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Abstract

Carbohydrates are essential biomolecules involved in myriad cellular processes, regulating
protein folding, providing cellular structure, and mediating cell-cell communication. Despite their
widespread importance across the cellular landscape, carbohydrates remain one of the least
characterized biomolecules due to their chemical diversity, structural flexibility, and lack of a
templated biosynthetic pathway. These intrinsic complexities result in non-covalent
protein—carbohydrate that are inherently weak and transient, posing significant challenges to
crystalizing and resolving experimental structures. Accordingly, computational approaches have
advantages to predict and evaluate how novel proteins interact with carbohydrate ligands.
However, prior to my dissertation research, no computational or experimental tools were able to
systematically identify the protein-sugar interactome.

In this dissertation, I present several advancements in computational glycobiology for
predicting the protein-sugar interactome. Firstly, working alongside Dr. Sudhanshu Shanker, I
developed a deep learning method CArbohydrate Protein Site IdentiFier (CAPSIF). CAPSIF was
created with two variants: (1) a 3D-UNet voxel-based neural network model (CAPSIF:V) and (2)
an equivariant graph neural network model (CAPSIF:G). While both models outperform previous
surrogate methods used for carbohydrate binding site prediction, CAPSIF:V performs better than
CAPSIF:G, achieving test Dice scores of 0.597 and 0.543 and test set Matthews correlation
coefficients (MCCs) of 0.599 and 0.538, respectively. We further tested CAPSIF:V on
AlphaFold2-predicted protein structures. CAPSIF:V performed equivalently on both
experimentally determined structures and AlphaFold2 predicted structures. Finally, we
demonstrated how CAPSIF models can be used in conjunction with local glycan-docking

protocols, such as GlycanDock, to predict bound protein-carbohydrate structures.



Expanding on this work, I addressed the grand challenge of identifying the human and E.
coli protein-sugar interactomes. Given the impracticality of experimental screening of the entire
proteome against extensive libraries of glycans, computational screening of proteins for
carbohydrate-binding provides an attractive and ultimately testable alternative. Current estimates
label 1.5 to 5% of proteins as carbohydrate-binding proteins; however, 50-70% of proteins are
known to be glycosylated, suggesting a potential wealth of proteins that bind to carbohydrates. I
therefore developed a neural network architecture, named Protein interaction of Carbohydrates
Predictor (PiCAP), to predict whether a protein non-covalently binds to a carbohydrate. I trained
PiCAP on a novel dataset of known carbohydrate binders and selected proteins that I identified as
likely not to bind carbohydrates, including transcription factors, cytoskeletal components, and
small-molecule-binding proteins. PICAP achieves a 90% balanced accuracy on protein-level
predictions of carbohydrate binding/non-binding. Using the same dataset, I developed a model
named Carbohydrate Protein Site Identifier 2 (CAPSIF2) to predict protein residues that interact
non-covalently with carbohydrates. CAPSIF2 achieves a Dice coefficient of 0.57 on residue-level
predictions on our independent test dataset, outcompeting all previous models for this task. To
demonstrate the biological applicability of PICAP and CAPSIF2, I investigated cell surface
proteins of human neural cells and further predicted the likelihood of three proteomes, notably E.
coli, M. musculus, and H. sapiens, to bind to carbohydrates. PICAP predicts that approximately
35-40% of proteins in these proteomes bind carbohydrates. In the human proteome, PiCAP
predicts that 75% of extracellular and cell surface proteins are putative carbohydrate binders. The
PiCAP predicted binders are highly enriched for functions and processes such as growth factor

receptor binding, inflammatory responses, and cell-cell adhesion.



Throughout my dissertation, I have developed a set of models to predict the protein-sugar
interactome, with the critical next step being the structural docking of non-covalent protein-
carbohydrate complexes on a proteome-wide scale. Current all-atom structure prediction models
like AlphaFold3 (AF3), Boltz-1, Chai-1, DiffDock, and RosettaFold-All Atom (RFAA) were
validated on protein-small molecule complexes; however, no benchmark or evaluation exists
specifically for noncovalent protein-carbohydrate docking. To address this, I developed a high-
quality dataset of experimental structures — Benchmark of CArbohydrate Protein Interactions
(BCAPIN). Using BCAPIN and a novel evaluation metric, DockQC, I assessed the performance
of all-atom structure prediction models on non-covalent protein-carbohydrate docking. I found all
methods achieved comparable results, with an 85% success rate for structures of at least acceptable
quality. However, I found that the predictive power of all models declined with increasing
carbohydrate polymer length. With the capabilities and limitations assessed, I evaluated AF3’s
ability to predict binding for a set of putative human carbohydrate binding and carbohydrate non-
binding proteins. While current models show promise, further development is needed to enable
high-confidence, high-throughput prediction of the complete protein-sugar interactome.

