both models. We compare the performance of the models with each other and with FTMap72 

and Kalasanty.66 Then, we evaluate the performance of the models on AlphaFold240 predicted 

versus experimentally determined structures. Finally, we present a proof-of-concept pipeline to 

predict bound protein-carbohydrate structures. 

Results 

Dataset for carbohydrate-protein structures 

To construct a method to predict carbohydrate-protein interactions, we needed a large and 

reliable dataset to use for training and testing. The dataset should contain as many non-homologous 
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structures as possible to avoid biasing to specific folds. By filtering the PDB86 we constructed a 

dataset of 808 high accuracy (< 3 Å resolution), nonhomologous (30% sequence identity), and 

physiologically relevant experimental structures (by manually removing buffers), spanning 16 

carbohydrate monomer species. When multiple copies were present in the same PDB file, we used 

only a single protein chain and all adjacent carbohydrate chains. In these structures, 5.2% of the 

protein residues contact carbohydrates. The final dataset consists of 808 structures, which we split 

into 521 training structures, 125 validation structures, and 162 test structures. These structures only 

contain single chain protein interactions with non-covalently bound carbohydrates. 

CAPSIF uses deep neural networks to predict carbohydrate 

interaction sites 

We constructed convolutional neural networks (CNNs) named CArbohydrate-Protein Site 

IdentiFier (CAPSIF) to predict carbohydrate binding residues from a protein structure. CNNs were 

initially developed for images, exploiting the spatial relationship of nearby pixels for prediction 

tasks. They have been applied to predict protein structure87–89 and small molecule binding pockets 

of proteins.66 To predict carbohydrate binding residues using structural information, we created 

two CAPSIF CNN architectures, CAPSIF:Voxel (CAPSIF:V) and CAPSIF:Graph (CAPSIF:G). 

Since a protein can change its side chain conformations upon binding a small molecule or 

carbohydrate (from apo to holo), we sought a protein representation that is robust to these and 

other binding induced changes. We chose a residue-level representation, using only the Cβ 

positions of all residues (or Cα in glycine), since the Cβ position is frequently equivalent in both 

the apo and holo states.90 Both CAPSIF architectures use the following features: unbound solvent 

accessible surface area (SASA) of each residue, a backbone orientation (architecture specific), and 
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encodings of amino acid properties, including hydrophobicity index (0 to 1),91 “aromatophilicity” 

index (0 to 1),92 hydrogen bond donor capability (0,1), and hydrogen bond acceptor capability 

(0,1) (Methods/Table 2.3). 

The first CAPSIF architecture, CAPSIF:V, is a 3D voxelized approach to learn 

carbohydrate binding pockets. CAPSIF:V uses a UNet architecture, which comprises a grid with 

a series of convolutions compressing and then decompressing the data to its original size with 

residual connections to previous layers of the same size. For each grid, we used an 8 Å3 voxel size 

where CAPSIF:V encodes each residue’s β carbon (Cβ) into a corresponding voxel. CAPSIF:V 

predicts a label P(carbohydrate-binding residue) for each voxel on the initial grid (Figure 2.2A; 

Methods/Figure 2.7). 

 

Figure 2.2: Two deep learning models that predict where proteins bind carbohydrates. (A) The first model 

(CAPSIF:V) maps the β carbon (Cβ) coordinates into voxels, utilizes a convolutional UNet architecture, and predicts 

the binding residues. (B) The second model (CAPSIF:G) converts the Cβ coordinates into network nodes with edges 

for residue-residue neighbors, performs convolutions on nodes with respect to neighbors with an equivariant graph 

neural network (EGNN) architecture, and predicts which residues bind sugars. 



 60 

 

The second architecture, CAPSIF Graph (CAPSIF:G), is an equivariant graph neural 

network (EGNN),93 with each Cβ represented as a node on the graph and edges connected between 

all neighbor residues within 12 Å (Figure 2.2B). EGNNs use graph-based convolutions with 

message passing between connected nodes based on node features and the edge features 

(distances).93 We explored many variations of these neural network architectures; the Supporting 

Information includes data supporting our architecture and data representation choices. 

The carbohydrate-binding residues comprise 5.2% of the dataset. To ameliorate the effect 

of data imbalance, we followed Stepniewska-Dziubinska et al. and chose the complement of the 

Dice similarity coefficient (d) as our loss function (𝐿 = 1 − 𝑑).66 The Dice coefficient is 

normalized by both the correctly and incorrectly predicted residues: 

𝑑 = 	 &∗23
(23"53)"(23"57)

 , (Eq 2.1) 

where TP = true positives, FP = false positives, and FN = false negatives. Since d does not depend 

on true negative labels, this loss function is insensitive to imbalanced datasets where the positive 

label is observed much less than the negative label.66 

CAPSIF predicts carbohydrate-binding residues with encouraging 

accuracy 

CAPSIF:V and CAPSIF:G are novel architectures for predicting carbohydrate binding 

residues; however, they use 512 structures to train with a substantial data imbalance. We therefore 

investigated the performance of CAPSIF on a held-out test set to determine whether the 

architectures accurately predict carbohydrate-binding regions despite the small amount of training 
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data. Four representative CAPSIF:V predictions are shown in Figure 2.3, highlighting TP residue 

predictions, (green), FP residues (blue), and FN residues (red). CAPSIF:V captures the binding 

pocket visually for an endoglucanase (2.3A), xylanase (2.3B), and β-glucanase (2.3C), but it 

performs poorly on the HINT protein that binds ribose (2.3D), a five membered ring carbohydrate 

that is commonly associated with nucleotides. 

 

Figure 2.3: Prediction of carbohydrate binding sites on a protein surface using CAPSIF:Voxel. (A) Two 

representations of binding residues for cellotriose bound to endoglucanase (6GL0), surface (left) and sticks (right);  

Predicted surface representation of (B) xylanase bound to a xylose 3-mer (3W26), (C) β-glucanase bound to a glucose 

3-mer (5A95), and (D) HINT protein bound to a ribose monomer (4RHN) predictions. True positive residue 

predictions are colored green, false positives are blue, false negatives are red, true negatives are gray, and the bound 

carbohydrate is cyan; Dice is defined by eq (1) and DCC is distance from center to center of the predicted binding 

regions. 
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For comparison, we evaluated how small molecule binding site predictors FTMap72 and 

Kalasanty66 perform for carbohydrate-binding tasks. We assessed these methods using the 

following metrics: the Dice coefficient (Eq 2.1), distance from the center of the crystal to the center 

of the predicted binding location (DCC) of each independent binding site, positive predictive value 

(PPV), sensitivity, and Matthews correlation coefficient (MCC). Similar to the Dice coefficient, 

the MCC is suited for unbalanced datasets; it has been reported in previous carbohydrate binding 

site studies.79–81 MCC is:  

𝑀𝐶𝐶	 = 	 (23∗27853∗57)
9(23"53)∗(23"57)∗(27"53)∗(27"57)

 (Eq 2.2) 

where TN = true negatives. MCC ranges from -1 (worst) to +1 (best). The Dice coefficient 

measures the overlap of correctly predicted interacting residues to all predicted interacting 

residues. We define a success as a Dice score greater than 0.6 or, following Stepniewska-

Dziubinska et al., a DCC under 4 Å.66 

On the CAPSIF test set, FTMap achieved an average Dice coefficient of 0.351 and average 

DCC of 10.5 Å, and Kalasanty achieved an average Dice of 0.108 and average DCC of 14.6 Å 

(Table 2.1). Further, FTMap predicted 16.8% of test structures with greater than 0.6 Dice and 

16.8% of test structures with less than 4 Å DCC, while Kalasanty predicted 0% of test structures 

with greater than 0.6 Dice and 21.4% of test structures with less than 4 Å DCC (Table 2.1, Figure 

2.4A,B).  
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Table 2.1: Average metric for each method on test set. Dice similarity coefficient is defined by eq (2.1), PPV is 

positive predictive value = TP / (TP + FP), Sensitivity = TP / (TP + FN), DCC is distance from center to center of 

predicted versus experimentally determined residues and only calculated for proteins that yield predictions (coverage), 

MCC is Matthews correlation coefficient and defined by eq (2.2). Bold face indicates best performance for each metric. 

Model Dice PPV Sensitivity DCC (Å) MCC Coverage (%) 

FTMap 0.351 0.284 0.505 10.56 0.222 100.0 

Kalasanty 0.108 0.080 0.207 14.62 -0.624 90.0 

CAPSIF:V 0.597 0.598 0.647 4.48 0.599 94.4 

CAPSIF:G 0.543 0.541 0.590 5.85 0.538 83.2 
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Figure 2.4: Distributions of CAPSIF:V and CAPSIF:G assessment metrics compared to FTMap72 and 

Kalasanty.66 (A) Distribution of Dice similarity coefficient for all methods smoothed with a Gaussian kernel density 

estimate (KDE, bandwidth h = 0.04); (B) Distance from center to center (DCC) of predicted to experimental 

carbohydrate binding residues (smoothed with a Gaussian KDE, h = 0.75 Å); (C) Per-target comparison of CAPSIF:V 

to FTMap and (D) CAPSIF:G Dice coefficients. 

 

We then investigated whether our CAPSIF models, which are specifically tuned for 

carbohydrate binding, predict the carbohydrate binding regions more accurately than Kalasanty 

and FTMap. On the held-out CAPSIF test set, CAPSIF:V achieves an average 0.596 Dice 

coefficient and 4.48 Å DCC metric, and CAPSIF:G achieves an average 0.543 Dice coefficient 

and 5.85 Å DCC metric (Table 2.1). Further CAPSIF:V successfully predicts 62.7% of test 

structures with greater than 0.6 Dice and 56.5% of test structures with less than 4 Å DCC, and 

CAPSIF:G successfully predicts 55.2% of test structures with less than 0.6 Dice and 46.0% of test 
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structures with less than 4.0 Å DCC. Both CAPSIF models have a most probable prediction at 0.77 

Dice and 2.5 Å DCC (Table 2.1, Figure 2.4A,B). 

Since CAPSIF is ML based and FTMap is energy based, FTMap may predict more 

accurately on different cases compared to CAPSIF. We compared the CAPSIF:V and FTMap Dice 

scores for each structure (Figure 2.4C). FTMap achieves a significantly higher Dice coeffiecents 

(difference greater than 0.15 Dice) than CAPSIF:V in 10.9% of cases, and CAPSIF:V predicts the 

binding region with a significantly greater Dice coefficient than FTMap in 67.9% of cases. We 

also compared the computer time. On The FTMap server, FTMap requires an hour or more to 

predict the binding region for a single structure, whereas both CAPSIF:V and CAPSIF:G predict 

binding sites within seconds on a single CPU. Thus, on average, CAPSIF:V and CAPSIF:G 

outperform current small molecule binding site predictors for carbohydrate binding. 

Finally, we compared the CAPSIF:V architecture to the CAPSIF:G architecture. 

CAPSIF:V has an average Dice coefficient of 0.596 and CAPSIF:G has an average Dice coefficient 

of 0.543 across the test dataset (Table 2.1). When comparing the Dice on the test set, CAPSIF:V 

predicts 27.3% of structures with greater than 0.15 Dice than CAPSIF:G, while CAPSIF:G predicts 

11.2% of structures with greater than 0.15 Dice than CAPSIF:V (Figure 2.4D). Thus, CAPSIF:V 

outperforms CAPSIF:G on carbohydrate binding site prediction. 

Carbohydrates are unique biomolecules that bind to different lectins with high specificity. 

Both CAPSIF architectures treat all carbohydrates agnostically, meaning that all sugar residue 

types are considered equivalent for predictions. Nonetheless, we compared prediction results 

across different sugar residue types. (Appendix). CAPSIF:V performs best on glucose (Glc), 

galactosamine (GalN), arabinose (Ara), xylose (Xyl), ribose (Rib), and galacturonic acid 

(GalNAc). It predicts regions that bind neuraminic acid (Neu/Sia), fucose (Fuc), and Glucuronic 
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acid (GlcNAc) with less than an average 0.5 Dice coefficient. The weaker performance could stem 

from the chemical differences or differences in the size of the training data. Neu and Fuc are 

substantially chemically distinct carbohydrates, as Neu is a 9-carbon structure and Fuc adopts an 

(L) conformation; both are sparse in our dataset. Further, CAPSIF:V performs best on transport 

proteins, membrane proteins, and hydrolases; however, it performs weakly on viral proteins and 

lyases. 

CAPSIF:Voxel in most cases performs similarly on AlphaFold2 

structures 

Both CAPSIF models were trained and tested on bound crystal structures; however, 

experimental protein structure determination can be expensive, even in the absence of a 

carbohydrate. We therefore investigated whether CAPSIF:V could usefully predict carbohydrate 

binding structures from computationally modeled structures. We reconstructed the test protein 

structure dataset with the Colab implementation94 of AlphaFold2 (AF2)40 and predicted the 

carbohydrate binding residues of the predicted structures and evaluated the same performance 

metrics (Table 2.2). CAPSIF:V predicts the carbohydrate binding regions with similar Dice 

coefficients of 0.597 and 0.586 for protein databank versus AF2 predicted structures, respectively. 

Figure 2.5A shows that the Dice distribution is similar between PDB and AF2 structures. 

CAPSIF:V predicts the center of the carbohydrate binding region more accurately on AF2 

structures with a DCC of 3.8 Å, compared to 4.5 Å on crystal structures. 
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Table 2.2: Metrics for CAPSIF:Voxel inputting PDB or AF2 structures. Dice, PPV, Sensitivity, DCC, MCC, and 

defined in Table 1. 

Structures Dice PPV Sensitivity DCC (Å) MCC Coverage (%) 

PDB 0.597 0.598 0.647 4.48 0.599 94.4 

AF2 0.586 0.508 0.744 3.76 0.598 85.0 

 

 

Figure 2.5: Dice coefficient assessment of CAPSIF:Voxel on PDB and AlphaFold 2 (AF2) structures. (A) Kernel 

density estimate (h = 0.04) showing the distribution of Dice coefficient for both methods; (B) Comparison of each test 

structure between CAPSIF:V on PDB and AF2 structures. 

 

Although CAPSIF:V has a lower average DCC on AF2 structures compared to 

experimental structures, CAPSIF:V fails to predict any sites at all on 15% of AF2 structures, 

whereas it fails in only 5% of PDB structures, suggesting that the signal about the sugar binding 

is removed for some of the small backbone errors produced by AF2. 

The multiple outliers where CAPSIF:V fails to predict the region of carbohydrate binding 

in only AF2 predicted structures are sorted in Figure 2.4B. CAPSIF:V predicts a Dice coefficient 

of at least 0.15 units higher for PDB structures in 14.9% of structures and predicts AF2 structures 

with a 0.15 Dice coefficient or higher for 8.7% of test structures. AF2 generated structures can be 
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inaccurate; however, in most of the test cases, AF2 captures the structures with angstrom level 

accuracy and the carbohydrate binding residues with high pLDDT confidence; unfortunately, the 

pLDDT confidence measure does not correlate with the CAPSIF success rate (Figure 2.15). 

CAPSIF assists ab initio prediction of bound protein-carbohydrate 

structures 

CAPSIF:V predicts the carbohydrate binding site on the majority of proteins with high 

accuracy, suggesting that it might be used in a pipeline to predict bound protein-carbohydrate 

structures. As a proof-of-concept, we developed a prospective pipeline and tested it on five proteins 

from the GlycanDock49 test dataset that were not included the CAPSIF dataset. 

We constructed the following rudimentary pipeline. We predicted the binding site from 

each unbound protein’s experimentally determined structure with CAPSIF:V and constructed the 

known carbohydrate with Rosetta. The carbohydrate’s center of mass (CoM) was then placed in 

the CoM of the predicted binding region and manually rotated to align with the binding region 

shape. Next, we used the Rosetta FastRelax95 protocol to remove steric clashes. Then we used 

Rosetta’s standard GlycanDock49 to predict the bound structures. To find the highest rated bound 

structure, we filtered 9,500 decoys by their computed interaction energy. 
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Figure 2.6: Results of CAPSIF:V-GlycanDock pipeline. CAPSIF-predicted residues are shown in green. Wild 

type unbound structures are shown in surface representation in gray with the experimentally determined carbohydrate 

in gray sticks and predicted bound carbohydrate in purple sticks. RMSD of entire ligand and RMSD of register-

adjusted ligand are shown below. (A) a carbohydrate binding module (CBM), 1GMM (unbound PDB)/1UXX (bound 

PDB), (B) a glycan binding protein (GBP), 1L7L/2VXJ, (C) an enzyme, 1OLR/1UU6, (D) a CBM, 2ZEW/2ZEX, and 

(E) an antibody (Ab), 6N32/6N35. 

 

We tested the pipeline on five experimentally solved unbound proteins: P. aeruginosa lectin 

1, a glycan binding protein (GBP, 1L7L), two carbohydrate binding modules (CBMs, 1GMM and 

2ZEW), a glycoside hydrolase enzyme (1OLR), and an anti-HIV-1 antibody (Ab) (6N32). Figure 

2.6 shows structures and the root mean squared deviation (RMSD) of each predicted carbohydrate 

structure from the experimental structure. CAPSIF:V predicted carbohydrate binding residues near 

the correct site on four of the five proteins, but it failed to predict any binding residues on the 
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antibody (6N32). For three of the proteins, CAPSIF:V predicts the region with high accuracy, but 

on 1GMM, CAPSIF:V predicts regions flanking the binding site, but still provides a similar CoM 

to the actual binding region. For the for carbohydrates with identified sites, the standard 

GlycanDock protocol was able to refine the carbohydrate structure to an RMSD of less than 8 Å 

for the entire ligand and less than 6 Å for register-adjusted values, where the termini were removed 

before calculating RMSD. The 3-mer Gal GBP (1L7L) has the worst RMSD (6 Å register adjusted, 

Figure 2.6B), likely because the holo conformation (2VXJ) undergoes a conformational change at 

the carbohydrate-binding site. Although this Ab case example failed, CAPSIF successfully 

predicted the carbohydrate binding regions of 9 of the 11 Abs tested from the Glycan Dock test 

set, which has no overlap with the CAPSIF training set. These predictions demonstrate the 

potential of CAPSIF to help inform experimental hypotheses or for high throughput predictions of 

bound protein-carbohydrate structures. 

Discussion 

We demonstrated that both CAPSIF models predict residues of proteins that bind 

carbohydrates with much higher accuracy than prior approaches. CAPSIF:V uses a voxelized 

approach and predicts 62.7% of crystal structures with a distance from the center of the predicted 

region to the center of the experimentally determined region (DCC) within 4 Å. CAPSIF:G 

performs strongly on the dataset, predicting 55.2% of crystal structures with a DCC less than 4 Å, 

with CAPSIF:V performing similarly or outperforming CAPSIF:G in 88.8% of cases. CAPSIF:V 

is robust to most errors in protein structure of the magnitude in AF2 structures (ångström-level): 

the algorithm predicts similar carbohydrate-binding residue regions independent of whether the 
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input structure is experimentally determined or predicted by AF2. This algorithm is a substantial 

improvement over surrogate ligand site predictors Kalasanty and FTMap. 