In summary, my work advances the field of glycobiology by enabling comprehensive

characterization of the protein-sugar interactome on ‘omic scales.
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Figure 5.1: Examples of solved protein-carbohydrate structures requiring manual
refinement. (A) 1UUS (red) /1UUG6 (teal) have the same bound carbohydrate but in different
overlapping locations. (B) 8PED binds two of the same trisaccharide suggesting a continuous

pocket that binds an oligosaccharide DP 8 that is not experimentally solved. ............c.ccceene.n. 180
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Chapter 1

Introduction
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Figure 1.1: Cartoon of protein-carbohydrate interactions and glycoproteins in the cell. (not to scale)
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Carbohydrates are ubiquitous across life

The unique structure and diversity of carbohydrates

All life is composed of an immense number of biomolecules, inorganic compounds, and
elements; however, biology is often framed through the lens of the The Central Dogma. The
Central Dogma states that deoxyribonucleic acid (DNA) is transcribed into ribonucleic acid (RNA)
which is then translated into proteins, which carry out cellular functions.! While this simplification
of biology is incredibly useful; this model naturally overlooks the interplay among all biopolymers
inside the cell. In particular, it fails to capture the importance of other key biopolymers in the cell,
notably lipids and carbohydrates. Lipids are the essential components of cell membranes, defining
what is or is not a part of an organelle, cell, or organism.>~* Carbohydrates however serve unique
purposes of energy metabolism and in the functional modulation of all other biopolymers.®

Carbohydrates, also known as sugars, are hydrated carbon-based polymers with the basic
chemical formula Ci(H20); where i and j are positive integers. The foundational building blocks of
carbohydrates are monosaccharides. Carbohydrates can exist in either a linear or cyclic (ring) form,
with the cyclic form being the most common in biological environments. These cyclic forms can
be five-membered rings (furanose) or a six-membered ring (pyranose). Additionally, these rings
can adopt different conformations: where furanoses typically exist in envelope or twist
conformations, and pyranoses in a *C; conformation or, less often, a 'C4 conformation. The
conformation of these carbohydrates is further specified by (1) their stereoisomer, L or D - with D
being the primary eukaryote conformation, and (2) the anomeric carbon existing in an o or f3

conformation.®
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Monosaccharides are distinguished based on the (1) epimerization of the hydroxyls and (2)
functional group modification of hydroxyls. Epimerization refers to the changes in relative
orientation of hydroxyl groups to the carbohydrate rings, which can be either equatorial or axial.
Common chemical modifications include acetylation, methylation, and deoxygenation which
impart unique properties to the saccharide.®

Figure 1.2 shows the most common mammalian carbohydrate monosaccharides. Glucose
(Glc), galactose (Gal), and mannose (Man) are all epimers of one another; they have the same
stoichiometry, but differ in hydroxyl orientations. Glc has all hydroxyls equatorial, where Gal has
C4-OH is axial and Man has C>-OH is axial (Figure 1.2A). One of the most common modifications
is the addition of an amine group, as seen in GIcNAc and GalNAc, where the C, position is
modified to contain an N-acetyl group (NHAc) (Figure 1.2B). One of the most studied
monosaccharides is sialic acid (Sia), also known as neuraminic acid (Neu), with special interest in
the NeuSAc variant. NeuSAc, the only version produced by humans, boasts nine carbons, a
negative charge, an acetyl group, a three-carbon chain decorated in hydroxyls, and a carboxyl

group.$
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Figure 1.2: Chemical diagram and cartoon representations of common mammalian monosaccharides. (A)
Lewis structure, 3D sticks, and 3D surface representation of common D-pyranoses glucose, galactose, and mannose.

(B) Lewis structures and cartoons of other common pyranoses.®

The diversity of monosaccharides arises from their chemical orientations, modifications,
and conformations, but even greater diversity is achieved when they are linked together to

oligosaccharides (less than 12 monosaccharides) or polysaccharides (greater than 12
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monosaccharides). When a monosaccharide is covalently linked to another molecule, the resulting
saccharide is called a glycan. Although the number of commonly observed unique, unmodified
monosaccharides (10) is significantly less than unmodified amino acids (20), carbohydrate
structures are distinguished by their myriad possible linkages. In theory, any monosaccharide can
be covalently bonded to any other via condensation reactions between hydroxyl groups. For
example, it is theoretically possible to connect four Glc monosaccharides together in 1,792 distinct
structures. In practice, a very small subset of these structures is observed due to organisms lacking
the enzymes required to create those structures. As a result, carbohydrate chains are more often

categorized into broad categories of N-linked, O-linked structures, and glycolipids.®

GM1
N
Oligomannose Complex Hybrid
GT1b
B
SIT SIT SIT S’E
Core 1 Core 2 Core 3 Core 4

GQ1c

Figure 1.3: Common mammalian glycosylation patterns. (A) N-linked glycosylation patterns. (B) O-linked

GalNAc glycosylation cores. (C) GM1 ganglioside.

N-linked glycans, or N-glycans, are glycans that are covalently linked by an N-glycosidic

bond to an asparagine (Asn) residue of a protein or peptide. The consensus N-glycosylation sequon
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is always an NX(S/T) motif, where X is any amino acid that is not proline, and S and T are serine
and threonine, respectively.” In eukaryotes, the first monosaccharide to be attached to the Asn
residue is always a GIcNAc. N-glycans are synthesized in the endoplasmic reticulum (ER) on
dolichol phosphate (Dol-P), after which the glycan is transferred “en bloc” to an acceptor protein
by an oligosaccharyltransferase (OST).® The glycosylated protein later transported through the
Golgi apparatus, where enzymes further modify the initial glycan bloc, growing and shrinking the
glycan tree into unique substructures.®? These structures are grouped into three common categories
(1) oligomannose, (2) complex, and (3) hybrid. Figure 1.3A shows these structures: oligomannose
structures terminate in Man residues, complex structures terminate in Sia residues, and hybrid
structures terminate have at least one branch ending in Sia and at least one in Man.$

O-linked glycans are covalently linked to Ser or Thr residues. Figure 1.3B shows the four
well-described O-linked O-GalNAc core structures, which may be extended to linear or branched
chains, similar to that of N-linked glycans, terminating in the ABO and Lewis blood group
epitopes. Many mammalian O-linked glycans are initiated by the transfer of O-GalNac to Ser/Thr
by GALNT, after which the chain is extended one monosaccharide at a time. One well established
purpose of O-linked glycans is occupying the extracellular environment, with glycosaminoglycans
(GAGs) such as heparan sulfate, hyaluronan, dermatan sulfate, and chondroitin sulfate. Heparan
sulfate (HS) is a heterogenous linear polymer with a high degree of polymerization (DP). HS
contains repeating -4GlcA1B-4GlcNAcal- units with domains that are either highly sulfated or
unmodified.® Other O-linked glycans in mammals include O-mannosylation, which can account
for 33% of tissue O-glycosylation, O-fucosylation, and O-glucosylation, typically observed in

epidermal growth factor (EGF) and thrombospondin repeat (TSR) domains.®
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Glycolipids are lipids covalently modified to glycans. The most abundant glycolipids in
mammals are glycosphingolipids (GSLs), where the lipid is a sphingolipid, such as sphingomyelin.
Glycosylation of these begins with the addition of a Glc or Gal monosaccharide to the ceramine
(Cer) backbone, yielding a GlcCer or GalCer. These glycan chains can then be elongated and
classified into groups, with the most well-known being gangliosides (ganglio-series lipids).
Although official nomenclature requires a neutral ganglio-series core; all sialyated GSLs are
colloquially referred to as gangliosides. Several example GSLs, including ganglioside GM2, are
shown in Figure 1.3C.°

Other categories of glycans found throughout cells include NDP-monosaccharides (sugar
precursors), O-GlcNAc, and glycation. Sugar precursors are monosaccharides activated by
covalent attachment to nucleotide diphosphate (NDP), allowing for the addition to growing glycan
chains. O-GlcNAc is a dynamic modification added by O-GlcNAc transferase (OGT) and removed
by O-GlcNAcase (OGA) in the cytoplasm, mitochondria, and nucleus of eukaryote. Glycation
refers to the non-enzymatic linkage of a glycan and a receptor molecule, such as proteins and

DNA.6’10’11

Carbohydrates in the cell

Glycans and carbohydrates serve many purposes within biological systems, with the most
studied categories being (1) metabolism, (2) structural contributions, and (3) roles as information
carriers. Carbohydrates are the preferred source of energy for cells, especially glucose, the
ubiquitous equatorial pyranose. Cells possess enzymes to convert carbohydrates and other
biopolymers into glucose to fuel energy production through the citric acid cycle.’

Carbohydrates play various structural roles to allow cellular propagation and proliferation.

The cell wall of plant cells is composed of primarily glycans such as cellulose, with a repeating
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unit of [4GlcB1], unit, and pectins (GalA polymers). The cell wall provides structural support,
allowing the cell to withstand mechanical stress and osmostic pressure differences. The bacterial
cell wall is primarily composed of peptidoglycan, a polymer of GIcNAc and MurNAc crosslinked
by peptides. During neural cells differentiation, neural cell adhesion molecules (NCAMs) are
glycosylated to have long, linear polysialic acid chains, with a degree of polymerization (DP)
greater than 100. The high DP and negative charge of Sia saccharides repel neighboring cells,
facilitating proper neuron migration and spacing. Additionally, on smaller scales, carbohydrates
influence the protein structural dynamics and folding.°

The field of glycobiology is primarily interested in the role of carbohydrates as information
carriers. This function is primarily mediated through cell-cell interactions, where a protein-
carbohydrate handshake is the first step in many physiological processes.!? Proteins that
specifically bind carbohydrates for this purpose are known as glycan binding proteins (GBPs),
with lectins and antibodies being of special interest. Lectins are a family of proteins with the
specific purpose of carbohydrate binding.®

GBPs typically recognize material in the extracellular space for cell-cell interactions.
Intrinsic GBPs recognize self-glycans and mediate cell-cell interactions. The mammalian
sialoadhesin protein (Siglec-1, CD169) binds Sia, preferentially a2-3Sia, on neighboring cells and
is implicated in macrophages for antigen presentation.!*!* Extrinsic GBPs originate from
exogenous organisms and viruses, recognizing non-self-glycans in parasitic or symbiotic
relationships. For example, the SARS-COV2 viral spike protein interacts with heparan sulfate,
suggesting a mechanism for targeting the human ACE2 receptor.'