Further, CAPSIF outperforms previous methods specifically tuned for carbohydrate 

binding. CAPSIF:V achieves a 0.599 MCC and CAPSIF:G achieved a 0.538 MCC on the test 

dataset. Tsia et al’s method using probability density maps achieved a 0.45 MCC on their 

independent test dataset of 108 proteins,79 SPOT-Struc achieved a ~0.45 MCC on their test dataset 

of 14 proteins,80 and SPRINT-CBH achieves a MCC of 0.27 MCC on their test set of 158 

proteins.81 While these datasets differ from ours, ours is a similarly constructed non-homologous 

dataset of 162 structures, and CAPSIF has markedly stronger MCC. Although CAPSIF:V performs 

best, we advocate for usage of CAPSIF:V and CAPSIF:G in tandem to predict carbohydrate-

binding residues since there are numerous cases where one CAPSIF model outperforms the other. 

Although CAPSIF accurately captures the protein-carbohydrate binding interface, there are 

limitations. CAPSIF is carbohydrate-agnostic, so it only predicts that a protein residue will bind 

one of 16 carbohydrate monomers. That is, CAPSIF predicts the location of carbohydrate binding 

but not which carbohydrate preferentially binds there. Further, CAPSIF was only trained and tested 

on known non-covalent carbohydrate binding proteins, therefore CAPSIF may not be informative 

on non-carbohydrate binding proteins or proteins that bind glycoconjugates such as ribose in 

nucleic acids, ATP/ADP, or GTP/GDP (Figure 2.17). CAPSIF was trained on a small set of sixteen 

sugar residue types, and it will be most useful for non-modified sugar residues. Another limitation 

is that CAPSIF fails to predict any binding on about three times as many AF2 predicted structures 

as crystal structures. Unfortunately, CAPSIF prediction accuracy on AF2 structures is not 

correlated with pLDDT confidence metrics so it is not possible to know when it will fail. Further, 

CAPSIF was tested on AF2 predicted structures for proteins that already exist and may already 
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exist in the AF2 training set. CAPSIF additionally is unable to predict whether a protein is a 

carbohydrate binding protein (Figure 2.18). 

The scope of CAPSIF makes it well suited for a computational pipeline. We suggest the 

use of DeepFRI,96 a deep learning model that predicts protein function, to first determine if the 

protein is a carbohydrate binding protein. If the protein is a carbohydrate binding protein, then 

LectinOracle 48 and GlyNet 85 can be used to predict which carbohydrates bind the protein. CAPSIF 

can then predict binding locations, either from an experimental structure or AF2 generated 

structures, and then GlycanDock49 can predict a docked protein-carbohydrate structure. 

We tested part of this pipeline by predicting the binding region using CAPSIF:V and 

docking the known carbohydrate binder to the region with GlycanDock.49 CAPSIF:V predicted 

binding sites on four of the five proteins. The antibody case, which failed, binds a carbohydrate at 

the complementary determining region (CDR) loops, split over two chains, but CAPSIF was 

trained only on single chain data. When register adjusted, each structure yielded a ligand RMSD 

less than 6 Å. We anticipate that a more well-tuned pipeline could yield higher accuracy structures 

ab initio from sequence only. 

To our knowledge, voxelized and graph-based site prediction has not been presented 

simultaneously before. Existing studies have used graphs to either predict binding affinity97 or a 

docked structure (in coordination with diffusion techniques),43 but they have not been used to 

determine small molecule binding regions. We tested two architectures utilizing either voxel or 

graph representations. We showed that CAPSIF:V outperforms CAPSIF:G, both of which use 

convolutions to predict the carbohydrate binding ability of residues with the same residue 

representation. We can speculate about the reason by considering the differences between the 

approaches. CAPSIF:V discretizes the protein structure over a 3D grid, which can obscure the Cβ 
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position by a few Ångströms, whereas CAPSIF:G uses the coordinates without any loss of spatial 

information. CAPSIF:V encodes the initial ~1.4M feature input to a lower dimensionality of a 512-

feature vector to encode the entire structure, whereas CAPSIF:G lifts the data from an Nres x 30 to 

a higher dimensionality of Nres x 64. CAPSIF:V has ~102M parameters and CAPSIF:G has ~236K 

parameters, reflecting how graph-based methods capture the spatially equivariant information in 

fewer parameters. One characteristic of using the voxel representation is that the grid contains 

voxels with the protein and the voxels outside the protein, including binding pocket cavities, 

whereas the graph representation only contains the protein. The voxel network reasoning over the 

surface pocket volume may be the key factor for improved carbohydrate-binding residue 

prediction. 

Building on this initial screen, future studies could focus on improving the CAPSIF data 

representation for improved accuracy and extending these models to predict which carbohydrate 

monomer a residue most preferentially binds as well as whether the protein is a carbohydrate-

binding protein. In the future, the dataset could include oligomeric structures that bind 

carbohydrates at the oligomeric interface. Further, one could improve model performance by 

leveraging homologous structures with data splits across families. Although lectins are well known 

for carbohydrate binding, some protein families, such as G protein coupled receptors (GPCRs) and 

antibodies, do not exclusively bind carbohydrates.98,99 Additionally, with our carbohydrate binding 

site data set, one could test small molecule binding site predictor neural networks like Kalasanty66 

or PeSTo 100 by fine-tuning them for sugars. High throughput methods like these could enable 

proteomic scale sorting of carbohydrate binding capabilities. 
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Methods 

Dataset 

No dataset of nonhomologous bound protein-carbohydrate structures existed that leveraged 

the total size of the current PDB, so we constructed one. Simply selecting all RCSB 86 structures 

with carbohydrates gives all docked protein-carbohydrate structures but also inherently returns all 

glycosylated proteins, glycosylated peptides, as well as all protein structures that use carbohydrates 

as crystallization agents. We desired to determine all true physiological protein-carbohydrate 

interactions, so therefore we manually removed nonspecific crystallization buffers or 

glycoproteins. Next, we removed all proteins with resolution over 3 Å. Then we removed all 

homologous protein structures over 30% sequence identity to remove all sequentially redundant 

proteins, only accounting for chain homology and not domain homology. Some structures 

containing sugars with modified monosaccharides and cyclic carbohydrates were unreadable in 

the PyRosetta101 software and therefore additionally removed. 

The final dataset consists of 808 structures, with a split of 521 training structures, 125 

validation structures, and 162 test structures. Each structure has one or more of the following 

carbohydrate monomers: glucose (Glc), glucosamine (GlcNAc), glucuronic acid (GlcA), fucose 

(Fuc), mannose (Man), mannosamine (ManNAc), galactose (Gal), galactosamine (GalNAc), 

galacturonic acid (GalA), neuraminic acid (Neu)/sialic acid (Sia), arabinose (Ara), xylose (Xyl), 

ribose, rhamnose (Rha), abequose (Abe), and fructose (Fru). We split the training, validation, and 

test sets pseudo-randomly to ensure equal representation of all carbohydrate species in each split. 

The numbers of each monomer per structure and Dice coefficient for each carbohydrate monomer 

type and each protein family in the test set from CAPSIF:V are included at our github link (Data 
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Availability). For all following work, we defined a carbohydrate-interacting residue as residues 

with any heavy atom that is within 4.2 Å of a carbohydrate heavy atom. 

CAPSIF:V Data Processing 

Convolutional neural networks are not rotation invariant, and so data augmentation by 

rotations improves their performance.102 Therefore, we augmented the input data for CAPSIF:V 

during training to overcome the rotational variance. Each time a structure was used in training, it 

was rotated in Cartesian space by a random angle in {-180°,180°} around an axis defined by a 

randomly-chosen residue’s location and the protein center-of-mass. With the random rotation for 

each epoch, the network learned approximately 1,000 different orientations of each structure in the 

data set. If the protein was too large for the grid size, the protein was split into separate grids and 

run separately (about 22% of the training points).  

Neural Network Architectures 

Features 

Due to the small dataset size of 808 structures, we chose residue-level representations 

instead of atomistic. We assigned all residue information to the Cβ atom of each residue because 

the position of the Cβ is similar in apo and holo states.90 The features are listed in Table 2.3. The 

SASA, hydrophobicity, H bond donor/acceptor indices were calculated using pyRosetta,101 and 

aromatophilicty was indexed by Hirano and Kameda.92 
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CAPSIF:Voxel 

 

Figure 2.7: CAPSIF:V architecture. Blue arrows indicate a double convolution, red arrows indicate an encoding 

layer, and green arrows indicate a decoding layer. 

 

CAPSIF:V utilizes a UNet architecture, encoding and decoding the input structure to 

predict carbohydrate binding residues with residual connections. CAPSIF:V inputs a grid of 36 x 

36 x 36 voxels with each voxel representing 2 Å x 2 Å x 2 Å. We input a tensor of size 

(28,36,36,36), with the 28 features from Table 2.3, where orientation is the normalized components 

of the Cα to Cβ bond vector. All voxels without a Cβ within are input as zero-vectors. 
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Table 2.3: List of features and the associated encoding size used for both CAPSIF models. 

Feature Type Encoding Size 

Amino acid (one-hot) 20 

SASA 1 

Hydrophobicity 1 

Aromatophilicity 1 

H Bond Donor/Acceptor 2 

Orientation (Voxel only) 3 

Torsion (Graph only) 4 

 

CAPSIF:V contains an embedding layer and 9 convolutional blocks where 4 blocks encode 

the structure, 1 block forms the bottleneck, and 4 blocks decode the structural information. The 

embedding layer lifts the 28-channel input into a 32-dimension space. Each block has a double 

convolution, performing the following methods twice: 3D convolution, with the same number of 

input channels as number of output channels, (5x5x5) kernel with a stride of 1 and padding of 2, a 

batch normalization layer, and rectified linear units (ReLU) activation function. In addition, each 

encoding block also has a MaxPooling layer to double the size of the channels (32,64,128,256,512) 

while reducing 3D cubic voxel number (36,18,9,3,1). Each decoding block first concatenates the 

results of the encoding layer of the same size and then performs a double convolution and a 3D-

transposed convolution operator, reducing the number of channels (256,128,64,32) while 

increasing the 3D cubic voxel number (3,9,18,36). After the 9 blocks, there is a single 

convolutional layer condensing the input channels (32) into a single output channel, which is then 

followed by a sigmoid activation function to output the probability that the voxel contains a residue 

that binds a sugar (Figure 2.7). CAPSIF:V contains 102,676,001 parameters. 
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CAPSIF:V was trained for 1,000 epochs with a learning rate of 10-4 and batch size of 20 

grids using the Adam optimizer31 with the loss function 𝐿 = 1 − 𝑑, where d is defined by Eq 2.1. 

In optimizing CAPSIF:V, we explored several model variations. We tested various 

combinations of 3x3x3, 5x5x5, and 7x7x7 convolutional filters. We used four convolutions per 

layer instead of the double convolution in the primary model. Further, we used larger voxel grid 

sizes (72x72x72 instead of 36x36x36) with another decoding/encoding layer in the UNet 

architecture. We also attempted different configurations of skip connections, such as UNet++.103 

These models required slower learning rates and showed slower convergence with no improvement 

in prediction quality than the presented model. The best model from validation accuracy is detailed 

above. 

CAPSIF:EGNN 

CAPSIF:G is an equivariant graph neural network35 that performs convolutions on each 

node (chosen as each Cα for glycine and Cβ for all others). Graph edges are connected between 

neighbors (defined as all other nodes` within 12 Å) and the edge attribute is the distance between 

node Cβ atoms. In addition to the features used in CAPSIF:V, we include a torsional component 

in the node features as the sine and cosine of the φ and ψ angles of each residue (Table 2.3).  

CAPSIF:G first lifts the 29-feature input node into a 64-dimension space. The 64-feature 

vector, alongside the edge features (distances) is then input to eight consecutive equivariant graph 

convolutional layers (EGCLs).35 Each EGCL contains an edge multilayer perceptron (MLP), a 

node MLP, a coordinate MLP, and attention MLP. The edge MLP consists of two blocks of a linear 

layer and a rectified linear units (ReLU) activation function. The node MLP consists of a linear 

layer, a ReLU activation layer, and linear layer. The coordinate MLP contains a linear layer, a 
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ReLU activation layer, and a linear layer. The attention MLP contains a linear layer and a sigmoid 

activation function. All layers input and output a 64-feature vector. Finally, CAPSIF returns the 

embedding to a 29-feature vector per node, adds the initial input features to the final vector, 

performs batch normalization, and then uses a sigmoid activation function to output a probability 

of carbohydrate binding of all residues. CAPSIF:G contains 236,009 parameters. 

This model was trained for 1,000 epochs with a learning rate of 10-4 and batch size of one 

protein using the Adam optimizer31 with the loss function 𝐿 = 1 − 𝑑, where d is defined by (Eq 

2.1). 

In optimizing CAPSIF:G, we explored changing the number of graph convolutional layers 

and the latent space dimensionality. We tested the number of layers (L = 4,6,8,16) and used the 

different dimensionalities of the latent space (d = 16,32,64). The best performing model is detailed 

above. 

Data Availability 

The datasets and the code for each model are available for non-commercial use at 

https://github.com/Graylab/CAPSIF. 

  

https://github.com/Graylab/CAPSIF
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Appendix 

Dataset 

The dataset is composed of the following monomers: glucose (Glc), glucosamine 

(GlcNAc), glucuronic acid (GlcA), fucose (Fuc), mannose (Man), mannosamine (ManNAc), 

galactose (Gal), galactosamine (GalNAc), galacturonic acid (GalA), neuraminic acid/sialic acid 

(Neu/Sia), arabinose (Ara), xylose (Xyl), ribose, rhamnose (Rha), abequose (Abe), and fructose 

(Fru). There are either no training structures or very few for Fru, ManNAc, Abe, Rha, ribose, GalA, 

and GlcA. Although some have a high average test Dice similarity coefficient, CAPSIF may not 

accurately predict protein residues that bind those carbohydrate species well. Finally, 

CAPSIF:Voxel does not perform well on predicting residues that bind Neu and Fuc, likely due to 

their 9-carbon structure and (L) conformation, respectively, as well as GlcNAc. 

Determination of Data Representation 

For voxel locations, we compared three representation choices, (1) α carbon (Cα), (2) β 

carbon (Cβ), or (3) Cα and Cβ positions for the location of voxels. We trained and tested each of 

these models as described in the Methods. We compared the Dice coefficient, sensitivity and 

positive predictive value to determine which representation performs best (Figure 2.8, Table 2.4). 

The Cβ-only representation has an average test Dice coefficient of 0.551, with the Cα 

representation having a test Dice coefficient of 0.545, where when both the Cα and Cβ are included 

together in the representation, the architecture has an average test Dice coefficient of only 0.528. 

Finally, we further included orientation information of the residues themselves by 

concatenating the unit vector of the Cα to Cβ bond to the Cβ only representation. This 
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representation had an average test metric of 0.597 (Cβ: Cα → Cβ vec) (Figure 2.7, Table 2.4). This 

method performed the best of all three representations, having the largest coverage and highest 

average test metrics. For these reasons, we chose Cβ: Cα → Cβ as our representation of coordinates 

and orientation for CAPSIF:V. 

 

Figure 2.8: Test Dice coefficient assessment for different representations with CAPSIF:V architectures: Blue 

shows a Cβ representation including a normalized vector for alpha carbon (Cα) to Cβ, orange shows only a Cβ 

representation, green shows Cα representation, and red shows Cα and Cβ representation with all voxels. 

 

Table 2.4: Performance for each CAPSIF:V model. Dice coefficient is defined by (Eq 1); PPV and Sensitivity are 

same as Table 2.1. 

Voxel 

Representation 

 

Dice 

 

PPV 

 

Sensitivity 

Cβ 0.551 0.563 0.583 

Cα 0.545 0.535 0.620 

Cα + Cβ 0.528 0.555 0.554 

Cβ: Cα → Cβ 0.597 0.598 0.647 
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Next, we investigated CAPSIF:G node representations, with the architecture described in Methods. 

We constructed the following variants: Cβ nodes with φ and ψ angles, Cβ and N, Cα, and C 

backbone nodes (and one-hot encoding for atom type, without φ and ψ angles). The Cβ only node 

representation performed the best with a Dice coefficient of 0.543. Further, Cβ takes a fraction of 

the time for predictions compared to the backbone due to graph construction time, therefore we 

chose the CAPSIF:G to be the Cβ model (Figure 2.9, Table 2.5). 

 

Figure 2.9: Test Dice coefficient assessment for different representations with EGNN architectures. Blue shows 

all backbone atoms node representation, orange shows a Cβ node representation. 
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Table 2.5: Performance for EGNN model node representation. Dice coefficient is defined by (Eq 1); PPV and 

Sensitivity are same as Table 1. 

EGNN 

Representation 

 

Dice 

 

PPV 

 

Sensitivity 

Cβ 0.543 0.541 0.590 

Backbone 0.458 0.396 0.647 

Random Assignment of Carbohydrate Binding Regions 

As a control, we compared CAPSIF to a random baseline. For example, for 200 amino 

acids with a 5.0% positivity rate, we randomly select 10 residues as a true label (sugar binding) 

and computed the Dice similarity coefficient (Eq 1.1). Using 1,000 trials for an endoglucanase 

(6GL0), which has 331 total residues with 14 that experimentally bind carbohydrates, we observe 

a theoretical maximum Dice coefficient at approximately 0.08 when all residues are predicted as 

carbohydrate binders. At a rate of 5%, we observe a mean Dice coefficient of 0.046, where 

CAPSIF:V predicts that protein with a Dice coefficient of 0.963 (Figure 2.10A). 
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Figure 2.10: Dice coefficient assessment with random assignment smoothed with a kernel density estimate with 

bandwidth h = .04. (A) Dice evaluation of random assignment of an endoglucanase (6GL0). (B) Dice evaluation over 

entire test set. 

 

The dataset has, on average, 5.16% of protein residues bind carbohydrates. With random 

assignment over the entire dataset, random assignment at 5.16% yields an average 0.046 Dice 

score, where CAPSIF:V outperforms random assignment by over 12-fold at an average 0.593 Dice 

(Figure 2.10B). 

 

Determination of CAPSIF probability threshold 

To determine the best probability cutoff value for the final activation function, we altered the 

threshold on the test dataset (Figure 2.11). CAPSIF:V differs minimally for all thresholds while 

CAPSIF:G negatively correlates with increasing threshold and drops more sharply after a cutoff 

of 0.6. For both architectures we chose a threshold of 0.5. 
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Figure 2.11: Test Dice coefficient assessment for CAPSIF architectures for various thresholds for the final 

sigmoid activation function. Blue represents CAPSIF:V, orange represents CAPSIF:G.  
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Comparison of Dice and DCC metrics 

 

Figure 2.12: Comparison of Dice score and DCC. (A) Per-target comparison of Dice and DCC for CAPSIF:V 

predictions on the test set. CAPSIF:V predictions (green) on (B) endo-1,4-β-mannosidase 1ODZ and (C) C. pinesis 

DSM 2588 (4Q52) (gray).  
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Figures comparing CAPSIF:Voxel and CAPSIF:Graph predictions 

 

Figure 2.13: Prediction of carbohydrate binding sites on a protein surface using CAPSIF:V and CAPSIF:G. 