Common GBPs include lectins, carbohydrate active enzymes (e.g. glycosyltransferases and

glycosylsidases), and antibodies. Formal definitions of lectins and GBPs however exclude other
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enzymes, carriers, or native sugar sensors.® For example, the human tetraspanins and integrins
interact with cis gangliosides, but they exist outside the canonical lectin/GBP nomenclature.!6:!

Figure 1.1 provides a cartoon depiction of glycosylation and protein-carbohydrate interactions at

a cellular level.

The molecular mechanisms and experimental identification of
protein-carbohydrate interactions

Protein-carbohydrate interactions are typically weak, with dissociation constants (K4) in
the mM to uM range. Protein-carbohydrate interactions however are usually multivalent. GBPs
can possess multiple binding sites for a carbohydrate epitope, and carbohydrates themselves often
present repeating binding units clustered on extracellular surfaces. Therefore, these interactions
are commonly measured in vitro by the more biologically relevant avidity (combined binding
strength) rather than affinity (single-site strength).

The molecular mechanism of protein-carbohydrate binding often involves a fold or motif
containing B-sheets. This binding mechanism uses hydrogen bonds with saccharide hydroxyls,
indirect (water mediated) interactions, and/or © orbital interactions to bind a carbohydrate. In
Figure 1.4, I show a direct hydrogen bond (1.4A), indirect hydrogen bond (1.4B), and CH-rn bond
(1.4C). In the polysialic acid binding antibody scFv735, the protein is stabilized by six (6) direct
hydrogen bonds and eleven (11) indirect water mediated interactions. !3!° Due to the number of
indirect interactions, protein-carbohydrate interactions have proved challenging to
computationally model.'®!” In a structural analysis of the protein data bank (PDB), Hudson et al.
(2015) found that the carbohydrate-binding pockets of proteins have a higher preference for

aromatic residues, notably Trp and Tyr, for CH- © bonding.?°
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Figure 1.4: Mechanisms of protein-carbohydrate interactions. (A) Hydrogen bond of a Tyrosine-Sia (pink)
interaction (PDB: 3WBD). (B) indirect (water mediated) interaction of Aspargine-Sia (pink) (PDB: 3WBD) (C) CH-

w interaction of Tryptophan-GlcNAc (blue) (PDB: 8AD2).

While structural information is critical for understanding protein-carbohydrate
interactions, traditional methods like crystallography are labor-intensive and not high throughput.
Currently, the state-of-the-art methods for identifying protein-carbohydrate interactions without
structural data include glycan arrays and diazirine linkers. Glycan arrays are solid supports with
immobilized saccharides, enabling the non-covalent binding of a protein of interest.?! Diazirine
linkers are photoaffinity probes that can be attached to most glycans (provided the correct
chemistry), delivered into a cell in vivo, and then irradiated to crosslink with the nearby (potentially
binding) protein.?? Recently, Zhang et al. performed the first diazirine linker experiments on
gangliosides, identifying the first ever ganglioside interactome of 873 putative proteins.!”?* Both
glycan arrays and diazirine linkers allow high-throughput screening of protein-carbohydrate
interactions; however, these methods are qualitative and thus fail to provide quantitative binding
values and the precise carbohydrate-binding region of these proteins.

Although scientists have discovered many proteins that bind to carbohydrates through

specific motifs, experimentally identifying these proteins, or the residues that bind the
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carbohydrates, remains difficult. As a result, identification of the entire protein-sugar interactome
(the complete set of carbohydrate-binding proteins in a species) has not yet been possible.

In this dissertation, I computationally explore carbohydrate-binding proteins without
restricting by protein family or function. My goal is to identify the protein-sugar
interactome: to find all proteins that interact with carbohydrates across metabolic,
structural, and molecular recognition functions. Throughout this dissertation, I use deep

learning methods, which are explored in the following section.

Computational methods

Deep Learning Overview

Deep learning (DL) is a subset of machine learning (ML) leveraging a data-driven approach
to classify input data with mathematical models of neurons (nodes). DL achieved remarkable
performance in all areas of science, including image recognition and language processing, and is
now emerging as a powerful tool in biology. In my dissertation research on glycobiology, I
leveraged novel DL techniques. Here I provide a brief overview of DL fundamentals to familiarize

readers.