(A) Glc 6-phosphate dehydrogenase (PDB:5UKW), (B) streptococcal virulence factor (PDB:2J44), (C) MCR-1 

catalytic domain (PDB:5ZJV), and (D) CBM40 (PDB:6ER3). Residue labels - green: true positive, blue: false positive, 

red: false negative, gray: true negative, cyan: bound carbohydrate; Dice coefficient is defined by eq (2.1) and DCC is 

distance from center to center of the predicted binding regions.  
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Comparison of RCSB and AF2 predicted structures 

 

Figure 2.14: AF2 structure prediction (red) of carbohydrate (purple) binding proteins compared to 

experimentally solved structures (white); (A) SUFU (PDB:4BL8) (B) E. coli aminopeptidase N (PDB:4XO5), (C) 

GspB siglec domain (PDB:5IUC), (D) GII.13 novovirus capsid P domain (PDB:5ZVC), (E) Glc 6-phosphate 

dehydrogenase (PDB:5UKW), and (F) surface GBP B (PDB:6E57). Dice coefficient is defined by eq (2.1). 
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Figure 2.15: CAPSIF:V accuracy is not correlated with AF2 accuracy or confidence. CAPSIF:V predictions on 

AF2 structure prediction metrics of carbohydrate binding proteins compared to RCSB structures. Change in Dice 

metric (∆Dice = AF2 Dice – RCSB Dice) compared to (A) the total Cα RMSD (log scale), (B) Local average pLDDT 

score of the carbohydrate binding region, and (C) total average pLDDT score of the entire structure. 
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Figure 2.16: Training and validation curves of both CAPSIF models.  
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Figure 2.17: Prediction of CAPSIF:V and CAPSIF:G on ATP and GTP-binding proteins. Both CAPSIF models 

predict similar regions on the ATP/GTP binding proteins, but only qualitatively capture the binding region of the 

phosphokinase, Acyl-CoA synthase, Rad, and Ras. 
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CAPSIF cannot distinguish carbohydrate binding proteins from non-

binding proteins 

 

Figure 2.18: Theoretical CAPSIF:V predictions compared to experimental predictions. (Top) Ideal number of 

residues predicted by CAPSIF:V for carbohydrate binding proteins (red) compared to non-carbohydrate binding 

proteins (red). (Bottom) CAPSIF:V predictions on protein structures from the families of lectins (red), BFLs, actin 

binding proteins (BP), serine (Ser) proteases, and metalloenzymes. 
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Chapter 3  

PiCAP: Predictions from Deep Learning Propose 

Substantial Protein-Carbohydrate Interplay 

Adapted from: Canner, S. W., Schnaar, R. L. & Gray, J. J. Predictions from Deep Learning Propose Substantial Protein-

Carbohydrate Interplay. bioRxiv, (2025). 

 

 

 

Figure 3.1: Protein interaction of CArbohydrates Predictor (PiCAP) identifies the likelihood a protein non-

covalently interacts with carbohydrates. 

 

 

Attribution of credit: SWC (Conceptualization, Writing, Methods, Analysis, Figures), RLS (Writing, Analysis), JJG 

(Conceptualization, Writing, Analysis) 
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Overview 

Although I previously developed a method for identifying residues implicated in protein-

carbohydrate interactions, researchers are unable to determine whether a protein binds to 

carbohydrates. I therefore sought to address the grand challenge to identify protein-sugar 

interactome in an organism. Direct experiments would require extensive libraries of glycans to 

definitively distinguish binding from non-binding proteins. Computational screening of proteins 

for carbohydrate-binding provides an attractive and ultimately testable alternative. Current 

estimates label 1.5 to 5% of proteins as carbohydrate-binding proteins; however, 50-70% of 

proteins are known to be glycosylated, suggesting a potential wealth of proteins that bind to 

carbohydrates. I therefore developed a neural network architecture, named Protein interaction of 

Carbohydrates Predictor (PiCAP), to predict whether a protein non-covalently binds to a 

carbohydrate. I trained PiCAP on a novel dataset of known carbohydrate binders and selected 

proteins that I identified as likely not to bind carbohydrates, including transcription factors, 

cytoskeletal components, and small-molecule-binding proteins. PiCAP achieves a 90% balanced 

accuracy on protein-level predictions of carbohydrate binding/non-binding. Using the same 

dataset, I developed a model named Carbohydrate Protein Site Identifier 2 (CAPSIF2) to predict 

protein residues that interact non-covalently with carbohydrates. CAPSIF2 achieves a Dice 

coefficient of 0.57 on residue-level predictions on our independent test dataset, outcompeting all 

previous models for this task. To demonstrate the biological applicability of PiCAP and CAPSIF2, 

I investigated cell surface proteins of human neural cells and further predicted the likelihood of 

three proteomes, notably E. coli, M. musculus, and H. sapiens, to bind to carbohydrates. In the 

human proteome, PiCAP predicts that 75% of extracellular and cell surface proteins are putative 
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carbohydrate binders. The PiCAP predicted binders are highly enriched for functions and processes 

such as growth factor receptor binding, inflammatory responses, and cell-cell adhesion. 

 

Significance Statement 

The totality of the protein-sugar interactome remains elusive, in part due to the inability to 

test a proteome versus a glycome in a high throughput manner. Here I show the first high-

throughput methodology to predict protein-carbohydrate interactions at proteomic scales by using 

structural and sequence information. To provide a better grasp of the role of carbohydrates in 

cellular functions, I created a computational method to predict the carbohydrate binding profiles 

of the human, mouse, and E. coli proteomes.  

 

Introduction 

In mammalian biology, carbohydrates are studied as two distinct families of molecules that 

are the focus of two disciplines. As metabolic precursors, from food or stored reserves, 

polysaccharides and monosaccharides (primarily glucose) are transported into and stored in the 

cytoplasm where they are subject to catabolic transformations to produce energy.5 In contrast, 

distinct covalent groupings of varied monosaccharide building blocks covalently bound to proteins 

(glycoproteins and proteoglycans) and lipids (glycolipids) are relatively stable and are abundant at 

the cell surface and in the extracellular milieu.6 A notable exception is O-GlcNAcylation, the 

reversible covalent attachment of the single sugar N-acetylglucosamine (GlcNAc) to serines and 

threonines of many cytoplasmic and nuclear proteins.104 
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 Like their structures, the functions of carbohydrates are diverse. Among other functions 

they play essential roles in metabolism, they contribute to protein, cell and tissue structures, and 

they engage in molecular recognition upstream of cell-cell adhesion and cell regulation.6 Most of 

these functions involve engagement of glycans by proteins.105 These protein-carbohydrate 

interactions have predominantly been studied using chemical and biochemical methods, despite 

recent advances in the computational field. 106 

With the advent of the third generation of machine learning and large datasets, many novel 

algorithms have been created to better understand biophysical phenomena.2,107 Deep learning 

methods have recently overtaken most traditional algorithms for all biomolecular methods on all 

biopolymers, including prediction of protein structure, protein-small molecule interactions, and de 

novo protein design.38,42,43,108,109 Two of the largest computational steps in biophysics made 

recently are the releases of AlphaFold 2 (AF2)38 and ESM39. AF2 revolutionized the protein 

structure landscape by creating a public, easily accessible, and accurate method for protein 

structure prediction. AF2 additionally predicted the protein structures of 48 organisms that are 

publicly accessible.108 ESM (named for evolutionary scale modeling) revolutionized protein 

sequence representations through its transformer architecture, with ability to richly encode the 

language of protein sequences.39 

 Leveraging recent computational advances, scientists are beginning to explore the breadth 

of protein-carbohydrate interactions. I expect some of these protein-carbohydrate interactions to 

be involved in carbohydrate metabolism, some in intermolecular recognition and regulation of 

protein functions (e.g. O-GlcNAc), and others in cell adhesion and cell regulation. The goal of this 

work is to use computational advances to predict the protein-sugar interactome: all proteins 

amenable to carbohydrate binding, in its broadest interpretation. Conventionally, researchers have 
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focused on the carbohydrate binding protein family of lectins, which excludes enzymes, carriers, 

or native sugar sensors. Here I computationally explore carbohydrate-binding proteins without 

excluding them based on function; I expect to capture proteins across metabolic, structural and 

molecular recognition functions. Although this approach is agnostic to carbohydrate species; as 

discovery progresses, our work may be expanded to provide further sub-characterization to 

identify the functional definitions of carbohydrate binding. 

In the previous chapter, I developed a dataset and two models, named CArbohydrate 

Protein Site IdentiFier (CAPSIF):Graph and CAPSIF:Voxel, to predict the protein residues 

involved in noncovalent carbohydrate-protein interactions.106 CAPSIF:V and CAPSIF:G are 

trained and tested on the same dataset and use the same residue level encodings, but CAPSIF:V 

encodes proteins onto a 3D voxelized grid with a UNet architecture whereas CAPSIF:G uses an 

equivariant graph neural network (EGNN) message passing framework; CAPSIF:V slightly 

outperformed CAPSIF:G by all measured metrics. 

 Since both CAPSIF models were released, two similar models have been created. Bibekar 

et al. released Protein Structure Transformer (PeSTo)-Carbs, which uses a geometric transformer 

architecture to predict residues involved in protein-carbohydrate interactions.110,111 PeSTo-Carbs 

employs a query-key-value attention mechanism with message passing across atoms that are then 

pooled for residue-wise predictions.110 He et al. released DeepGlycanSite, which leverages a 

geometric message-passing architecture to predict a glycan binding site in both the case of a known 

ligand and an unknown ligand.111 PeSTo-Carbs modestly outperforms both CAPSIF models on all 

reported metrics, whereas DeepGlycanSite focuses on binding to nucleotide structures as 

compared to carbohydrate-only polymers. 
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 Most carbohydrate-protein interaction algorithms rely on multiple datasets to extract 

experimental coordinates for prediction.106,110 Currently the standard protein-carbohydrate dataset 

is UniLectin; however, UniLectin focuses only on proteins in the lectin family and thereby does 

not include other carbohydrate binding proteins.112 Recently, DIONYSUS was released detailing 

an immense set of experimental carbohydrate binding proteins with non-covalently bound 

carbohydrate as well as glycosylated proteins.113 

 Since experimentally solved structures can be difficult to obtain, especially in the presence 

of a carbohydrate ligand, some datasets of sequences exist that identify carbohydrate binding 

proteins. The Carbohydrate Active enZYmes (CAZY) dataset identifies sequences of catalytically 

active proteins that act on glycosidic bonds.8 LectomeXplore is a dataset that identifies known 

lectins, their associated structures (if known) and potential lectins as identified by sequence 

similarity via a hidden Markov model (HMM).16 Rather than limiting their work to known lectins, 

Zhang et al. developed high throughput experiments with a ganglioside probe that identified 873 

putative human proteins that likely interact with gangliosides.17 These works are limited by their 

scope, requiring either specific protein families or specific carbohydrate species to interact. 

Here, I present novel frameworks to both predict whether a protein can bind to 

carbohydrates and where on that protein the carbohydrate binds, entitled Protein interaction of 

CArbohydrate Predictor (PiCAP) and CArbohydrate Protein Site IdentiFier 2 (CAPSIF2). Both 

models leverage a large dataset with two training stages, first using all small molecule binding 

interfaces and then fine tuning with carbohydrate-specific data. I assess the ability of these models 

in their tasks. I then validate PiCAP against the work of Zhang et al.17 and identify potential outliers 

in their dataset. Finally, I use these models to make the first prediction of carbohydrate binding 

proteins, and residues of these proteins, of three proteomes. While these first proteome-wide 
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predictions are likely noisy, they define the broad scope of the problem and invite refinement by 

future experimental and computational methods. 

 

Results 

NoCAP: a novel non-binder dataset 

 Many datasets exist for protein-carbohydrate interactions, with the most notable being 

DIONYSUS (Table 3.1). However, there is no dataset of proteins that do not bind to carbohydrates; 

therefore, I developed a novel dataset consisting of proteins known to bind carbohydrates and 

proteins that likely do not bind carbohydrates based on biophysical intuition. Although the non-

binder dataset is likely mildly contaminated with some currently unknown carbohydrate binding 

proteins, I believe this dataset to be generally representative of proteins that do not bind 

carbohydrates. I denote this novel combined dataset as Nonbinder and binder of CArbohydrate 

Protein interactions (NoCAP) (Table 3.1). In addition, I created a subset of NoCAP, named 

DIONYSUS-Residue (DR) as all binding proteins in NoCAP with a bound ligand, retaining the 

DIONYSUS name as most protein structures were retrieved from the DIONYSUS dataset (Table 

3.1). 
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Table 3.1: Experimental structural datasets. Columns 2 and 3 indicate dataset inclusion in the NoCAP or DR 

datasets. 

Dataset NoCAP DR Description n proteins 

CAPSIF106 ✓ ✓ Bound protein-glycan complexes 802 

TS 90 ✓ ✓ Test set for Pesto-Carbs; a subset of the 

CAPSIF test set 

90 

DIONYSUS113 ✓ ✓ Bound protein-glycan complexes 5,461 

UniLectin112 ✓  Lectin structures and sequences 2,881 

ProGen114 ✓  De novo designed lysozymes 69 

Designed-

NB115 

✓ ✓ List of crystal and complementary 

designed non-binders 

2,800 

SAbDab116 ✓ ✓ Crystalized antibodies to their antigen 

(filtered) 

2,925 

PDB-Bind117 ✓ ✓ Small molecule binders (filtered to 

remove carbs) 

17,191 

PDIDB118 ✓  DNA-binding proteins (putative non-carb 

binders) 

922 

Manual 

selection 

✓  Biophysically putative non-binding 

proteins (fatty acyl synthases, cytoskeletal 

components, flippases, ion transporters, 

ribosomal proteins) 

606 
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To provide a more comprehensive view of the physiologic characteristics of protein-

carbohydrate interactions, I curated the datasets to contain complete structures (e.g. not separate 

chains) and incorporated both ligand-bound holo and unbound apo forms. While DIONYSUS 

already aggregated several sources including Unilectin3D and SabDAb, I additionally use 

Unilectin3D to obtain unbound apo structures of lectins and leverage SabDAb to access antibody-

protein and antibody-nucleic acid complexes. In total, NoCAP contains 30,429 structures, with 

9,509 carbohydrate binding proteins and 21,339 putative nonbinders. The DR set, which is that of 

bound protein-carbohydrate complexes, contains 6,263 structures in total. 

 

CAPSIF2 outcompetes all previous models identifying carbohydrate-

binding residues 

I constructed an equivariant graph neural network (EGNN) named Carbohydrate Protein 

Site IdentiFier 2 (CAPSIF2) leveraging the same general architecture of my previous work 

CAPSIF:Graph (CAPSIF:G). Although CAPSIF:G underperformed CAPSIF:V, I chose the EGNN 

architecture because it is scalable to proteins of any size, while CAPSIF:V is limited by the size of 

the underlying convolutional voxels. Although the dataset of this work (6,724 protein structures) 

is substantially larger than my previous work (~800 protein structures), there is still an intrinsic 

data imbalance in that most protein residues (~95%) do not bind carbohydrates. To address this, I 

once again leveraged the Dice loss (Table 3.2) to emphasize the residues that bind carbohydrates 

(see methods). 
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Table 3.2: Average metrics for each deep learning architecture on test sets. Dice coefficient is described as 2TP / 

(2TP + FP + FN), where TP, FP, and FN are the counts of the true positives, false positives, and false negatives, 

respectively. MCC is the Matthews correlation coefficient. Boldface indicates the best performance for each metric. 

Model DR Dice DR MCC TS 90 Dice TS 90 MCC 

CAPSIF2 0.573 0.574 0.616 0.607 

Pesto-Carbs 0.493 0.492 0.638 0.624 

CAPSIF:V 0.226 0.202 0.608 0.622 
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Figure 3.2: Comparison of CAPSIF2 and PeSTo-Carbs on residue-wise prediction tasks. (A) Distribution of Dice 

coefficient across prediction targets (proteins) for CAPSIF2 (blue), PeSTo-Carbs (red), and CAPSIF:V (black) on the 

DR test set. Densities smoothed with a Gaussian kernel density estimate (KDE, bandwidth h = 0.04) . (B) Per-target 

comparison of CAPSIF2 to PeSTo-Carbs. (C) Side-by-side comparison of carbohydrate (yellow) bound proteins (gray) 

predictions by CAPSIF2 (blue, left) and PeSTo-Carbs (orange, right) on B. Subtilis α-amylase (1BAG), O. sativa 

SALT protein (5GVY), E. coli poly-β-1,6-N-acetyl-D-glucosamine N-deacetylase C-terminal domain (4P7R), and 

galactose binding lectin (5XFD). Per-target Dice coefficients shown below. 
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In Figure 3.2 and Table 3.2, I compare my results to PesTo-Carbs110 and my previous model 

CAPSIF:V106. On the TS-90 test set, CAPSIF2 achieves 0.616 Dice and 0.607 MCC metrics and 

PesTo-Carbs outcompetes my model on this test set with a 0.638 Dice coefficient and 0.624 MCC 

(Table 2). Contrarily on the DR test set, CAPSIF2 achieves 0.573 Dice coefficient and 0.574 MCC, 

while PesTo-Carbs only achieves 0.493 Dice and 0.492 MCC metrics. On a per target basis, 

CAPSIF2 performs greater than 0.15 Dice better than PesTo-Carbs on 40% of targets and PesTo-

Carbs performs greater than 0.15 Dice than CAPSIF2 on 15% of targets (Figure 1B). 

I further show the results of specific targets in Figure 3.2C. In most of these cases, PesTo-

Carbs and CAPSIF2 can successfully find the binding region, with varying accuracy; however, 

they both appear to fail on some targets, such as N-acetyl-ᴅ-glucosamine N-deacetylase. This 

target notably has an observable pocket in the center of the structure, which CAPSIF2 and PesTo-

Carbs incorrectly identifies as the binding region, wherein the experimentally solved 

oligosaccharide is proximal to the pocket. 

 

PiCAP accurately predicts carbohydrate binding and non-binding on 

experimental structures 

 Leveraging the same foundational network structure as CAPSIF2, I constructed the 

equivariant graph neural network (EGNN) named Protein interaction of Carbohydrate Predictor 

(PiCAP) with five additional layers to yield a single value prediction of whether a protein does or 

does not bind a carbohydrate. PiCAP assesses the spatial relationship of residues over an increasing 

context window, pooling the sequence into a fixed size 2D image, and providing a singular 
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classification prediction based on that 2D representation. To my knowledge, PiCAP is the first DL 

model to assess protein-noncovalent binding of carbohydrates at a protein level. 

 

Table 3.3: Metrics for PiCAP on the NoCAP test set and associated subsets with the number of proteins in parentheses. 

BACC is balanced accuracy. TPR is True Positive Rate TPR = TP / (TP + FP). TNR is True Negative Rate TNR = TN 

/ (TN + FN).  

Test Set Accuracy 

NoCAP BACC (4,411) 0.896 

NoCAP TPR (2,374) 0.963 

NoCAP TNR (2,037) 0.828 

TNR Ribosome (7) 1.0 

TNR Holdout (92) 0.902 

TPR ProGen Lysozymes (69) 0.841 

TNR Designed Nonbinders (186) 0.608 

Antibody BACC (50) 0.562 
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Figure 3.3: T-distributed stochastic neighbor embedding (T-SNE) diagrams of the PiCAP final layer 

embeddings of the NoCAP test set. (A) The randomly initialized model’s final layer output. (B) The final trained 

model’s final layer output. 

 

 I tested PiCAP on a holdout set based on sequence similarity, finding that PiCAP achieves 

an 89.6% balanced accuracy (BACC), with a 96.3% true positive rate (TPR) and 82.8% true 

negative rate (TNR) (Table 3.3). The ability to separate out carbohydrate binding (blue) and non-

binding (red) proteins is further demonstrated in 2D t-distributed stochastic neighbor embedding 

(T-SNE) plots (Figure 3.3)119. Despite my best efforts, I do expect that the nonbinder dataset is 

likely contaminated with some carbohydrate binding proteins, therefore I must further discriminate 

PiCAP’s ability to predict on specific test set subsets. 

When inspecting subsets of NoCAP (Table 3.3), I find PiCAP correctly predicts all the 

protein chains of the ribosome assembly as non-binders.  I further have a holdout set of multiple 

proteins from various protein families, consisting of fatty acyl synthases, actin, myosin, and 

flippases, where PiCAP achieves an encouraging 90.2% accuracy on this negative subset. I 

observed that PiCAP performed well on designed lysozymes from the ProGen language model114 

with an 84.1% accuracy. This high accuracy may be a result from the high redundancy of the 
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ProGen lysozymes, which span only five families. Contrarily, PiCAP achieves poor accuracy on 

computationally designed non-binder proteins, these being poor designs regarded as non-binding 

to the carbohydrate on the designed pocket, with an accuracy of only 60.8%. As a final test, I asked 

how my model performed on antibodies – specifically to identify antibodies that bind proteins or 

the glycans of glycoproteins. Of the 50 tested antibody structures, PiCAP achieved a 79% TNR 

and 33% TPR for a BACC of 56%. The antibodies and designed nonbinders are proteins 

hypervariably mutated at the binding site for specificity, which has the poorest performance of 

PiCAP, whereas PiCAP performs encouragingly on more evolutionarily and biologically defined 

proteins. 

 

PiCAP agrees with LectomeXplore and experimental evidence 

 The NoCAP dataset for training and testing PiCAP comprises experimentally solved 

structures; therefore, I decided to investigate how the model performs on two datasets of 

computationally predicted structures. The first dataset is LectomeXplore published by Bonnardel 

et al., which identifies likely lectins across 37,794 organisms using a hidden Markov model 

(HMM) based on sequence and structural similarity.16 I also investigated the ganglioside 

interactome as published by Zhang et al., where they developed a high throughput assay to identify 

putative human proteins that interact with gangliosides.17 Both of these datasets have only 

sequence/UniProt gene IDs, therefore, for input into my algorithm, I used the predicted structures 

of the AF2 model proteomes,108 only retaining confident segments of the structure (pLDDT larger 

than 70). 
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Figure 3.4: PiCAP validation against computational datasets. (A) Plot of Zhang et al. identified proteins across 

nine experiments alongside the fraction of proteins in each bin predicted as a carbohydrate binder by PiCAP. (B) 

PiCAP and CAPSIF2 predictions of selected ganglioside interactome proteins. The top row (blue) indicates proteins 

predicted as carbohydrate binders by PiCAP and bottom row (red) as proteins predicted as non-binders by PiCAP with 

the number of experiments the protein was identified by in parentheses. Highlighted residues in cyan (top column) 

and red (bottom column) are the predicted binding regions by CAPSIF2. 

 

LectomeXplore 

 The most closely related work to PiCAP is LectomeXplore, which identified putative 

lectins through sequence and structure homology. Unlike LectomeXplore, PiCAP does not limit 

proteins to be only of the lectin superfamily. I compared the likelihood of all predicted 

LectomeXplore lectins (greater than 0.25 confidence) present in the AF2 reference proteomes of 

two model species, M. Musculus and H. Sapiens, finding the agreement between the available AF2 

structures of LectomeXplore and PiCAP to be 100% (225 of 225) for M. Musculus and 99.6% (229 

of 230) for H. Sapiens. Further, PiCAP has a 100% (109 of 109) agreement between the available 
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AF2 structures on all confirmed human lectins from HumanLectome.120  These results suggest a 

strong true positive rate (TPR) of PiCAP on the simplest class of sugar binding proteins. 

 

Ganglioside Interactome 

Zhang et al. developed a high throughput method to identify proteins that interact with 

gangliosides. They created ganglioside probes with photoaffinity tags that covalently linked the 

probe to nearby proteins, and then they used mass spectroscopy and statistical methods to identify 

those proteins. They used six different probes in two different cell lines (A431 and SH-SY5Y), 

and for a total of nine experiments; I filtered the putative proteins by experiment. I selected the top 

250 proteins above background from each experiment and removed CRAPome proteins.121 This 

identified 873 unique proteins across all nine experiments.17 As a high throughput method, and the 

first and largest of its kind, the error rates of their method have yet to be explored and cross-

validated across other experimental methods. I therefore will use PiCAP to investigate the putative 

proteins of the ganglioside interactome work. 

 Of the 873 identified candidate ganglioside binding proteins, I was able to identify 848 

proteins in the AF2 reference human proteome. PiCAP predicts 506 (60%) of these proteins as 

carbohydrate binders. Further, PiCAP also predicts that 988 of 3,500 putative non-ganglioside 

binding proteins (28%) as likely carbohydrate binders. Although these numbers at first suggest a 

substantial disagreement between my works, I observe a strong positive increase in the fraction of 

proteins predicted as carbohydrate binders compared to the number of experiments that identified 

a binding protein (Figure 3.4A). 

To explore the agreement and disagreement between the experiments, I selected four 

representative proteins: Frizzled-1 (Entry Name: FZD1; UniProt: Q9ULW2), ATPase 
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sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (AT2A2; P16615), Double-stranded 

RNA-specific editase B2 (RED2; Q9NS39), and mothers against decapentaplegic homolog 4 

(SMAD4; Q13485). FZD1 is involved in the Wnt signalling pathway and was identified by four 

of Zhang et al.’s experiments; PiCAP predicts FZD1 as a carbohydrate binder, and FZD1 was a 

subject of close scrutiny in the ganglioside interactome work17. ATP2A2 is an intracellular 

calcium/ATP pump and was identified by three experiments and predicted as a carbohydrate 

binding protein by PiCAP. ATP2A2 has a specific role in ATP-mediated transport of calcium ions 

and likely little specific affinity for carbohydrates, let alone gangliosides122. RED2 is an enzyme 

that converts adenosine to inosine in pre-mRNA and was identified by three experiments123. PiCAP 

disagrees with the experimental results and predicts RED2 as a non-binder, which could indicate 

a potential error in the experimental evidence. Finally, SMAD4 is a transcription factor124, which 

was identified to not interact with gangliosides in all experiments, where PiCAP agrees and 

predicts the protein as a carbohydrate non-binder.  

 

PiCAP and CAPSIF2 can predict putative proteome scale 

interactomes  

 With PiCAP validated to an acceptable level, I sought to understand the protein-

carbohydrate interactome with greater breadth than studied before. I chose three model organisms 

from the AF2 proteome datasets108, E. coli, M. musculus, and H. sapiens. Of the 4,363 proteins in 

the AF2 E.coli strain K12 proteome (UP000000625), PiCAP yielded predictions on 4,339 

accessible proteins and predicted 1,677 (39%) proteins as carbohydrate binders. Of the 21,615 

proteins in the AF2 M. musculus proteome (UP000000589), PiCAP yielded predictions on 21,304 
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proteins and predicts 8,177 (38%) proteins as carbohydrate binders. Of the 20,650 proteins in the 

AF2 H. sapiens proteome (UP000005640), PiCAP yielded predictions on 20,067 proteins and 

predicts 7,029 (35%) proteins as carbohydrate binders (Figure 3.5A). I further provide the results 

of three additional model species: Drosophila Melanogaster, C. elegans, and S. cerevisiae in the 

supplemental information, without detailed analysis. 
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Figure 3.5: PiCAP predictions of proteomes. (A) Comparison of the fraction of proteins predicted as carbohydrate 

binders by PiCAP across three proteomes. (B) Cellular components of human proteome predicted carbohydrate 

binding and non-binding proteins (see also Table 3.6). Human proteome statistical tests showing the -log10 of the false 

discovery rate (FDR) and overrepresentation (blue) and underrepresentation (red) for select (C) molecular functions 

and (D) biological processes. FDR measures the expected proportion of false positives among the list of putative 

carbohydrate binders and non-binders. 
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Human Proteome 

 The primary proteome I analyzed was the AF2 human proteome (UP000005640), which 

contains 20,650 unique proteins with substantial resolution. PiCAP predicted 7,029, or 34%, of 

proteins to bind to carbohydrates. For comparison, the total number of lectins identified by 

LectomeXplore is 230, or 1.1% of the UniProt reference proteome16, and the number known by 

CaZy is 349, or 1.7%8. In contrast, the number of proteins experimentally identified as likely to 

bind gangliosides, a unique glycan family, is 873, or 4.2%17. To reconcile the differences between 

my work and the work of many others, I analyzed the subcellular localization, molecular functions, 

and biological processes of predicted binding and non-binding proteins. 

 I investigated the subcellular compartments wherein PiCAP predicted carbohydrate 

binding proteins and non-binders reside based on Gene Ontology (GO) terms (Figure 3.5, Table 

3.6). The compartments with the highest fraction of sugar-binding proteins are extracellular (75%), 

cell surface (75%) and ER/Golgi (50%), which aligns with these being subcellular compartments 

involved in intercellular communication. The regions mostly devoid of carbohydrates and glycans 

are the nucleus and cytoplasm; PiCAP predicts 85-97% of these proteins as non-carbohydrate-

binding proteins. To further investigate the binding profiles of PiCAP, I queried co-factor binding. 

A significant portion of carbohydrate-binding proteins depend on a co-factor such as calcium in 

C-type lectins6, whereas zinc is more dominantly oriented as a DNA/RNA binding co-factor. 125 

PiCAP predicts 58% of calcium-binding proteins and 22% of zinc-binding proteins as 

carbohydrate binding proteins, indicating that PiCAP does not conflate co-factor binding for 

carbohydrate binding (Figure 3.7). Additionally, PiCAP predicts 94% of human GO associated 

carbohydrate binding proteins as binders and 91.5% of GO associated DNA/RNA binding proteins 
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as non-binders, indicating an overall ~93% accuracy, which agrees with the NoCAP dataset 

evaluation (Figures 3.7, 3.11). 

 To discern higher specificity from the AF2 human proteome predicted by PiCAP, I selected 

representative GO terms with PANTHER.126,127 Using the false discovery rate (FDR) for human 

proteome related molecular functions, I find PiCAP-predicted binding proteins are significantly 

overrepresented to act in growth factor receptor binding, transmembrane signaling, and 

unsurprisingly, carbohydrate binding (Figure 3.5C). Additionally, PiCAP-predicted binders are 

highly underrepresented for carbohydrate derivative binding but also protein binding, nucleic acid 

binding, zinc ion binding, and actin binding. Next, I analyzed the biological processes of human 

PiCAP predicted carbohydrate binding proteins, finding them overrepresented in proteoglycan and 

glycolipid metabolic processes, cell-cell adhesion, inflammation response, monosaccharide 

metabolic process, and unsurprisingly glycosylation (Figure 3.5D). Comparatively, I found that 

carbohydrate binding proteins are underrepresented in RNA processing, protein deubiquitinization 

and DNA recombination cellular processes. Analysis for E. coli strain K12 and M. Musculus AF2 

proteomes is provided in the supporting information (Figures 3.8-11), showing similar predictions. 

 

Discussion 

 I have demonstrated (1) an updated protein carbohydrate site identifier CAPSIF2 that 

outcompetes all current models on a generalized dataset and (2) a novel model named PiCAP that 

predicts whether a protein binds to carbohydrates or not. I validate the models against other models 

and datasets and applied to proteome scale analysis to garner more information about the protein-

carbohydrate interactome.  
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CAPSIF2 boasts modest improvements in prediction accuracy on the original 

CAPSIF/TS90 dataset compared to CAPSIF:G and CAPSIF:V, but it underperforms PesTo-Carbs. 

CAPSIF2 however excels the most at a larger dataset containing ~1k structures with substantially 

larger sequence variability, outcompeting all tested models. CAPSIF2 leverages a graph neural 

network operating on residues, using the same foundational approach as CAPSIF:G, while 

CAPSIF:V used a 3D voxelized CNN approach. PesTo-Carbs also leverages a graph neural 

network approach; however, it operates at an atom-wise level and only pools to the residue level 

late in the architecture. These graph architectures however have a similar level of parameters, 

where CAPSIF:G has 236K parameters, CAPSIF2 has 1.6M parameters, and PesTo-Carbs has 

1.1M parameters; while CAPSIF:V has substantially more with 102M parameters. 

I believe that the differences in performance are primarily not attributable to the 

architectures themselves, but rather the datasets. All models perform in a Matthews correlation 

coefficient (MCC) range from 0.55 to 0.63; thus, I attribute the largest differences to the stochastic 

training of these models and the slight variations in architectures. Structural protein-carbohydrate 

datasets are limited currently by the size of the PDB, as these interactions must be strong and stable 

to observe with experimental methods, where in physiology these interactions are often guided by 

avidity over affinity and/or enzymatic activity on the carbohydrates themselves. I believe larger 

datasets is only one part to improving these models, but improving the datasets with manual 

interrogation of all structures and with the identification of continuous biophysical pockets is 

necessary to improve the models’ performance. 

To improve carbohydrate-protein structural datasets and improve the general biological 

understanding of the carbohydrate-protein interactome, I created PiCAP. PiCAP is the first model 

of its kind as it predicts the protein-sugar interactome - carbohydrate binding of proteins 
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independent of family/function – whether it be a cell surface protein for adhesion and 

communication or for metabolic enzymatics. The dataset I used to train PiCAP primarily separates 

known carbohydrate binders and proteins that are unlikely to bind to carbohydrates physiologically 

inside the cell – ranging from small molecule binders to cytoskeletal components. Although this 

approach is imperfect, it is the first attempt of this kind and, while limited by the underlying 

skewed PDB species distribution toward soluble proteins from human and simple prokarya, it still 

leverages a generalizable biophysical intuition of the cellular systems. Further augmentation of the 

NoCAP dataset could improve on the breadth of the training data by using sequence databases in 

conjunction with structure predictions such as AlphaFold342, or Boltz-1128. Additional positive 

sugar binders can come from CAZY8,9 which contains 5M+ enzymes. Additional negatives can be 

identified across many species using specific GO terms with known presence in the cytoplasm, 

nucleus, or nuclear membrane. 

Ultimately PiCAP achieves 89.6% accuracy on the experimental NoCAP dataset with 1.8M 

parameters. PiCAP predicts most subsets of the test set with equivalent accuracy (designed 

lysozymes, cytoskeletal proteins, flippases, and fatty acyl binding proteins); however, it proves 

notably worse on designed-non binders and antibodies. The designed non-binders were created 

using Rosetta, where the binding pocket itself was designed but the remainder of the protein 

remained untouched115. These designs were labeled as non-binders by positive Rosetta binding 

energy scores – and never experimentally expressed nor tested. In a similar vein, to bind 

carbohydrates, antibodies use their hypervariable regions which are local regions that undergo 

somatic hypermutation. My input to the protein is ESM2 embeddings, which uses full sequence 

context to extract a large 1280-dimensional embedding of each residue. As the ESM2 model is 

only trained and tested on biological proteins, the signal specificity of the binding pocket sequence 
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of the designed non-binders may be masked by its more evolutionarily conserved residue, leading 

PiCAP to predict these non-biological proteins as carbohydrate binders. PiCAP studies protein 

sequence and structural information together, indicating PiCAP as a strong candidate for proteome 

wide studies of protein-carbohydrate interactions.  

Since PiCAP performed well on NoCAP data, I sought to validate the model against other 

methods that predicted carbohydrate binders: the ganglioside interactome and LectomeXplore. 

While I saw only 60% of proteins in the ganglioside interactome as positive, after closely 

evaluating a subset of the data, I reconciled the difference with the error of the high throughput 

experimental method. Although PiCAP appears to disagree with a good fraction of the ganglioside 

dataset, it has a strong linear relationship with the high throughput experiments. The more 

experiments that identified a protein, the higher likelihood that PiCAP predicted the protein as a 

carbohydrate binder. I further observe strong agreement between LectomeXplore and PiCAP, with 

an average of 95% agreement across three model species. 

With experimental and computational validation, I then leveraged PiCAP against the AF2 

proteome datasets. PiCAP predicts 35~40% of all proteins in three biological model species to be 

carbohydrate binding proteins – the highest prediction to date. As carbohydrates are ubiquitous 

across all species and are the foundational building block of energy storage and integral to most 

all extracellular communication, it is unsurprising for such a high fraction of proteins bind to 

carbohydrates. PiCAP results can be further validated by proteomic evaluation by experiments 

such as the pull-downs from Zhang et al.17 or liquid glycan arrays129,130. The computational 

predictions can help elucidate more functionality of proteins and provide a larger context to their 

roles inside the cell and the suggestion of more protein moonlighting than previously understood.  
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Despite their biophysical importance in most all cellular functions, carbohydrates remain 

elusive with few studies determining the exact extent of protein-carbohydrate interactions. My 

work expands to all proteins/carbohydrates in an agnostic manner that abstains from any limits on 

protein family or carbohydrate species. I released the results of CAPSIF2 and PiCAP of six model 

system proteomes for all proteins for open-source scientific use. Additional steps can now be taken 

for the ultimate goals to design proteins to carbohydrate and glycoprotein targets for therapeutic 

purposes. Firstly, I encourage the expansion of this work or LectinOracle 48 or GlyNet85 to predict 

carbohydrate species to all carbohydrate binding proteins. One simple step would be to predict 

whether proteins bind to just a specific species of carbohydrate – such as chitins or sialic acids. 

Another step would a high throughput computational docking of those carbohydrate species to the 

identified proteins, using CAPSIF2 or PesTo-Carbs110 or DeepGlycanSite111 to identify an initial 

hypothesis to feed GlycanDock49, or directly de novo with programs like DiffDock43, RosettaFold-

All Atom (RF-AA)131, AlphaFold342, or Boltz-1128 (although there are currently no validation 

studies testing whether these methods provide high accuracy on carbohydrate-specific docking). 

In addition, all these methods leverage deep learning techniques. Deep learning methods require 

multitudes of data, and although I was able to demonstrate impressive results on low 

accuracy/messy data, I believe a clean dataset is integral and necessary for the future of this field. 

A better annotated set of proteins that do not bind carbohydrates would be helpful, as well as all 

structural proteins to have all ligands together, where currently there is a high redundancy in 

protein structures with slightly different ligands or crystallization techniques, which reduce the 

accuracy of the test metrics in comparing CAPSIF2 and PesTo-Carbs. I also believe tandem 

experiments, such as those done by Zhang et al.17 or selective exo-enzymatic labeling (SEEL) 

glyco-engineering high throughput methods 22 to validate these models could further demonstrate 
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a larger wealth of carbohydrate binding proteins, alongside their specificity, allowing for further 

annotation of the genome on a large scale. 