Fundamentals and Dense Neural Network Framework

The most common and simplest neural network is the fully connected (FC) dense neural
network (DNN). A simple multilayer DNN takes input features (X) and performs successive matrix
multiplications to generate a series of hidden (h) representations and ultimately produce a predicted
output (Y) that estimates the true value Y. A single dense layer takes the form:

hiv1 = 0;(W;h; + b; ),
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where h; is the hidden embedding at layer i, W; is the weights of layer i, and b; is the bias of layer
i, and o is the activation function.?*2° The input X is h,, the embedding at layer 0, and ¥ is h, the
final embedding of the model. The embeddings h; are typically n x I vectors, with W; matrices
shaping the output of each layer. W;h; + b; is a linear equation; therefore, activation functions o
are used to introduce non-linearity to the model. Several example activation functions, such as
rectified linear unit (ReLU) and sigmoid are shown in Figure 1.5D. In Figure 1.5A, I show a

schematic of a DNN.
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Figure 1.5: Annotated neural network architectures. (A) Simple three-layer dense neural network (DNN). (B)

(D) Example activation functions.
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Neural networks are not manually tuned equations: they are highly parametrized
algorithms. Therefore, finding an optimal solution for W; and b; (the weights and biases) requires
non-trivial methods. For this process, neural networks use back propagation to determine the

parameters of the weights. The goal of a neural network is to map input features X to an output ¥




within some margin of error of the true value Y. We measure the difference between ¥ and Y using
a loss function (£). A simple loss function is the mean squared error (MSE), which is the loss
function of linear regression, shown below.
c=llv 9

The difference between the predicted and true values are measured by the loss is then used to
update the weights of the neural network through backpropagation. Backpropagation leverages
calculus, most notably the chain rule, to update the weights to reduce the error.?” One algorithm
for iterative backpropagation is stochastic gradient descent (SGD), shown below:

W=W- nVL(w)
where 7 is the learning rate. With these equations, we can construct a simple DNN to predict or
classify input data of fixed size.?’

Although the framework described above is simple, in practice, many variations have been
developed to improve performance. The earliest activation functions were rectified linear units
(ReLU) and sigmoid; however, more recent activation functions such as leaky ReLU, Gaussian
error linear units (GeLU), and SoftMax are now common.?® To improve generalization, batches
(e.g. predicting on multiple inputs at once) are often be used for training alongside batch
normalization, layer normalization, and dropout.?®3° Finally, common variations of weight

updating include the Adam optimizer,*! weight decay, and stochastic weight averaging (SWA). 3

Convolutions capture patterns

DNNSs are fantastic tools for one-dimensional data, showing strong predictive power on
many non-trivial tasks. Despite their power on 1D data, DNNs are not optimal for higher

dimensional data, such as images, because object position can vary tremendously throughout the
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inputs. To better capture patterns in such data, convolutional neural networks (CNNs) are used.

CNNs employ the common mathematical operation of a convolution:

(f * )(®) = f FG)g(x — Ddx

where g(t) is the function (or input) and f'is the convolving function (or filter). However, because
digital images are discrete (composed of pixels, or voxels in 3D images); a discrete convolution

operation is used:

hyie1 = Zka.z[m' n]* i —m,j —n]

m
where f; is the £’th convolutional filter at layer /, h; is the embedding at layer / which is a
concatenation of all hy,; values - the result of the filter £ on h;.2*2® This convolution process is
illustrated in Figure 1.5B.

A typical CNN stacks several convolutional layers, before “flattening” the result
(converting from the 2D or 3D matrix to a 1D vector) for forward propagation by dense

layers.?*2 Common convolutional layer variations include padding, dilation, stride, and pooling.??

3-Dimensional data requires equivariant information

Protein structures are typically represented in the protein data bank (PDB) format, which
lists the fixed-point Cartesian coordinates of each atom in Angstroms (A). Cartesian coordinates
are versatile, allowing the calculation of protein features that are invariant or equivariant to rotation
and translation, such as dihedral angles, bond angles, bond lengths, and residue-residue contacts.
These invariant and equivariant properties reflect the intrinsic features of the protein and are
independent of any position or orientation in Cartesian space. Therefore, I leverage equivariant

algebra to describe protein structures, mapping values from the input coordinate domain to an
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equivariant codomain defined by the appropriate symmetry group. Formally, a function f(x) is
equivariant if, for a symmetry operation G:
G(f(x) = f(G(x))

For proteins, G is the 3-dimensional roto-translation group SE(3) = SO(3) x R3.3* To
model 3D proteins in their native 3D space, we require frameworks that only use equivariant and
invariant features to these symmetry operations. Predictions on raw Cartesian space would depend
entirely on the arbitrary placement of the protein in space, not its true intrinsic properties.