In total, I present a novel framework to predict the protein-sugar interactome across any 

species. Taking a sugar agnostic approach, categorizing glycans and metabolic glucose together, 

PiCAP accurately predicts evolutionarily conserved proteins as carbohydrate binding proteins with 

approximately 90% accuracy (Table 3.3, Figures 3.7, 3.11). PiCAP’s predictions align with 

established biophysical principles, indicating that carbohydrate binding is largely absent from the 

cytoplasm and nucleus and approximately 75% of all cell surface and extracellular proteins bind 

carbohydrates (Figure 3.5). This suggests that a majority of membrane, surface, and extracellular 

proteins may predominantly interact with glycans for localization and binding, rather than entirely 

relying on protein-protein specific interactions. These findings highlight the potential of PiCAP to 

not only accelerate glycoproteomic research but also refine the understanding of protein function 

in the broader context of cellular communication and molecular recognition. 

 

Methods 

Dataset 

  Carbohydrate-binding proteins were selected by combining multiple datasets. I selected 

carbohydrate binding antibodies from SAbDab,116 all experimentally solved proteins from 

UniLectin112 (with and without bound carbohydrates), the CAPSIF dataset,106 and most notably, 

the DIONYSUS dataset,113 which was filtered for only saccharide containing complexes. Further, 

I included the computationally designed and experimentally viable lysozymes from ProGen,114 

with structures predicted by the Colab distribution of AlphaFold2.94 
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There are several datasets of protein-carbohydrate interactions; however, there is no dataset 

of proteins that do not bind to carbohydrates, so I constructed one (Table 3.1). In the creation of 

such dataset, an intrinsic difficulty is that it is not possible to prove that a protein does not bind to 

a carbohydrate of any kind; therefore, I selected proteins that biophysically have low likelihood to 

bind to carbohydrates due to their function or location inside the cell. The experimentally solved 

proteins selected were primarily chosen as small molecule binding proteins, DNA binding proteins, 

nuclear pore complex proteins, serine proteases, cytoskeletal proteins, aminotransferases, 

flippases, fatty acid binding proteins, selected antibodies (antibodies), and ribosomal proteins. In 

addition to these proteins, Luo et al. computationally constructed a dataset of carbohydrate non-

binder proteins with the Rosetta software115. 

 Small molecule data constitutes the largest portion of the non-binders (~18k pdbs), as I 

used the PDB-Bind 2020 dataset.117 Some proteins in the PDB-Bind dataset contain carbohydrates 

as the ligand, in which case I identified those ligands using PyRosetta101 and removed them from 

the non-binder dataset and added them to the binder dataset. Antibodies were selected using the 

SAbDab dataset by finding all proteins that were bound to proteins or nucleic acids and further 

filtering to structures not containing any carbohydrates in the structure nor an NX(S/T) motif in 

the antigen.116  Ribosomal proteins were selected from the bacterial ribosome structure.132 The 

remainder of protein structures were selected by inspection from the RCSB PDB.133 

 After combining the datasets and adjusting for duplicate PDBs across different datasets, 

the final NoCAP dataset contains 30,849 total unique protein structures. Of these structures, 9,608 

bind to carbohydrates, with 6,724 having an experimentally bound carbohydrate. Of the 21,412 

non carbohydrate binders, 17,191 have an experimentally resolved small molecule bound to it, 

leaving 4,221 as nonbinders. To encourage generalizability to minor errors in structure predictions, 
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I also reconstructed the 12,021 shortest sequence proteins of the 30,849 with the Colab 

implementation of AlphaFold 294, where I only kept the 11,042 of predicted structures with a 

pLDDT greater than 80. 

 

Preprocessing 

 With the dataset, I desired to leverage both sequence and structural information to predict 

carbohydrate-binding capabilities of proteins. Family information of sequence similarity can 

strongly indicate carbohydrate binding capabilities, while structural motifs can be present across 

protein families for carbohydrate binding, and I desire my method to identify both. I extracted the 

sequence and the Cb positions of all protein residues (Ca for glycine) using PyRosetta.101 Next, I 

used ESM239 to provide a high-dimensional sequence embedding for each protein residue of each 

protein chain. I labeled protein residues that were within 4.2 Å of a non-covalently bound 

carbohydrate (or small molecule) as a binding residue. 

 Most previous work has used single protein chains for protein-carbohydrate 

predictions106,110; however, many proteins only exist in the context of multiple chains. For this 

reason, I preprocessed all protein structures with all chains in the PDB file, except the initial 

CAPSIF dataset and antibodies. To limit the redundancy of the training set, I used MMseqs to 

cluster protein sequences by 60% sequence identity into distinct clusters for training/testing.86 I 

then split the clusters into an 80/5/15 train/validation/test, maintaining the same proteins from 

CAPSIF remain in the same dataset distribution. This left 24,957 structures in training, 1,479 

structures for validation, and 4,413 structures for testing. 
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Secondary validation set  

 I have a primary dataset of carbohydrate-protein binding; however, I need to demonstrate 

the ability of PiCAP to predict outside of the crystally solved structures. To do this, I gathered all 

UniProt134 accession codes from Zhang et al.17 and LectomeXplore16 and matched them to the AF2 

publicly accessible organism proteomes. This captured 848 of 878 (97%) of putative ganglioside 

binding proteins and 3,400 of 4,335 (78%) of non-ganglioside binding proteins. LectomeXplore 

uses sequence and structural protein information, alongside infectious pathogens that affect these 

species, and lists all reference sequences and structures (UniProt, ensembl, NCBI, RCSB, etc.) 

with severe redundancy. Therefore, for a direct quantitative comparison, I therefore used only those 

that existed singly as UniProt values inside the reference proteomes of AF2. I used the confidence 

metric of 0.25 for identification of lectins, which yielded 230 human proteins and 225 mouse 

proteins.  

 For the proteome analysis, I used the AF2 publicly accessible organism proteomes.108 AF2 

generates structures with an internal confidence metric called pLDDT, where low confidence 

regions will have pLDDTs under 70. I therefore performed analysis and studies on AF2 protein 

regions with high confidence, or residues with greater than 70 pLDDT, independent of structural 

continuity. I applied the analysis to the following model organisms: E. Coli, M. Musculus, and H. 

Sapiens. I further provide the results of the full-length sequence, independent of pLDDT in the 

Appendix alongside the results of three other model organisms: C. elegans, D. melanogaster, and 

S. cerevesia. 
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Architectures 

I fed the residue coordinates and sequence embeddings into the CAPSIF2 and PiCAP 

architectures (Figure 1A) into the main model block, which uses a message passing equivariant 

graph neural network (EGNN) of equivariant graph convolutional layers (EGCL).35 Each layer 

sums the outputs of a multilayer perceptron (MLP) that inputs the features of the central node and 

the features of all of its neighboring nodes and the edge attributes of the neighbors. Following 

Ingraham et al.36, the edge attributes are a radial basis function (RBF) of the distance, the 

orientation, and direction of the neighboring residues. 

CAPSIF2, a carbohydrate binding residue predictor, has 12 residual ECGLs with an 

embedding dimension of 128 (Figure 3.6). The neighborhood context window is fixed at the 16 

nearest neighbors. After the graph convolutions, each residue is passed to a two-layer dense 

decoder, finally outputting the carbohydrate-binding likelihood of each residue. CAPSIF2 contains 

1,600,387 parameters. 

 PiCAP, a predictor of whether a protein binds to carbohydrates, has 12 total residual 

EGCLs with an embedding dimension of 128 and leverages an increasing neighborhood context 

window for information propagation, as inspired by PeSTo100 and PeSTo-Carbs110. The first three 

layers use the 10 nearest neighbors, layers 4 to 6 use the 20 nearest neighbors, layers 7 to 9 use 40 

neighbors, and layers 10 to 12 use 60 neighbors. (Figure 3.6). The model specific block is a pooling 

block that uses an adaptive pool to truncate or slightly expand the size of the protein to a fixed 

length (150), where the model then uses two convolutional layers and three dense layers to predict 

the likelihood of a protein to bind to carbohydrates. PiCAP contains 1,798,895 parameters. 
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Figure 3.6: Architectures of CArbohydrate Protein Site IdentiFier 2 (CAPSIF2) and Protein interaction of 

CArbohydrate Predictor (PiCAP). 

Training 

I trained both models using two cycles: small molecule binding residue prediction and the 

model specific task (protein or residue level predictions). The first training cycle used the 

CAPSIF2 base architecture with randomized initial weights ~𝑁(0,0.02) for the residue level 

prediction. The model was trained for a maximum of 1,000 epochs, with training prematurely 

stopped once the validation loss did not decrease after 35 epochs. This training cycle had a learning 

rate of 2 x 10-6 and a weight decay of 10-7 with the Adam optimizer with the loss function 𝐿	 =

	1 − 𝑑, where 𝑑 is the Dice-Sorenson coefficient (also known as the F1 score) and a batch size of 

1. To improve model generalization, each epoch sampled a single protein from every training 

cluster available from the small molecule dataset. The smallest 12,000 protein sequences were 

modeled structurally with the colab distribution of AF2,38,94 and if the selected protein was 
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available via AF2, I selected the crystal structure 40% of the time and the AF2 structure 60% of 

the time. 

For the second training cycle, CAPSIF2 used the same architecture as the first training 

cycle and required no randomization. CAPSIF2 was trained only on proteins with experimentally 

determined carbohydrate binding sites with learning rate of 2 x 10-5 and weight decay of 10-6 with 

the Adam optimizer and the same loss function of 𝐿	 = 	1 − 𝑑. Similar to the first training cycle, I 

randomly selected an available AF2 structure 60% of the time. 

For the second training cycle, PiCAP used the weights where available from the first 

training iteration of CAPSIF2 and randomized weights for the model specific block ~𝑁(0,0.02). 

PiCAP was trained on the entire training set for binary classification with a learning rate of                  

2 x 10-5 and weight decay of 10-6 with the Adam optimizer and binary cross entropy (BCE) loss 

function. Similar to the first training cycle, I randomly used an available AF2 structure 60% of the 

time. 

 

Data Availability 

Data, code, and datasets are available at Github, where CAPSIF2 and PiCAP can be run at: 

https://github.com/Graylab/picap. With the assistance of Matt Mulqueen, I further provide 

a webserver on ROSIE where CAPSIF2 and PiCAP can additionally be run: 

https://r2.graylab.jhu.edu/apps/index. 

  

https://github.com/Graylab/picap
https://r2.graylab.jhu.edu/apps/index
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Appendix 

Dataset Description 

 I provide all proteome data as an Excel document (xlsx) on the Github (Data Availability). 

This Excel document contains all prediction information of PiCAP and CAPSIF2 on the AlphaFold 

2 proteomic data108. Since PiCAP can produce false negative binders, the separate predictions of 

CAPSIF2 in all cases may assist in hypotheses of known carbohydrate and small molecule binding 

proteins. In addition, I show predictions on all proteins in the dataset, even in cases with low 

pLDDT, although the analysis in the primary text only analyzes predictions of proteins with greater 

than an average of 70 pLDDT. In all sheets, I provide the following columns: 

• UniProt Entry 

• Common Gene Name (Entry_Name) 

• Protein_name 

• Gene Ontology terms 

• PiCAP prediction on only residues with greater than 70 pLDDT 

• CAPSIF2 predicted binding residues on residues with greater than 70 pLDDT 

 

The PiCAP output is a probability value in the range from 0 to 1. In the main text I use the 

cutoff value of 0.23 to indicate that any protein with predicted probability greater than 0.23 is 

predicted as a carbohydrate binding protein. The PiCAP prediction may be used as a confidence 

metric, where the higher probabilities suggest more confidence PiCAP has that the model is a 

carbohydrate non-binder or binder, respectively. 
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Model Hyperparameterization 

To optimize performance on a neural network, I assessed multiple hyperparameters in both 

models to achieve their performance. I focused primarily on the following hyperparameters: 

embedding dimension, k-nearest neighbors (knn), and number of layers. For simplicity, I treat each 

network as a series of four (4) blocks, composed of a certain number of layers where I vary knn 

per block. 

CAPSIF2 parameterization 

 In my previous work on CAPSIF:G, I used one-hot encodings of amino acid type and 

biophysical properties with simple edge embeddings. To contain more information, in this work, I 

altered the node features to ESM2 embeddings and edges. With these input features, I then focused 

on the size and depths of the network.106 A full account of all tested hyperparameters is listed below 

in Table 3.4. I selected CAPSIF2 as the model that performed the best on the DR test set, which 

was composed of 12 layers with a static number of k nearest neighbors of 16. 
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Table 3.4: Performance of various CAPSIF2 models on the Dionysus Residue (DR) test set. Dice and Matthews 

correlation coefficient (MCC) are as defined in the main text. Boldface indicates the best performance in each metric. 

Selected CAPSIF2 model is highlighted in yellow. 

Layers per block KNN per block DR Dice DR MCC TS90 Dice 

3 6,6,6,6 0.541 0.542 0.533 

3 8,8,8,8 0.477 0.484 0.431 

3 8,12,16,20 0.391 0.407 0.366 

3 6,10,14,18 0.528 0.528 0.572 

3 10,20,40,60 0.289 0.312 0.364 

3 16,16,16,16 0.573 0.574 0.616 

3 20,20,20,20 0.498 0.496 0.575 

4 8,12,16,20 0.566 0.567 0.639 

4 6,10,14,18 0.408 0.419 0.319 

4 8,8,8,8 0.491 0.486 0.548 

     

CAPSIF:V N/A 0.226 0.202 0.608 

 

PiCAP parameterization 

 I followed the same methodology as CAPSIF2 to identify the strongest performing PiCAP 

model parameters. The hyperparameter search is provided below in Table 3.5. The decision on 

which model performed strongest was less straightforward than CAPSIF2, as all multiple models 

performed strongly across the NoCAP test set. I selected a model that performed well across most 

metrics placing just below the top of every other category to encourage generalizability, as some 
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of the top performing models were prone to overfitting and unstable predictions. The chosen 

PiCAP model consisted of 12 layers, with the knn gradually increasing from 10 to 60 neighbors 

across the layers. 

 

Table 3.5: Performance of various PiCAP models on the NoCAP test set. BACC is balanced accuracy. TPR is True 

Positive Rate TPR = TP / (TP + FP). TNR is True Negative Rate TNR = TN / (TN + FN). 

Layers 

per block 

KNN per 

block 

cutoff NoCAP 

BACC 

NoCAP 

TPR 

NoCAP 

TNR 

Nonbinders 

TNR 

Ribosome 

TNR 

Holdout 

TNR 

3 6,6,6,6 0.94 0.85 0.87 0.83 0.624 1.0 0.857 

3 8,8,8,8 0.33 0.892 0.964 0.82 0.667 0.857 0.929 

3 20,20,20,20 0.21 0.856 0.88 0.833 0.683 1.0 0.429 

3 10,20,40,60 0.23 0.896 0.963 0.828 0.608 1.0 0.902 

3 6,10,14,18 0.99 0.779 0.927 0.631 0.656 0.857 0.571 

         

4 6,6,6,6 0.77 0.885 0.976 0.794 0.731 1.0 0.857 

4 8,8,8,8 0.19 0.897 0.951 0.842 0.704 1.0 0.857 

4 6,10,14,18 0.32 0.861 0.974 0.745 0.134 0.857 0.643 

4 8,12,16,20 0.84 0.877 0.954 0.801 0.785 1.0 0.643 
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Proteomic Data 

 In the excel document in the Github (see Data Availability), I provide a list of all proteins 

from six organisms. Here I list the overall metrics of the three organisms in the excel document 

that were not discussed in the main text. PiCAP predicts that in C. elegans (nematode worm) 9,278 

of the 19,227 proteins (48%) bind carbohydrates. PiCAP predicts that in D. melanogaster (fruit 

fly) 5,248 of the 13,351 proteins (39%) bind carbohydrates. PiCAP predicts that in S. cerevisiae 

(yeast) 1,749 of the 5,849 proteins (29%) bind carbohydrates. 

 

Cellular component analysis 

 To analyze the E. coli strain K12, M. musculus, and H. sapiens AF2 reference proteomes, 

I employed the use of Gene Ontology (GO) terms and PANTHER.126,127 For Figure 3.5B, I 

analyzed the GO terms representative of cellular compartments, I performed a limited search 

limited to Table 3.6, where any protein observed in multiple of the compartments (excluding just 

nucleus and cytoplasm) were placed in the “shared” compartment. PANTHER provided the 

statistical overrepresentation tests and false discovery rates (FDRs) of all cellular compartments, 

molecular functions, and cellular processes (when the FDR was less than 0.05). 
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Table 3.6: Simplified cellular compartment GO Terms 

Compartment GO Terms 

Cell Surface cell surface [GO:0009986] 

plasma membrane [GO:0005886] 

extracellular space [GO:0005615] 

extracellular matrix [GO:0031012] 

Cytoplasm cytosol [GO:0005829] 

cytoplasm [GO:0005737] 

Nucleus nucleus [GO:0005634] 

Mitochondrion mitochondrion [GO:0005739] 

ER/Golgi endoplasmic reticulum [GO:0005783] 

Golgi apparatus [GO:0005794] 
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Supplemental Human Proteome Analysis 

 

Figure 3.7: Human carbohydrate binding protein functionality. Percentage of proteins with known binding 

functions predicted as carbohydrate binding (blue) and non-carbohydrate binding (red) proteins for  sets of proteins 

with Gene ontology terms for carbohydrate binding [GO:0030246], DNA and RNA binding [GO:0003677, 0003723], 

small molecule binding [GO:0036094], GPCR Activity (G protein-coupled receptor activity [GO:0004930]), Calcium 

binding (calcium ion binding [GO:0005509]), and (Bottom Right) Zinc binding (zinc ion binding [GO:0008270]). 

 



 133 

 To assess the overall accuracy of PiCAP, I identified the percentage of proteins with GO 

terms associated with carbohydrate binding, DNA/RNA binding, small molecule binding, G 

protein coupled receptor (GPCR) activity, calcium ion binding, and zinc ion binding (Figure 3.7). 

Of the 182 proteins with a GO term for carbohydrate binding in the human proteome, PiCAP 

predicts 94% of these proteins as carbohydrate binding proteins, indicating a 6% false negative 

rate.  

Here, I defined nucleic acids as non-carbohydrates, and PiCAP identifies 91.5% of 

DNA/RNA binding proteins as carbohydrate non-binders. PiCAP predicts 8.5% of DNA/RNA 

binding proteins as carbohydrate binding; where several nucleic acid binding proteins are known 

to bind carbohydrates, such as DNA polymerase I (such as in PDB 1NK4), so those predicted 

binders cannot be completely ignored as false positives. There are limited proteins with small 

molecule binding GO terms associated (28), and PiCAP predicts only 25% of these proteins to 

bind carbohydrates, which could include small molecules with hydrated ring structures, mimicking 

carbohydrate epitopes. Additionally, zinc is an ion commonly associated with nucleic acid binding 

with zinc finger motifs; however, zinc is established in other pathways like neuron excitability. 

PiCAP predicts 22% of known zinc ion binding proteins as carbohydrate binding proteins, and 

78% as carbohydrate nonbinders.  

 I further assessed calcium ion binding, where calcium is ubiquitous across many cellular 

processes from muscular contraction to being a secondary ligand necessary for C-type lectin 

binding. In NoCAP, there are 2263 structures containing calcium, where 946 (41%) of those 

proteins bind carbohydrates. In the training set specifically, there are 1619 proteins that have 

calcium ions present and only 614 (38%) of those bind carbohydrates. On the human proteome, 

PiCAP predicts 58% of calcium binding proteins as carbohydrate binders and 42% as carbohydrate 
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non-binders, indicating that PiCAP effectively distinguishes C-type lectins and calcium cofactor-

carbohydrate binding proteins from other calcium binding proteins.  