In this dissertation, I leverage a SE(3)—equivariant neural network framework called
equivariant graph neural network (EGNN). EGNN employs equivariant graph convolutional layers
(EGCLs) to recognize patterns of graphs. The foundational equations used by EGCLs are:

m;; = Ue(hf'h}' |2 — xj||2 , i)

m; = Zmu

i%)
hi*t = o, (hi,m;)

Where h! is the embedding of node i at layer /, m; j 1s the message from node j to node i, x; is the
coordinates of node i, a;; is the edge attributes of nodes i and j, g, is the message activation
function, and oy, is the node activation function.>> Messages are calculated for all neighboring
nodes, typically determined by a distance cutoff or by k-nearest neighbors. Edge attributes for
proteins often include distance (represented by a radial basis function (RBF)), orientation, and
direction between neighboring nodes.*® Using this approach, I develop models that propagate and
process protein structural information in the natural 3D graph space.

3D equivariant graph neural networks are an area of active study. EGNN is one of the

simplest frameworks for 3D graph predictions; most alternative methods use spherical harmonics
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to propagate information.>” I chose EGNN for its straightforward mathematics and improved

performance relative to the spherical harmonics-based methods.

Biophysical Deep Learning Models

Although DL theory has existed since the 1950s, the advent of GPU acceleration has finally
enabled the practical applications of DL algorithms. Since 2020, DL applications in biophysics
have grown exponentially. Two recent general biophysical models of interest are AlphaFold2 and
ESM (evolutionary scale modeling).*%

Google DeepMind employees recently received the 2024 Nobel Prize in Chemistry for the
development of AlphaFold2 (shared with Dr. David Baker for his pioneering work in de novo
protein design).*® AlphaFold2 (AF2) is a DL model that inputs a protein sequence and predicts the
complete 3D protein structure.® AF2 uses a dual-track approach, integrating multiple sequence
alignment (MSA) information with 2D representations to predict amino acid positions in a
canonical frame.?®

AF2 was evaluated in the 14" Critical Assessment of Protein Structure Prediction
(CASP14) challenge, where it outperformed every competing method and predicted the best model
for 89 of 97 targets.*! AF2’s strong performance is due in large part to training on the entire PDB,
a testament to the open scientific sharing of innumerable independent researchers across the world
for the past 50+ years.

Recently, AF2 was updated to AlphaFold 3 (AF3), which uses a generative diffusion
network for protein coordinate prediction.*? AF3 improves on AF2 as it does require inputs to be
canonical amino acids, enabling it to model post-translational modifications (PTMs), DNA, and

ligands of arbitrary input.*> AF3 achieves a 76% success rate on the small molecule docking
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PoseBusters benchmark, but, prior to this dissertation research, had not been evaluated for
carbohydrate docking prediction tasks.*?

Following the release of ChatGPT, computational biologists adapted transformer
architectures to protein sequence data. One notable transformer-based deep learning model is
evolutionary scale modeling (ESM).?® ESM is a large language model (LLM) trained on masked
protein sequences (where certain amino acids were hidden), with the goal of predicting the identify
of those masked residues.*

The strength of ESM is in its representation of proteins. ESM2 has a 34-layer architecture,
where its final layer provides a 1280-dimensional embedding that can be extracted and used as
input for other deep learning models.*® This embedding contains evolutionary information about

the protein, similar to an MSA, improving downstream performance.>%*3

Advances in Computational Glycobiology

Due to the scarcity of experimental data, computational glycobiology has also been
constrained, but is currently poised for significant growth and advancement. Here I provide a non-
extensive list of the current algorithms and methods for computational glycobiology, spanning
from glycosite prediction, glycosylation prediction, binding prediction, and protein-carbohydrate
docking.

Although the only N-linked glycosylation sequon is the well-known NX(S/T) motif,
glycosylation events are not homogenously distributed across all such motifs in a protein. Different
regions are preferentially glycosylated by various enzymes. LMNglyPred is a neural network using
an LLM to predict N-linked glycosylation sites.** Similarly Stack-OglyPred-PLM predicts O-

linked glycosylation sites.*
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Given a glycosylation site, determining which glycan is preferentially expressed at the
position is imperative. The (proprietary) InSaNNE neural network was trained on the GlyConnect
database*® to predict the specific glycan given the surrounding sequence (n-5 to n+5) of the
NX(S/T) motif.

InSaNNE uses an LLM, named SweetNet,*’ which is trained on biologically observed
glycans. SweetNet represents each glycan as a graph, with saccharides as nodes and their covalent
connections as edges. LectinOracle concatenates SweetNet glycan embeddings and ESM-1b
protein embeddings to predict which glycans a provided lectin can bind.*®

Currently, most carbohydrate research is fueled by protein sequences; however, my
predecessor in the lab, Dr. Morgan Nance, concentrated on structural modeling of protein-
carbohydrate interactions. Nance developed the Rosetta-based method of GlycanDock, a local
refinement technique for protein-carbohydrate docking.*® GlycanDock was the first algorithm
designed specifically for docking carbohydrate-protein complexes within the Rosetta suite.
Previous tools, such as AutoDock,* required stand-alone protocols requiring manual interventions
for pipelines such as protein design.