Finally, I investigated GPCRs, where proteins with GPCR activity are integral across many 

unrelated intercellular communication pathways, where PiCAP predicts 69% of proteins with 

GPCR activity as carbohydrate binding proteins, suggesting a wealth of agonists and antagonists 

being carbohydrates (or carbohydrate-like molecules with hydrated rings) may be critical in GPCR 

binding.  
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E. Coli Proteome analysis 

 

Figure 3.8: Statistical analysis of E. coli strain K12 PiCAP predicted carbohydrate binding and non-binding 

proteins. The false discovery rate (FDR) alongside the overrepresentation (blue) and underrepresentation (red) are 

shown for select cellular compartments, molecular functions, and cellular processes. 
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Mouse Proteome Analysis 

Cellular Component 

 

Figure 3.9: Cellular components of M. musculus proteome predicted carbohydrate binding and non-binding 

proteins according to Table 3.6. 
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Overrepresentation of protein processes and functions 

 

Figure 3.10: Statistical analysis of M. musculus PiCAP predicted carbohydrate binding and non-binding 

proteins. The FDR and overrepresentation (blue) and underrepresentation (red) are shown for select cellular functions 

and molecular processes. 
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Figure 3.11: M. musculus carbohydrate binding protein functionality. Percentage of proteins with known binding 

functions predicted as carbohydrate binding (blue) and non-carbohydrate binding (red) proteins for Gene ontology 

terms for carbohydrate binding [GO:0030246], DNA and RNA binding [GO:0003677, 0003723], small molecule 

binding [GO:0036094], GPCR Activity (G protein-coupled receptor activity [GO:0004930]), Calcium binding 

(calcium ion binding [GO:0005509]), and (Bottom Right) Zinc binding (zinc ion binding [GO:0008270]). 

  



 139 

Chapter 4  

BCAPIN: Evaluation of De Novo Deep Learning Models 

on the Protein-Sugar Interactome 

 

 
Figure 4.1: Benchmarking Carbohydrate Predictions with BCAPIN 

 

Attribution of credit: this work was performed primarily alongside Dr. Lei Lu, with support from Sho S. Takeshita, and advised by 

Dr.’s William F. DeGrado and Jeffrey J. Gray.  
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Overview 

Advances in deep learning have produced a range of models for predicting the protein-

sugar interactome; however, structural docking of noncovalent protein-carbohydrate complexes 

remains largely unexplored. Although all-atom structure prediction models like AlphaFold3 (AF3), 

Boltz-1, Chai-1, DiffDock, and RosettaFold-All Atom (RFAA) were validated on protein-small 

molecule complexes, no benchmark or evaluation exists specifically for noncovalent protein-

carbohydrate docking. To address this, I developed a high-quality dataset of experimental 

structures – Benchmark of CArbohydrate Protein Interactions (BCAPIN). Using BCAPIN and a 

novel evaluation metric, DockQC, I assessed the performance of all-atom structure prediction 

models on non-covalent protein-carbohydrate docking. I found all methods achieved comparable 

results, with an 85% success rate for structures of at least acceptable quality. However, I found that 

the predictive power of all models declined with increasing carbohydrate polymer length. With the 

capabilities and limitations assessed, I evaluated AF3’s ability to predict binding for a set of 

putative human carbohydrate binding and carbohydrate non-binding proteins. While current 

models show promise, further development is needed to enable high-confidence, high-throughput 

prediction of the complete protein-sugar interactome. 

Introduction 

Many new computational prediction tools have recently been developed to decode the 

protein-sugar interactome. Bonnardel et al. created LectomeXplore, which annotates all known 

proteomes with a hidden Markov model (HMM) for lectins (glycan-binding proteins).16 If the 

protein is identified as a lectin, one could use Lundstrøm et al.’s model LectinOracle to predict 

which carbohydrate the lectin binds.48 However, not all carbohydrate binding proteins are lectins, 
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for example native sugar sensors and antibodies.6 Leveraging this gap, some of us (Canner, Gray) 

developed PiCAP to predict whether a protein binds to carbohydrates, irrespective of protein 

family, and released predicted annotations on six different species, predicting a putative list of all 

the proteins present in the protein-sugar interactome.23 To further elucidate these protein-

carbohydrate interactions, Canner, Shanker et al. and Bibekar et al. created CAPSIF106 and PeSTo-

Carbs,110 respectively, to predict which residues a protein uses to bind to carbohydrates. The 

combination of these breakthrough models can be used to predict whether any given protein binds 

to a carbohydrate (as a lectin or non-lectin), what carbohydrate it binds to (if the protein is a lectin), 

and what residues are implicated in the protein for carbohydrate binding. Now, with all-atom 

biomolecular prediction software like AlphaFold3 (AF3),42 protein-carbohydrate complex 

structures can be readily predicted. AF3 and other deep learning models thereby make possible the 

development of a complete putative structural dataset of the entire protein-sugar interactome: all 

protein-carbohydrate interactions across a species. First however, researchers must evaluate the 

performance of AF3 and other all-atom biomolecular structure prediction models on protein-

carbohydrate complexes. 

 The development of AlphaFold342 built upon a string of advances in protein structure 

prediction, such as the Nobel Prize research of David Baker, Demis Hassabis, and John Jumper: 

Rosetta and AlphaFold2.40 In the past few years, the leap in the most recent generation of de novo 

prediction methods was the ability to model any molecule with all-atom structure prediction. The 

Jaakkola lab developed DiffDock to predict small molecule docking on a provided protein 

structure.43,135 The Baker lab developed RosettaFold-AllAtom (RFAA), becoming the first end-to-

end all-atom biomolecule structure prediction.131 Google DeepMind released their first end-to-end 

all atom prediction model AlphaFold3 (AF3). Building on previous work from DiffDock, the 



 142 

Jaakkola lab developed Boltz-1.128 With partnerships from OpenAI and other industry 

representatives, the Chai Discovery team released their (proprietary) model Chai-1.42,136  

Given this growing suite of models (albeit non-exhaustive), identification of their 

performance on specific tasks is critical, with one of the most used metrics being the success rate 

when benchmarked against a dataset called Posebusters.137 Posebusters contains non-covalent 

protein-small molecule complexes. Posebusters provides well-defined specificity of the small 

molecule and binding protein pocket, with a model’s success measured by its ability to predict 

small molecule complexes under 2 Å RMSD from the solved structure. In total, DiffDock and 

RFAA both achieve 42% success on PoseBusters,131 while AF3 and Chai-1 achieve 76% and 77% 

success on PoseBusters,42,136 respectively. No success rate was reported on PoseBusters for Boltz-

1.128 

 While PoseBusters emphasizes strong specific protein-ligand binding, protein-

carbohydrate interactions present unique challenges. Unlike protein-small molecule interactions, 

protein-carbohydrate interactions are commonly less specific, with proteins containing multiple 

binding sites for long linear heterogenous polymers containing various epitopes, and therefore 

sugars require extra attention that is not provided in the dataset.20,105,138 Moreover, proteins 

stabilize carbohydrates through a combination of direct contacts (hydrogen bonding, 

electrostatics), indirect (water mediated) interactions, and by CH-π bonds via aromatic 

residues.18,20 Finally, the binding affinity of protein-carbohydrate complexes are commonly weak 

(μM – mM), but rather driven by high avidity (nM) of multiple binding sites on the protein or 

multiple repeats of the glycan epitope.6 

Due to the distinct binding mechanisms involved in noncovalent protein-carbohydrate 

interactions, solved experimental structures of bound non-covalent carbohydrates to proteins are 
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limited. From all solved structures in the Protein Data Bank,86 DIONYSUS identifies protein 

structures with non-covalent specific interactions with carbohydrates to be 2.5% (5,461).113 With 

the advent of high-throughput diazirine photoaffinity linker experimental data of protein-

carbohydrate interactions, 22 researchers are attaining more knowledge of protein-carbohydrate 

interactions on a protein level.17 I therefore propose that all-atom deep learning (DL) structure 

prediction pipeline may enhance general understanding of the protein-sugar interactome. 

Here, I benchmark DL structural models: AF3, Boltz-1, Chai-1, RFAA, and DiffDock on 

the task of predicting docked de novo protein-carbohydrate structures. To benchmark the models, 

I constructed a novel dataset of proteins unseen during each model’s training. I identify the 

strengths and shortcomings of these models and evaluate test cases where all models perform 

poorly. With strengths and limitations identified, I then use AF3 as a proof-of-concept tool for 

predicting the structural de novo human protein-sugar interactome. This work sets the stage for 

future integration of deep learning tools in structural glycobiology to fully characterize the protein-

sugar interactome across all species. 

Results 

BCAPIN and DockQC: Novel datasets and analysis 

 To assess the capabilities of AlphaFold3 (AF3), Boltz-1, Chai-1, DiffDock, and 

RosettaFold All-Atom (RFAA) at predicting protein-carbohydrate complexes, it is essential to 

have an independent test set of high-quality experimentally resolved protein-carbohydrate 

structures and a suitable evaluation metric. For the dataset, I leveraged DIONYSUS,113 which 

aggregates all experimentally determined protein-glycan structures from the PDB. I first excluded 

all protein-nucleic acid complexes and clustered the remaining protein sequences at 50% identity. 
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I removed clusters with structures solved before the latest model’s training cutoff dataset 

(September 2021). Importantly, due to experimental limitations, not all experimental structures are 

of equal quality. To ensure structural reliability, I applied a filter using the real space correlation 

coefficient (RSCC)139, which measures the agreement between the calculated and experimental 

density. Structures with an RSCC greater than or equal to 0.9 were retained (Figure 4.10). The 

resulting Benchmark of CArbohydrate Protein INteractions (BCAPIN) test set consists of 20 

structures: 9 structures that bind sugar monomers, 3 structures that bind dimers, 5 structures that 

bind polymers, and 3 structures that bind at least a nucleotide (NTP) and a saccharide (Table 4.1). 
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Table 4.1: Benchmark of CArbohydrate Protein INteractions (BCAPIN) test set. The table lists the PDB 4-letter 

ID, protein name, UniProt ID, glycan input string for GlyLES, and any secondary ligands if present. 
PDB Protein Name UniProt GlyLES Input String Secondary 

Ligand 

7blg Carbohydrate-binding protein family 32 Q8A3D9 Gal  

7en5 HTH-type transcriptional regulator MurR P77245 MurNAc  

7exj Probable galactinol-sucrose 

galactosyltransferase 6 

Q8RX87 Fruf(b2-1)[Gal(a1-6)]Glc  

7exo Putative L-type lectin Q58791 Man  

7f9g Thrombocorticin C0HM62 Fucp  

7jnf F5/8 type C domain protein A0A0H2YN38 GalNAc  

7jwf Glycoside hydrolase Family 110 N/A Gal(a1-3)Galb  

7mzs Fimbrial adhesin A0A2X2BLR9 Gal  

7rft SAS protein 20 N/A Glc(a1-4)Glc(a1-4)Glc(a1-4)Glc(a1-4)Glca  

7rpy Cohesin containing protein N/A Glc(a1-4)Glc(a1-4)Glca  

7vi7 β-N-acetylhexosaminidase B2UPP0 GlcNAc  

7w11 3-O-Glycosyltransferase A0A385Z7H9 Glc UDP 

7w18 Alginate lyase D2KX85 ManA(b1-4)ManA(b1-4)ManA(b1-

4)ManA(b1-4)ManA(b1-4)ManA(b1-

4)ManA(b1-4)ManA(b1-4)ManA(b1-

4)ManAb 

 

7zon Glycoside hydrolase family 18 A0A979GQH9 Glcb  

8axs Exo-α-Sialidase N/A Neu5Ac  

8bf3 Feruloyl esterase wtsFae1B A0A5S8WFA0 Xyl(b1-4)Xylb  

8d0r Fucosyltransferase Q9Y231 Fucp(a1-2)Gal(b1-4)GlcNAcb GDP 

8dzd MS3494 : putative secreted protein A0QY10 Fru(b2-1)Glca  

8ic1 Endo-α-D-arabinanase mutant N/A Araf(a1-5)Araf(a1-5)Araf(a1-5)Araf(a1-

5)Araf(a1-5)Araf(a1-5)Araf 

 

8inp 7-O-uridine diphosphate glycosyltransferase N/A Glc UDP 

 
 
 To evaluate the performance of predicted protein-carbohydrate complexes, I developed a 

single continuous scoring metric named DockQC. DockQC is inspired by the DockQ metric from 

the CASP-CAPRI challenge, averaging the fraction of native contacts (𝐹:;<), interface root mean 



 146 

squared deviation (IRMS), and ligand RMS (LRMS) to designate a predicted structure’s quality. 

While DockQ is widely used for protein-protein docking, the native code is unusable on the test 

cases, and, when reimplemented, it tends to overestimate the quality for protein-carbohydrate 

complexes, often assigning medium-to-high scores even when the predicted ligand position is 

incorrect (Figure 4.9, Table 4.2). 

DockQC addresses these issues by averaging three terms: 𝐹:;<, ring-ring RMSD (rRMS), 

and LRMS. 𝐹*=>measures the fraction of native residue-residue contacts, rRMS is a novel metric 

that measures the RMSD between the center of mass (COM) of each carbohydrate ring in the 

aligned predicted and experimental structures, and LRMS measures the RMSD of all aligned ligand 

heavy atoms.  

 With the BCAPIN test set and evaluation metrics established, I investigated the 

performance of five methods, AlphaFold3, (AF3), Boltz-1, Chai-1, RosettaFold All-Atom 

(RFAA), and DiffDock, at predicting protein-carbohydrate structure. I first evaluated the behavior 

of DockQC on the set. Thresholds were chosen after inspecting many predictions and tuning metric 

weights, some examples are described next. 
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Figure 4.2: Protein-carbohydrate docked structures across DL methods. (A) Incorrect prediction of Chai-1 (red) 

on 7PGK (DockQC = 0.11). (B) Acceptable quality prediction of RFAA (orange) on 7EQR (DockQC = 0.26). (C) 

Medium quality prediction of Boltz-1 (violet) on 8AXS (DockQC=0.65). (D) High quality prediction of AF3 (green) 

on 7JWF (DockQC=0.96) 

 
On hedgehog interacting protein (7PGK), which binds a disaccharide heparin analog, Chai-

1 failed to predict the protein structure accurately, leading to an incorrect carbohydrate placement 

with a low DockQC score of 0.11 (Figure 4.2A). For chitoporin (7EQR), a β-barrel protein that 

binds an oligosaccharide with a degree of polymerization (DP) of six, RFAA captured the binding 

pocket of the carbohydrate, but lacked broader structural accuracy, yielding an acceptable 

prediction a DockQC of 0.26 (Figure 4.2B). With sialidase-sialic acid complex (8AXS), Boltz-1 

achieved a medium quality prediction, correctly modeling the binding pocket and ring position 

(but not its orientation), with a DockQC of 0.65 (Figure 4.2C). In contrast, on glycoside hydrolase 

family 110 protein binding a Gal dimer (7JWF), AF3 nearly recapitulated the experimental 
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structure delivering a high-quality structure with a 0.96 DockQC (Figure 4.2D). In total, my 

DockQC quality thresholds chosen to be incorrect (DockQC < 0.25), acceptable (0.25 <= DockQC 

< 0.50), medium (0.50 <= DockQC < 0.80), and high (DockQC >= 0.80) (Figure 4.9, Table 4.2). 

 

DL Methods achieve medium or high accuracy on over 80% of 

cases 

 
Figure 4.3: DL model success rates on BCAPIN Test Set. Each labeled method has the top-1 model on the left and 

top-5 model on the right 

 

After tuning the DockQC metric, I evaluated overall model performances on all BCAPIN 

targets (Figure 4.3). Across methods, I found comparable results for all end-to-end models, at least 

80% of their highest confidence predictions (top-1) scored with at least acceptable quality. 

Expanding scoring to include the most accurate of each model’s top 5 confidence predictions (top-

5) led to only marginal improvements. AF3 was the best-performing model: its top-1 predictions 

yielded 10% acceptable, 40% medium, and 35% high quality structures; top-5 predictions 

improved slightly to 15% acceptable, 35% medium, and 40% high quality structures. 



 149 

 Given the strong performance of end-to-end models on BCAPIN, I next examined how 

starting structure influences DiffDock’s predictive power. DiffDock-holo (initialized with the 

experimentally solved holo protein structure) performed equivalently to the end-to-end models, 

achieving at least acceptable quality on 85% of all top-1 predictions. In contrast, Diffdock-AF3 

(initialized from AF3-predicted apo protein) achieved only 60% acceptable or better quality in  

top-1 predictions. However, when extending to the top-5 predictions, Diffdock-AF3 improved 

substantially, yielding 85% acceptable quality structures. Thus, DiffDock is sensitive to the initial 

input structure.  

 

Methods fail to capture all interactions 

 Although all models perform strongly on BCAPIN, I sought to identify cases where all 

models still struggle. Notably, all models fail to predict on two complexes: 8DZD and 7ZON 

(Figure 4.4). 

 
Figure 4.4: Failure of DL prediction algorithms on select proteins from the BCAPIN test set. Experimentally 

solved structures of (A) secreted protein (8DZD) and (B) glycosidase family 18 (7ZON, right) in gray, alongside AF3 

predictions (blue), Boltz-1 (orange), Chai-1 (green), Diffdock (red), and RFAA (magenta). 
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8DZD is a Mycobacterium smegmatis secreted protein composed entirely of α-helices 

bound to a fructose-glucose disaccharide. While most models (except Chai-1) accurately predict 

the protein backbone, none correctly dock the ligand. RFAA places the ligand inside the protein. 

7ZON is a glycosidase primarily composed of β-sheets bound to three independent glucose 

monosaccharides. Although most models correctly predict two of the binding sites, the models 

consistently misplace the third monosaccharide on the opposite side of the protein surface.  

 

 
Figure 4.5: Low Quality DL predictions select proteins from the BCAPIN test set. We show the experimentally 

solved structures of (A) arabinose (8IC1) and (B) SAS protein 20 (7RFT), in gray, alongside AF3 predictions (blue), 

Boltz-1 (orange), Chai-1 (green), Diffdock (red), and RFAA (magenta). 

 

 I further scrutinized all predictions to identify additional cases of sub-optimal performance. 

I found that all models produced only acceptable to medium quality on 8IC1 and 7RFT (Figure 

4.5).  

8IC1 is an arabinose that binds a homogenous arabinofuranose oligosaccharide of DP 4 

along a β-sheet. Several models, such as AF3 and Boltz-1, incorrectly predict binding at an 
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alternative β-sheet, while others (DiffDock and RFAA) incorrectly predict the saccharide 

conformation (Figure 4.5A). 7RFT is a SAS protein 20 that binds a glucose oligosaccharide of DP 

3 at a β-sheet. Although all methods identify the binding pocket of 7RFT correctly, none accurately 

reproduce the specific experimental conformation, particularly the orientation of the terminal Glc, 

which experimentally makes minimal contact with the β-strand (Figure 4.5B). These data suggest 

that current models may have difficulty on α-helical binding pockets of saccharides, simultaneous 

binding of multiple ligands, and docking longer saccharides. 

 

  



 152 

Prediction Power decreases with carbohydrate length 

 
Figure 4.6: Comparison of average and standard deviation DockQC of predicted structures versus saccharide 

length. I group saccharide length into a degree of polymerization (DP) of 1 (mono), 2 (di), and 3+ (oligo), and further 

group all glycosyltransferases (GTs) together that require multiple inputs (e.g. a saccharide and NTP) and with the 

number of proteins in each group listed. Dashed lines indicate the DockQC cutoffs between acceptable (red), medium 

(blue), and high (green) quality structures. Top-1 prediction on BCAPIN with AF3 (blue circle), Boltz-1 (orange 

square), Chai-1 (Green X), Diffdock-holo (red triangle), Diffdock-AF3 (purple triangle), and RFAA (brown diamond). 

 
I next hypothesized that model performance may correlate with saccharide complexity. To 

explore the role of DP on performance, I plotted the top-1 DockQC score against saccharide length 

(Figure 4.6). In total, all models showed similar trends across saccharide length categories: 

medium quality for monosaccharides, medium to high quality for disaccharides, acceptable quality 

for oligosaccharides, and acceptable quality for glycosyltransferases (GTs). Thus, I observed a 
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decline in performance as complexity increased from simple mono and disaccharides to DP of 

three or greater and coordination of small ligands, in the case of GTs.  

 

Prediction confidence is a mediocre metric 

 
Figure 4.7: Comparison of confidence metrics and DockQC accuracy on the BCAPIN test set. Lines of best fit 

are provided for each plot. (A) Comparison of DockQC and ligand pLDDT for AF3 (blue circle), Boltz-1 (red square), 

Chai-1 (green X) and RFAA (gray diamond). (B) Comparison of DiffDock confidence for both DiffDock-holo (red 

circle) and DiffDock-AF3 (blue square). (C) Comparison of DockQC and ipTM for AF3, Boltz-1, and Chai-1. (D) 

Comparison of DockQC versus the pAE for AF3, Boltz-1 (called pDE), and RFAA. 

 
 Although all current models perform strongly on BCAPIN, performance varies across 

predictions. I therefore assessed whether models can reliably self-assess the accuracy of their own 
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predictions using internal confidence metrics, such as predicted local distance difference test 

(pLDDT), interface predicted template modeling score (ipTM), and predicted absolute error 

(PAE). For average ligand pLDDT, AF3 and Boltz-1 show moderate correlations with DockQC, 

whereas Chai-1 and RFAA produce strong correlations (Figure 4.7). Since pLDDT reflects only 

the ligand confidence, I also evaluated ipTM, which incorporates the protein-ligand interface. 

Among models reporting ipTM (AF3, Boltz-1, Chai-1), all show moderate correlations, with Chai-

1 performing best (Figure 4.11). For PAE, Boltz-1 showed a weak negative of -0.26, AF3 a 

moderate correlation, with RFAA a strong correlation of -0.7 with DockQC (Figure 4.12).  

Contrary to the end-to-end models, DiffDock provides only one confidence metric. While 

both DiffDock-holo and DiffDock-AF3 use the same scoring, DiffDock-AF3’s provides a 

significantly weaker correlation than DiffDock-holo, reinforcing DiffDock’s sensitivity to the 

starting structure (Figure 4.13). 

 Overall, all end-to-end models show moderate correlations between their internal 

confidence metrics to the DockQC, with RFAA demonstrating the strongest predictive reliability. 

Contrarily, DiffDock’s confidence metric is more susceptible to small perturbations in the input 

structure, limiting its reliability. 

 

Proteome scale predictions require refinement 

 The BCAPIN dataset is limited to small (less than 600 residues) single- or two-domain 

structurally resolved proteins with strong binding affinities. Despite being implicated in important 

physiological interactions, binding characteristics of large multidomain or multichain structures 

with carbohydrates are less well characterized due to their relative low binding affinity (but high 

avidity). To elucidate the protein-sugar interactome, researchers currently employ photoaffinity 
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tag experiments17 or use computational tools like LectinOracle48 or PiCAP.23 However, these tools 

do not provide structural protein-carbohydrate complex predictions. Therefore, I aimed to assess 

if any end-to-end all atom structure prediction models could provide a high-throughput de novo 

approach for predicting docked protein-carbohydrate complexes with high confidence. To evaluate 

a de novo protein-carbohydrate docking pipeline, I selected nine proteins from the human 

proteome and used AF3 with its ipTM confidence metric to predict their structures in complex 

with either a GM1 ganglioside or a hybrid N-glycan (Figure 4.8). I used GM1 ganglioside ligands 

for proteins experimentally identified to interact with GM1 gangliosides in Zhang et al. and the 

hybrid N-glycan ligand for all others, as it is a common covalent modification on membrane and 

secreted proteins. 
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Figure 4.8: AlphaFold3 predictions on selected human protein-glycan interactions. PiCAP provides the protein-

level prediction, and CAPSIF2 residue predictions (cyan). The bound glycan is either a complex N-glycan (green) or 

a GM1 ganglioside (yellow), with the initial GlcNAc of the N-glycan highlighted in blue and all sialic acids 

highlighted in magenta. 
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  PiCAP predicted interleukin 31 (IL31), sonic hedgehog (SHH), and scrapie-responsive 

protein 1 (SCRG) as putative carbohydrate binding proteins. Here, I used AF3 to dock these 

proteins with a hybrid N-glycan, a common branched saccharide where one branch terminates in 

an oligomannose chain and the other in a sialic acid. CAPSIF2 predicted no carbohydrate-binding 

residues on IL31; however, AF3 predicted the glycan to bind at an unstructured region of the 

protein with a high interaction confidence (ipTM = 0.81). Conversely, AF3 docked the N-glycan 

at the CAPSIF2 predicted residues of SHH and SCRG with a lower confidence (ipTM = 0.49). 

 Experimentally, arachindonyl ether phospholipid synthase (TM164), receptor-type 

tyrosine-protein phosphatase S (PTPRS), and Frizzled 1 (FZD1) were identified in multiple 

experiments as ganglioside binding proteins.17 These proteins were also predicted by PiCAP to 

bind a carbohydrate. I therefore modeled these proteins in complex with the GM1 ganglioside 

glycan (Figure 4.8). AF3 predicted TM164 to bind GM1 in the CAPSIF2 predicted pocket with 

high confidence (ipTM = 0.85). However, AF3 however predicts PTPRS and FZD1 to bind the 

ganglioside glycan at sites outside of the CAPSIF2 predicted pockets. Notably, CAPSIF2 predicts 

on intracellular binding pocket for FZD1, whereas both AF3, experimental data, and CAPSIF:V 

suggest binding occurs in the extracellular region.17 

 While PiCAP predicts approximately 7,000 human proteins to bind carbohydrates, it also 

predicts ~13,000 human proteins as non-binders. To assess whether AF3 could also discriminate 

between physiologically relevant and irrelevant interactions, I selected three proteins: mothers 

against decapentaplegic homolog 4 (SMAD4), NEDD-8 activating enzyme E1 regulatory subunit 

(ULA1), and Tudor domain containing 10 (TDR10). Since SMAD4 was previously investigated 

by Zhang et al. and identified as a putative non-binder of GM1, I modeled the protein with GM1. 

AF3 however predicts the SMAD4-GM1 complex with a high confidence (ipTM = 0.82). 
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Similarly, AF3 predicted moderate to high confidence interactions for an N-glycan in complex 

with ULA1 (ipTM = 0.61) and TDR10 (ipTM = 0.79). These findings suggest that ipTM values 

alone may not be sufficient to distinguish between physiologic and non-physiologic interactions 

in a high-throughput manner. 

Discussion 

 I present an evaluation of multiple end-to-end all-atom prediction frameworks for 

carbohydrate-protein docking and interrogate their capabilities at unveiling the structural secrets 

of the protein-sugar interactome. Overall, all methods perform incredibly well at this task – all 

end-to-end models capture 80% of their highest confidence models at least acceptable quality 

(Figure 4.3). These models improve upon previous energy-based protein-carbohydrate docking 

methods like GlycanDock49 and HADDOCK140, which are useful for refinement but not full de 

novo docking. Although the models I tested improve upon previous methods and models, they still 

have limitations, including reduced performance with increased complexity. Specifically, the 

models perform worse on multi-ligand targets (GTs) and saccharides with DP greater or equal to 

three. Also, the models lack robust confidence metrics for protein-carbohydrate complexes. 

The BCAPIN dataset is the first study of protein-carbohydrate noncovalent docking, 

including all protein-carbohydrate complexes in the PDB. However, BCAPIN primarily comprises 

small, globular, single-domain proteins bound to linear glycan chains, which is not representative 

of the diverse protein-carbohydrate interactions found in physiological contexts. Thus, as more 

experimental data becomes available, alongside further developments in these prediction 

techniques, the framework presented here can be iterated to better elucidate the protein-sugar 

interactome. 
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 The largest limitation in continually iterating and benchmarking this structure prediction 

software is the availability of high-quality experimental structures. Although the DIONYSUS 

dataset is impressive in its scope, containing 5,461 protein-carbohydrate complexes, only 1,842 

unique protein structures remain after 95% sequence similarity86,113. Further, when assessing the 

individual unique binding pockets of these DIONYSUS proteins, there are only 258 unique 

clusters of binding pockets.141 With this limited set of ~1,800 unique structures and ~250 unique 

binding mechanisms, data science and machine learning approaches are restricted. Therefore, 

discovery of novel carbohydrate binding proteins and their structural interactions is critical.  

 To better improve computational approaches, I believe that one of the most promising 

sources of future data future lies in liquid glycan arrays and photoaffinity labeling experiments 

(e.g. those using diazirine linkers).17,129,130 These in vivo high throughput techniques enable 

identification of protein-carbohydrate interactions on a proteome-wide scale; however, they 

currently lack immediate structural resolution. Computational modeling stands poised to fill this 

gap by providing structural hypotheses at atomic level detail, thereby accelerating the validation 

and functional understanding of these experimentally identified interactions. To push the scope of 

the BCAPIN test set, I selected two branched polysaccharides with distinct properties to explore 

AF3’s capabilities.  Although this study does not demonstrate that AF3 is yet ready to support full 

scale high-throughput experiments comparable to photoaffinity labeling, it shows that AF3 can 

generate useful, testable hypotheses on a case-by-case basis that may expedite wet lab 

investigations. 

 To aid wet lab experiments, my lab has computationally studied protein-carbohydrate 

structural interactions. I developed GlycanDock49, CAPSIF106, and PiCAP23 as ways to elucidate 

these interactions. PiCAP in particular, represents a significant advancement, as it was the first 
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model to predict whether a protein binds to carbohydrate, irrespective of protein family on a 

proteome scale. However, these current models rely on the fundamental work of thousands of 

scientists solving crystal structures of protein-carbohydrate complexes. While high-throughput 

technologies are likely to uncover many more non-covalent protein carbohydrate interactions in 

vivo, reliably obtaining the bound structure or identifying the full glycan repertoire for each protein 

remains a computational bottleneck. 

I envision a full suite of models and methods will fill the gap to identify the full protein 

sugar interactome of a species. I advocate for a model that would improve upon LectinOracle48, 

integrating the glycan embeddings from methods like SweetNet47 or Gifflar142 using sequence and 

structural information insights from structure prediction models, current photoaffinity 

experiments, and CAZY8 can predict the glycan binding repertoire of all proteins. With this 

addition, one can use PiCAP to predict whether a protein binds carbohydrates, use CAPSIF2 or 

PeSTo-Carbs to predict how the protein binds the carbohydrate structurally, and finally, use the 

proposed model to predict which carbohydrates are recognized, all at high-throughput scales. This 

integrated approach will be essential to fully map the protein-sugar interactome, advancing general 

understanding of glycan-mediated biology, enabling translational applications in therapeutics and 

diagnostics. 

Methods 

Dataset 

To evaluate how all-atom prediction software extrapolates to glycans, I used DIONYSUS 

(access date: October 8, 2024), to construct the dataset. I first selected all protein-carbohydrate 

complexes after the September 2021 training cutoff date used by all models. Of the 5,461 identified 
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structures by DIONYSUS, 614 proteins were deposited in the PDB after the training date cutoff. I 

then clustered all 5,461 protein sequences using MMSEQS86 into 50% sequence identity clusters 

and removed any post-cutoff proteins with sequence homology with any protein published before 

the training date cutoff, leaving 105 structures. I then selected a single structure from each cluster, 

selecting the complex with the highest degree of polymerization (DP), leaving 35 protein 

structures. Of these 35 protein structures, 11 experimentally bind monomers, 6 experimentally bind 

dimers, 13 bind polymers (3+ saccharides), and 5 bind a saccharide and nucleotide triphosphate 

(NTP).  

For each structure, I analyzed the ligand structure quality measures, notably real space R 

factor (RSR) and real space correlation coefficient (RSCC) (Figure 4.10).139 When these metrics 

weren’t available, (7TOH, 7YWF, 8CSF) I provide their root-mean-squared deviation Z-scores 

(RMSZ). I define the set of high-quality structures with an RSCC greater than 0.9,139 which 

contains 20 structures: 9 that bind monomers, 3 that bind dimers, 5 that bind polymers, and 3 that 

bind at least an NTP and a saccharide. I named the dataset the Benchmark of CArbohydrate Protein 

INteractions (BCAPIN). 

Prediction methodology 

To provide an equivalent and biologically relevant input ligand for all structures, I 

generated the SMILES strings of the original PDB ligand using GlyLES143 (part of the 

Glycowork144 Python package). In the case of homogenous polymers, I extended the length of the 

original carbohydrate by a DP of 2 to provide additional biological context. AF3, Boltz-1, Chai-1 

and Diffdock input a SMILES string,42,43,128,136, but RFAA requires an SDF file input (ligand 

coordinates) to perform the calculations, which I used RDKit to calculate the initial ligand 

coordinates. In the case of heparin binding proteins (8EDI and 7PGK), I used the SMILES 
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retrieved from the PubChem compound instead.145 For the five glycosyltransferases (GTs) targets, 

I input both the carbohydrate(s) and NTP to the software for multi-body docking. 

To replicate the process of a simple de novo pipeline, I ran all methods without 

modifications or customizations. AF3, Boltz-1, and RFAA were run with a local distribution with 

five random seeds using the SMILES strings (or RDKit generated SDF from the SMILES for 

RFAA). Chai-1 was run using the Chai-1 servers, which uses five random seeds for predictions. 

All confidence metrics were extracted from provided mmCIF and json files. For predicted absolute 

error, I rather used Boltz-1’s interface predicted distance error (ipde). 

 Diffdock is not an end-to-end method, therefore I ran DiffDock in two different contexts, 

(1) with the solved experimental structure, which I call DiffDock-holo, and (2) with a predicted 

AF3 protein structure, which I call Diffdock-AF3. The AF3 structure for the input into DiffDock-

AF3 was chosen as the best ranking AF3 apo model running from 5 random seeds. I ran both 

DiffDock methods using the HuggingFace server with the SMILES strings, resulting in 10 total 

models. On GTs with multiple ligands, I concatenate the structures of the same rank together for a 

singular prediction. 

Metrics 

 Carbohydrates differ substantially from conventional small molecules, as they range from 

small monosaccharides to branched polymers. I therefore selected the following metrics to analyze 

protein-carbohydrate complex predictions: full ligand 𝐹:;< (𝐹:;<,?@AA), residue 𝐹:;< (𝐹:;<,BCD), ligand 

RMSD (LRMS), and ring-ring RMSD (rRMS).  

𝐹*=> is the fraction of native contacts, defined as all residue-residue contacts (any heavy 

atom to any heavy atom) within 5 Å: 
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𝐹:;< 	= 	
23

23"57
 , 

 where 𝑇𝑃 (True Positives) is the overlap between predicted contacts and experimentally known 

contacts and 𝐹𝑁 (False negatives) are all experimental contacts not observed in the predicted 

structure. I use this formal definition of residue-residue contacts which I call  𝐹:;<,BCD. In addition, 

as these are small molecule-like ligands, I additionally define 𝐹:;<,?@AA , which instead of 

carbohydrate residue-protein residue contacts, instead is the full ligand 𝐹:;<, or any carbohydrate 

heavy atom-protein residue contacts (effectively treating the full ligand as a singular residue). 

 In addition to 𝐹:;<, I leverage the root means squared deviation (RMSD) metric: 

𝑅𝑀𝑆𝐷(𝑥, 𝑦) = 	\#
*
∑ ‖𝑥! − 𝑦!‖&*
!  , 

where 𝑥! are the coordinates of select heavy atoms of the predicted structure and 𝑦! are the same 

heavy atom coordinates of the experimentally determined structure after optimal superposition of 

the protein’s binding pocket (all residues within 10 Å of the ligand). I chose two different RMSDs 

to indicate the fine-grained nature of carbohydrate polymers: ligand RMSD and ring RMSD. 

Ligand RMSD (LRMS) measures the distance between the predicted and experimental structures 

of the ligand’s heavy atoms. For LRMS, I use the RDKit implementation that compares the 

maximal similar substructures.146,147 Ring RMSD (rRMS) simplifies the problem to only 

measuring the distance between the center of mass (COM) of each carbohydrate ring. I use a 

greedy implementation of rRMS, where each saccharide species is equivariant to any other 

saccharide species along the polymer chain. 

 I combine the four separate measurements to “DockQC,” which represents the overall 

quality of the predicted protein-carbohydrate structure on a scale from 0 to 1. This metric is 

inspired by the foundational DockQ metric for measuring protein-protein docking.148,149 DockQ 
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measures on a scale from [0,1] by combining the fraction of natural contacts (𝐹*=>), LRMS, and 

interface RMS (iRMS).148,149 

𝐷𝑜𝑐𝑘𝑄 = 	
1
3 (𝐹:;< 	+ 𝑖𝑅𝑀𝑆DE;ACF,G! + 𝐿𝑅𝑀𝑆DE;ACF,G") 

where d1 = 1.5 Å and d2 = 8.5 Å and 

𝑅𝑀𝑆DE;ACF,G# =	
1

1 + c𝑅𝑀𝑆𝑑!
d
& 

Currently, DockQ does not allow the ligands to differ in size between the crystal and 

predicted structure. Additionally for small molecules, DockQ only reports the LRMS value.149 

When I reimplemented the DockQ metric with these values accounted for, I found it 

unrepresentative of the predictions (Table 4.2, Figure 4.9). I therefore constructed the DockQC 

based on the metrics as follows: 

𝐷𝑜𝑐𝑘𝑄𝐶 =
1
3 e	

1
2 (𝐹:;<,BCD + 𝐹:;<,?@AA) + 𝑟𝑅𝑀𝑆DE;ACF,G! + 	𝐿𝑅𝑀𝑆DE;ACF,G"g 

where d1 = 2.0 Å, d2 = 4.0 Å. I tuned the scaling factors of d1 and d2 to fit the DockQC into the 

four different categories: incorrect (DockQC < 0.25), acceptable (0.25 <= DockQC < 0.50), 

medium (0.50 <= DockQC < 0.80), and high (DockQC >= 0.80) (Figure 4.9, Table 4.2). 
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Human proteome predictions 

 I selected nine proteins from the human proteome to evaluate de novo docking on 

proteomic scales, where PiCAP predicts six of these proteins as carbohydrate binding proteins and 

three as non-binding proteins. I used the following purported glycans for docking based on the 

function of each protein: GM1, Gal(β1-3)GalNAc(β1-4)[Neu5Ac(α1-3)]Gal(β1-4)Glcβ, for 

ganglioside binding proteins and a hybrid N-glycan for the remaining proteins, Neu5Ac(α1-

6)Gal(β1-4)GlcNAc(β1-2)Man(α1-3)[Man(α1-6)[Man(α1-3)]Man(α1-6)]Man(β1-4)GlcNAc(β1-

4)GlcNAcβ. 