While the aforementioned methods are critical to better understand structural glycobiology,
no high-throughput approach exists to identify the protein-sugar interactome. Next-
generation sequencing has made available more than 25,000 reference genomes, with high
confidence de novo structures for over 80 of those species. Although numerous protein-protein
interactome maps have been generated, no equivalent map exists for the protein-sugar interactome.
Here, in this dissertation, I have developed a new method to uncover the protein-sugar

interactome for any species.
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Dissertation Overview

Prior to my doctoral work, no publicly available methods existed for predicting non-
covalent binding of proteins and carbohydrates — either for determining whether a protein binds
carbohydrates or for identifying specific binding residues. The Gray lab focuses on de novo
therapeutic development, with a long-term goal of engineering proteins that bind glycoproteins,
such as viral receptors, with high specificity. However, with only a limited understanding of
protein-glycan interactions, de novo protein design of is constrained by our basic scientific
understanding of the protein-sugar interactome. Therefore, the objectives of my research are to
elucidate how proteins bind to carbohydrates, to discover all proteins capable of
carbohydrate-binding, and to identify current limitations in de novo protein-carbohydrate
docking predictions.

Chapter 1 summarizes the biological roles of carbohydrates and the computational
techniques employed in my doctoral studies. Chapter 2 details a method I developed in
collaboration with Dr. Sudhanshu Shanker: CArbohydrate Protein Site IdentiFier (CAPSIF).
Chapter 3 presents two deep learning algorithms I developed: CAPSIF2, an updated version of
CAPSIF, and Protein interaction of CArbohydrate Predictor (PiCAP), which predicts whether a
protein binds carbohydrates. Additionally, Chapter 3 analyzes the E. coli, M. musculus, and H.
sapiens proteomes for carbohydrate binding. Chapter 4 evaluates the performance of current de
novo all-atom structure prediction on protein-carbohydrate docking. Chapter 5 summarizes my
contributions to the field of protein-carbohydrate modeling and highlights potential directions for

future research in the field of computational glycobiology.
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Chapter 2
CAPSIF: Structure-based neural network protein-

carbohydrate predictions at a residue level

Adapted from: Canner, S. W.}, Shanker, S.! & Gray, J. J. Structure-based neural network protein—carbohydrate

interaction predictions at the residue level. Frontiers in Bioinformatics. 3:1186531, (2023).
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Figure 2.1: CArbohydrate Protein Site IdentiFier (CAPSIF) analyzes protein structures to identify
carbohydrate binding pockets.

Attribution of credit: SWC (Writing, Methods, Analysis, Figures), SS (Conceptualization, Methods, Analysis), JIG
(Conceptualization, Writing, Analysis).
tindicates equal contribution of the work. As this work was performed in equal contribution with Dr. Shanker, I will use the term

“we” and “our” in this chapter to properly attribute credit to Dr. Shanker’s efforts.
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Overview

Carbohydrates dynamically and transiently interact with proteins for cell-cell recognition,
cellular differentiation, immune response, and many other cellular processes. Despite the
molecular importance of these interactions, there are currently few reliable computational tools to
predict potential carbohydrate binding sites on any given protein. Here, we present two deep
learning models named CArbohydrate-Protein interaction Site IdentiFier (CAPSIF) that predict
non-covalent carbohydrate binding sites on proteins: (1) a 3D-UNet voxel-based neural network
model (CAPSIF:V) and (2) an equivariant graph neural network model (CAPSIF:G). While both
models outperform previous surrogate methods used for carbohydrate binding site prediction,
CAPSIF:V performs better than CAPSIF:G, achieving test Dice scores of 0.597 and 0.543 and test
set Matthews correlation coefficients (MCCs) of 0.599 and 0.538, respectively. We further tested
CAPSIF:V on AlphaFold2-predicted protein structures. CAPSIF:V performed equivalently on
both experimentally determined structures and AlphaFold2 predicted structures. Finally, we
demonstrate how CAPSIF models can be used in conjunction with local glycan-docking protocols,

such as GlycanDock, to predict bound protein-carbohydrate structures.

Introduction

The carbohydrate-protein handshake is the first step of many pathological and
physiological processes.!? Pathogens attach to host cells after their lectins successfully bind to
surface carbohydrates (or glycans)®*!=3. The innate and adaptive immune systems utilize
carbohydrate signatures present on cellular and subcellular surfaces to recognize and destroy
foreign components®*>°, Glycosaminoglycans (GAGs) bind to membrane proteins of adjacent cells

56-58

for cell-cell adhesion and to regulate intracellular processes®°. Despite the biological importance
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of these carbohydrate-protein interactions, there are few carbohydrate-specific tools leveraging the
vast Protein DataBank (PDB) and recent advances in machine learning (ML) to elucidate the
binding of carbohydrates at a residue level.