Data Availability 

The BCAPIN dataset and all model inputs, code, and analysis data are available at Github: 

github.com/graylab/dockqc. 
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Appendix 

DockQC parameterization 

Table 4.2: DockQC with different di values compared to DockQ148 on 8 targets. Human labels for “High” quality, 

“Medium” quality, “Acceptable” (Acc) quality, and “Low” quality are provided. 

 PDB DockQ DockQC 

d1=3.0, d2=1.5 

DockQC 

d1=5.0, d2=1.5 

DockQC 

d1=4.0, d2=2.0 

DockQC 

d1=3.0, d2=2.0 

High 7BLG 0.94 0.93 0.94 0.94 0.93 

8AD2 0.94 0.80 0.83 0.85 0.83 

Med 7EN5 0.86 0.47 0.55 0.56 0.52 

7W18 0.68 0.51 0.52 0.56 0.56 

Acc 7F9G 0.73 0.32 0.40 0.39 0.35 

7EQR 0.61 0.35 0.36 0.40 0.40 

Low 8DZD 0.37 0.01 0.02 0.01 0.01 

8EDI 0.61 0.21 0.23 0.22 0.21 
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Figure 4.9: Predicted protein structures deemed to be of high, medium, acceptable, and incorrect quality.  
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BCAPIN RSC and RSRR values 

 

Figure 4.10: Analysis of the BCAPIN real space R factor (RSR) and real space correlation coefficient (RSCC). 

Lines at RSCC values of 0.95, 0.9 (the cutoff for the BCAPIN set), and 0.8 are shown.139 
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BCAPIN confidence metrics 

 

Figure 4.11: Comparison of ipTM and DockQC accuracy on BCAPIN. AF3 (blue circle), Boltz-1 (red square), 

and Chai-1 (green X) were the only models which reported such metric. 
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Figure 4.12: Comparison of pAE and DockQC accuracy on BCAPIN. AF3 (blue circle), Boltz-1 (red square), and 

RFAA (gray Diamond) were the only models which reported such metric. 
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Figure 4.13: Comparison of pAE and DockQC accuracy on BCAPIN. AF3 (blue circle), Boltz-1 (red square), and 

RFAA (gray Diamond) were the only models which reported such metric. 
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BCAPIN: Full Set analysis 

 To identify any discrepancies between high quality and low quality protein-carbohydrate 

complexes, I analyzed the total 35 structures (20 high quality, 15 low quality) below. I found 

similar results to analyzing only the high quality structure predictions, all models perform strongly, 

capturing at least 80% of all top-5 complexes with at least acceptable quality DockQC. 
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Table 4.3: Benchmark of CArbohydrate Protein INteractions (BCAPIN) low quality proteins (RSCC < 0.9). 

The table lists the PDB 4-letter ID, protein name, UniProt ID, glycan input string for GlyLES, and any secondary 

ligands if present. 

 
PDB Protein Name UniProt GlyLES Input String Secondary 

Ligand 

7eqr Chitoporin L0RVU0 GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc(b1-

4)GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc(b1-

4)GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc 

 

7lvy UDP-glycosyltransferase 203A2 T1K1R5 Glc UDP 

7p8g Glucosyl-3-phosphoglycerate 

synthase 

K5B7Z4 Glc  

7pgk Hedgehog-interacting protein Q96QV1 Heparin_analog: PDB SMILES used  

7pug GH115 N/A Xyl(b1-4)Xyl(b1-4)Xyl(b1-4)Xyl(b1-4)Xyl(b1-

4)Xyl(b1-4)Xylb 

 

7toh SGNH hydrolase A0A5M4AV20 GlcA4Me(a1-2)Xylb  

7tvp Ciral AMG chitosanase Unk GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc(b1-

4)GlcNAc(b1-4)GlcNAc 

 

7vu1 Chitoporin P75733 GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc(b1-

4)GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc(b1-

4)GlcNAc 

 

7vwb 17 kDa phloem lectin Q8LK69 Gal(b1-4)GlcNAca  

7xtn α-1,3-mannosyl-glycoprotein 4-β-N-

acetylglucosaminyltransferase A-like 

isoform X1 

A0A6J2K041 GlcNAc  

7ywf Dirigent protein Q306J3 Gal(a1-3)Galb  

8ad2 Nictaba Q94EW1 GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc(b1-

4)GlcNAc(b1-4)GlcNAc 

 

8csf WbbB D232C-Kdo adduct Q6U8B0 Rha(a1-3)GlcNAcb Ligand 2: GDP 

Ligand 3: Kdo 

8edi Netrin receptor unc-5 Q26261 Heparin_analog: PDB SMILES used  

8ped Alginate lyase A0A7I9C8Z1  ManA(b1-4)ManA(b1-4)ManA(b1-4)ManA(b1-

4)ManA(b1-4)ManA(b1-4)ManA(b1-4)ManA(b1-

4)ManA(b1-4)ManAb 

 

 

https://www.uniprot.org/uniprot/A0A7I9C8Z1
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Figure 4.14: Analysis of the BCAPIN test set, including the low quality structures (RSCC < 0.9) (n=35). Top-1 

(left) and top-5 (right) predictions of each method.  
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Figure 4.15: Comparison of average and standard deviation DockQC of predicted structures versus saccharide 

length for BCAPIN set with the low quality structures (RSCC < 0.9). I group saccharide length into a degree of 

polymerization (DP) of 1 (mono), 2 (di), and 3+ (oligo), and further group all glycosyltransferases (GTs) together that 

require multiple inputs (e.g. a saccharide and NTP) and with the number of proteins in each group listed. I also show 

the DockQC cutoffs between acceptable (red), medium (blue), and high (green) quality structures. I show the top-1 

predictions for AF3 (blue circle), Boltz-1 (orange square), Chai-1 (Green X), Diffdock-holo (red triangle), Diffdock-

AF3 (purple triangle), and RFAA (brown diamond). 
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Chapter 5  

Conclusion 

As the primary means of intercellular communication, protein-carbohydrate interactions 

are critical to multicellular organism survival and proliferation; however, their weak, dynamic, and 

avidity-driven nature make them challenging to purify and experimentally study. Given these 

experimental difficulties, it is critical to also investigate carbohydrates and generate hypotheses 

with computational algorithms. However, prior to my dissertation work, computational methods 

for analyzing protein-carbohydrate interactions were notably limited.  

My Contributions 

 I began my dissertation research at an inflection point in the field of biophysics. Rapid 

advancements in DL algorithms, 3D molecular representations, and computational hardware 

ushered in a data-driven wave of novel approaches for the analysis of biological data at 

unprecedented scales.35,38 Leveraging these developments, I aimed to synthesize innovative 

structural glycobiology methods to uncover new biological phenomena. This dissertation details 

my efforts in developing and benchmarking deep learning tools to characterize the protein-sugar 

interactome at both the protein and residue levels. 

 Computational modeling of protein-carbohydrate complexes is a difficult task. The 

available structural data is sparse, often low-resolution, and sometimes lacking the full biological 

context of the bound glycan. To address these limitations, I systematically utilized all accessible 

data, while prioritizing experimentally solved, high-resolution structures for more critical data 

analysis. 
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 CAPSIF is the first open and accessible structural deep learning algorithm designed to 

predict protein-carbohydrate interactions at a residue level. Dr. Sudhanshu Shanker and I trained 

two different models, a 3D voxel-based model (CAPSIF:V) and a 3D graph-based model 

(CAPSIF:G). We analyzed the capabilities of both models and demonstrated the power of these 

models by developing a de novo pipeline with AlphaFold2, CAPSIF, GlycanDock,49 and Rosetta 

tools for protein-carbohydrate docking. Overall, CAPSIF achieved a 0.59 Matthews correlation 

coefficient (MCC); indicating strong performance with opportunities for future improvement. 

 To advance CAPSIF, I expanded the dataset and enhanced the input protein representation 

using ESM2, while also investigating the distinction between carbohydrate binding and non-

binding proteins. I curated the Nonbinder and binder of CArbohydrate Protein interactions 

(NoCAP) dataset, which comprises experimentally determined carbohydrate binding proteins 

(with and without their associated ligand) as well as proteins presumed to not bind carbohydrates 

(such as small molecule binders, DNA binding proteins, cytoskeletal components). 

Utilizing NoCAP, I trained two new models – CAPSIF2 and Protein interaction of 

CArbohydrates Predictor (PiCAP). CAPSIF2 surpassed both CAPSIF:V and CAPSIF:G across all 

performance metrics, achieving a 0.62 MCC on the original CAPSIF dataset and 0.57 MCC on the 

expanded dataset. PiCAP, however, predicts whether a protein has carbohydrate binding 

capabilities. PiCAP distinguishes carbohydrate-binding proteins with a 90% accuracy on 

experimentally solved structures and strongly correlates with results from high-throughput 

experiments, such as those profiling the ganglioside interactome. I then investigated how 

proteomes interact with carbohydrates, finding that PiCAP predicts 35-40% of proteins in the 

human, mouse, and E. coli proteomes bind to carbohydrates. I further analyzed the subcellular 

components, molecular functions, and biological processes of these predicted binding proteins, 
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finding that 75% of human and mouse extracellular and cell surface proteins are predicted to bind 

carbohydrates. 

 While identification of carbohydrate-binding sites aids experimental design, predicting the 

full structure of protein-carbohydrate complexes is even more lucrative for hypothesis generation 

and testing. To this end, I benchmarked all atom structure prediction deep learning models, 

including AlphaFold 3, Boltz-1, Chai-1, DiffDock, and RosettaFold-AllAtom on their ability to 

predict non-covalently bound protein-carbohydrate complexes. To test these models, I first 

compiled a dataset of protein-carbohydrate complexes excluded from their training sets and 

evaluated the experimental fits of these structures. I also developed DockQC, a novel scalar metric 

(0 to 1) to quantitatively assess prediction accuracy relative to the native structure. In general, the 

tested models attained comparable performance in protein-carbohydrate docking with strong 

predictive capabilities on monosaccharides and disaccharides and reduced performance on 

oligosaccharides and multi-ligand targets. I then used AlphaFold3 to predict the protein-

carbohydrate binding of several PiCAP predicted carbohydrate binding and non-binding human 

proteins, finding that further advances are necessary to enable high-confidence high-throughput 

predictions on the protein-sugar interactome. 
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Future Directions 

 The field of biophysics has changed dramatically since I began my dissertation. Like most 

other fields, biophysics became increasingly data-driven, leveraging the immense corpus of protein 

structures and sequences amassed over past decades. The most influential models in this field 

focused on solving general biological problems like protein structure prediction; however, there 

was limited focus on smaller subfields, such as glycobiology, where the data are much more sparse. 

I believe continued innovation in dataset curation, transfer learning of PiCAP/CAPSIF, creation of 

virtual glycan arrays, and new approaches to protein design will pave way to deeper insights in 

glycobiology. 

Dataset Cleaning 

 In Chapter 4, I observed that the DIONYSUS dataset, despite listing 5,460 carbohydrate-

binding proteins, includes significant redundancy: at 95% sequence homology DIONYSUS yields 

only 1,842 unique protein structures.113 Many of these are slight sequence or ligand variants, and 

about 40% have low resolution glycan data (as measured by RSCC). Additionally, experimental 

limitations often prevent the capture of complete binding interfaces (Figure 5.1). In Chapter 4, I 

cleaned 105 structures to 35 representative structures; however, the remaining 5,355 structures are 

also in need of refinement and cleaning to serve as an appropriate training set and benchmark for 

future work. 

 Two example cases are provided in Figure 5.1 where data cleaning and in-filling are clear. 

Figure 5.1A shows two structures of a glucanase solved under similar conditions, where there is a 

near perfect overlap of the bound ligand between the structures, indicating the structures should 

be merged. Figure 5.1B shows a single structure of an alginate lyase with two bound mannose 
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(Man) trimer ligands; however, there is a clear pattern in the binding, indicating that computational 

infilling could provide a more complete bound ligand. These structures could be computationally 

infilled with classical techniques like Rosetta, or de novo predicted by AF3 or Boltz-2 and retained 

in the dataset when they have a high quality DockQC with the solved structure. 

 Further, one dataset ripe for de novo structure prediction is Carbohydrate Active enZYmes 

(CAZY) which lists all sequences of known carbohydrate binding enzymes, commonly alongside 

their bound ligands. Using the RSCC of crystal structures, DockQC of computationally 

merged/infilled/extrapolated predictions, and pLDDT of predicted CAZY proteins, researchers can 

construct a well classified dataset with quality assessments for proper training and testing of future 

models. 

 

Figure 5.1: Examples of solved protein-carbohydrate structures requiring manual refinement. (A) 1UU5 (red) 

/1UU6 (teal) have the same bound carbohydrate but in different overlapping locations. (B) 8PED binds two of the 

same trisaccharide suggesting a continuous pocket that binds an oligosaccharide DP 8 that is not experimentally 

solved. 



 181 

Sialic Acid PiCAP and CAPSIF 

 Gangliosides and sialic acids are incredibly important to most mammalian systems, being 

critical to neural development and proper immune signaling. In chapter 3, I validated PiCAP 

against the ganglioside interactome work of Zhang et al. I next suggest the development of PiCAP 

and CAPSIF2 models specific to sialic acids. These models perform encouragingly on generalized 

sugars, and with a single targeted training step of transfer learning, these models can be fine-tuned 

to predict on protein-sialic acid interactions. Sialic acid is one of the most unique saccharides, 

containing nine carbons, an acetyl group, and carboxyl group (Figure 1.2), and therefore likely the 

easiest saccharide signal for a model to specifically understand on an individual basis. 

To create a sialic acid-specific PiCAP/CAPSIF2, we would leverage the DR/NoCAP 

dataset (Table 3.1) for negative samples and select all sialic acid containing structures in the PDB 

(n=616) to provide positive samples. A single transfer learning step with the current training/testing 

scheme would provide the foundation, with a similar analysis. Naturally, problems may emerge 

since 616 proteins is a very limited number, especially before filtering for sequence redundancy; 

however, with the litany of glycan arrays and the ganglioside interactome work, external validation 

can be attained. 

Virtual Glycan Arrays 

 Glycan arrays are widely used to qualitatively probe protein-carbohydrate interactions by 

presenting a protein to diverse glycans.21 Current computational methods for glycan arrays are 

LectinOracle and GlyNet. LectinOracle uses a SweetNet glycan embedding and an ESM lectin 

embedding to predict if a lectin binds to the given glycan.48 GlyNet rather predicts that for a given 
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glycan, which of 352 select lectins binds the glycan.85 Both methods however are constrained by 

the limited set of known lectins. 

 PiCAP predicts 35% of the human proteome could bind carbohydrates, where only 2.5% 

of those predicted binders are known lectins, underscoring the need for algorithms capable of 

predicting specific protein-carbohydrate binding beyond the current scope of lectins. For this, I 

propose the development of a virtual glycan array. A virtual glycan array would be a neural network 

model trained to identify the glycan binding epitopes of a provided input protein. A novel algorithm 

to perform virtual glycan arrays would leverage input data from lectins, native sugar sensors, and 

the incoming influx of data from high throughput photoaffinity tag pulldown assays. Such an 

algorithm could concatenate GIFFLAR142 glycan embeddings, ESM3150 protein sequence 

embeddings, and AlphaFold3 42 apo structures to predict the binding profiles of proteins. This 

proposed method could then be applied to PiCAP predictions of the human protein-sugar 

interactome to unveil the specific interactions for direct experimental validation. 

Design 

 My dissertation work has been focused on elucidating the protein-sugar interactome. A 

natural next step with these interactions identified is protein design targeting glycoproteins, such 

as viral spike proteins. Although limited experimental data hamper current deep learning 

approaches, iterative development and application of computational and experimental strategies 

will continually improve all aspects of protein therapeutic design. I envision protein design can 

occur in three different domains to further glycobiology: glycosylation, binding site design, and 

protein design. 
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Glycosylation 

 Glycosylation, the enzymatic attachment process of carbohydrates to biomolecules, is 

central to protein function. Reliably predicting N-linked and O-linked glycosylation sites on ‘omic 

scales, as well as which glycans are present at those sites, would facilitate experimental procedures 

and protein design. Although tools are beginning to emerge in this field, there is substantial room 

for improvement, as with all introductory techniques.68 For example, the INSANNE model 

predicts glycosylation of only human proteins in human systems;7 however, does not account for 

what expression system, nor that typical human therapeutic expression happens in Chinese hamster 

ovary (CHO) cells.151 Such predictive capabilities would enable de novo design of specific 

glycosylation on glycoproteins, thus advancing researchers’ ability to perform experiments and 

uncover more protein-glycan interactions. 

 

CAPSIF Site and Design 

Currently, CAPSIF models provide binary classification of carbohydrate-binding sites 

without confidence metrics or specificity to carbohydrate type. I believe that a next-generation 

CAPSIF model should aim to predict not just the presence, but the identity of carbohydrate ligands.  

More specifically, the model should leverage an improved loss function (binary cross entropy 

(BCE) instead of Dice) and more granular binding site categories (e.g. Hex, HexNAc, Sia). 

Achieving this resolution would enable “hallucination” design strategies152 to engineer proteins 

with high-confidence experimentally testable binding sites using virtual and in vitro glycan arrays. 

 



 184 

De Novo Protein Design 

While protein structure prediction has been revolutionized by deep learning, the same 

strides are being made in the world of de novo protein design. A fine-tuned algorithm for de novo 

design of proteins for carbohydrate ligands would be incredibly lucrative: as it could assist in 

probing cell/tissue glycosylation patterns, cellular targeting of therapeutics, development of 

antibodies to emerging viruses, and components for tissue engineering. 

Current techniques for de novo protein design began with a slightly round-about 

methodology. To design a protein to bind a target protein, a researcher would use a diffusion model, 

such as RFDiffusion153 to generate a protein backbone, which would then be fed into 

ProteinMPNN154 to predict a protein sequence without the given binding context, and then 

validating the structure with AF2. Although the external use of AF2 provided some validation; the 

compounding biases and errors of no context-ProteinMPNN sequence predictions from 

RFDiffusion yielded low hit rates. Now, as these methods have been maturing, more context has 

been incorporated by new models like RFDiffusion All-atom131 and LigandMPNN155. 

 Creating a singular end-to-end DL algorithm for designing proteins to bind small molecules 

could streamline the process and reduce cumulative model error. And with this developed model, 

one could then transfer learn and fine-tune the model to protein-carbohydrate interactions on a 

high-quality curated dataset, as envisioned in the Dataset Cleaning section. With these models 

trained and validated against de novo protein-carbohydrate design, researchers can then expand to 

bind novel glycoprotein motifs and epitopes with therapeutic relevance to more quickly respond 

to future pathogenic outbreaks, such as the one that my PhD began with.  
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• IUPUI Honors College Chancellor’s and Dean of Science Scholar 

• 2018 IUPUI Undergraduate Physics Student  

• Former board member of Naptown Stomp 

• Taught two introductory coding classes at the Johnson County White River Library 

• IUPUI School of Science Ambassador 
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