Knowledge of carbohydrate-protein interactions has been leveraged to develop therapeutic
candidates to neutralize infections and inspire proper health function.”® One bottleneck in
designing carbohydrate-mimetic drugs is obtaining residue-level interaction knowledge through

60-62

methods such as structural data and/or mutational scanning profiles . Further, in some studies,

computational tools have been used to predict docked structures, refine bound carbohydrates, or

extract dynamic information®-64,

Recent developments in deep learning (DL) have substantially enhanced the theoretical
modeling of proteins and protein-protein interactions. For example, neural networks can design
stable proteins with unique folds using graph representations.*® 3D structures can be predicted with
programs such as IgFold % and Alphafold2 (AF2).* Predicted 3D atomic coordinates can be
probed to determine ligand or protein binding capabilities using neural networks such as Kalasanty
or dMaSIF.%6:67

Recent computational studies have demonstrated new ways to explore protein-
carbohydrate interactions. Our lab has also contributed to the advancement of this field by adding
the following, (1) a shotgun scanning glycomutagenesis protocol to predict the stability and
activity of protein glycovariants,®® and (2) the GlycanDock algorithm to refine protein-glycoligand

bound structures.*’

Recently there have been developments in small molecule binding site predictors. Small
molecule binding site predictors typically fall into four categories: template, geometry, energy, or

machine learning based.® Template based strategies, such as 3DLigandSite,”® search datasets for
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sequence and/or structurally related ligand binding proteins to assess prospective binding sites.
Geometry based methods, like FPocket,”! search the surface of proteins for pockets and cavities.
Energy based methods, such as FTMap,”* use probe molecules to scan the surface of a protein to
determine the energetic favorability of binding. Recently, machine learning techniques, such as
Kalasanty,® have emerged and outperformed previous classical site prediction algorithms,

commonly with convolutions on a 3D voxel grid containing atomistic information.”-74

Although there are many general small molecule binding site predictors,®®’%7> few tailored
algorithms exist for prediction of protein-carbohydrate sites. In 2000, Taroni et al. performed an
analysis of carbohydrate binding spots using the solvation potential, residue propensity,
hydrophobicity, planarity, protrusion, and relative accessible surface area to construct a function
to predict carbohydrate binding sites.”® In 2007, Malik and Ahmad created a neural network to
predict the carbohydrate binding sites using their constructed Procarb40 dataset, a collection of 40
proteins, with leave one out validation.”” In 2009, Kulharia built InCa-SiteFinder to predict
carbohydrate and inositol binding sites by leveraging a grid to construct an energy-based method
for predicting binding sites.”® Tsai et al. constructed carbohydrate binding probability density maps
using an encoding of 30 protein atom types as an input to a machine learning algorithm.” Later,
Zhou, Yang and colleagues developed two methods to predict carbohydrate binding sites, (1) a
template-based approach named SPOT-Struc®® and (2) a support vector machine (SVM) named
SPRINT-CBH that leverages sequence-based features.®! Tsia” and SPOT-Struc®® have achieved
Matthews correlation coefficients (MMCs) of 0.45 on test sets of 108 and 14 proteins, respectively.
The increased size of the protein databank and the improvements in deep learning methods now

presents an opportunity to train and test more broadly.
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Larger protein-carbohydrate structural databases now include UniLectin3D® and
ProCaff.®3 UniLectin3D focuses on lectins bound to carbohydrates, containing 2406 structures;
however, it contains many redundant structures and is currently limited to 592 unique sequences.
ProCaff lists 552 carbohydrate-binding protein structures and their binding affinities under various

conditions; however, many structures are only available in the unbound form.

Many drug targets, from pathogen-lectins to aberrant selectins, are carbohydrate binding
proteins. %% Understanding the physiological response and determining a glycomimetic drug to
neutralize the infection requires residue-level knowledge. 8 Currently, DL algorithms
LectinOracle®® and GlyNet® predict lectin-carbohydrate binding on a protein level; however,
pharmaceutical development requires residue-level information.

In this work, we develop two DL methods for residue-level carbohydrate-binding site
prediction for non-covalently bound carbohydrates. The two methods have different architectures,
one using voxel convolutions and one using graph convolutions. We also present a dataset of 808
non-covalently bound nonhomologous protein chain-carbohydrate structures and use it to train and
test both models. We compare the performance of the models with each other and with FTMap’?
and Kalasanty.®® Then, we evaluate the performance of the models on AlphaFold2%° predicted
versus experimentally determined structures. Finally, we present a proof-of-concept pipeline to

predict bound protein-carbohydrate structures.

Results

Dataset for carbohydrate-protein structures

To construct a method to predict carbohydrate-protein interactions, we needed a large and

reliable dataset to use for training and testing. The dataset should contain as many non-homologous
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structures as possible to avoid biasing to specific folds. By filtering the PDB3¢ we constructed a
dataset of 808 high accuracy (< 3 A resolution), nonhomologous (30% sequence identity), and
physiologically relevant experimental structures (by manually removing buffers), spanning 16
carbohydrate monomer species. When multiple copies were present in the same PDB file, we used
only a single protein chain and all adjacent carbohydrate chains. In these structures, 5.2% of the
protein residues contact carbohydrates. The final dataset consists of 808 structures, which we split
into 521 training structures, 125 validation structures, and 162 test structures. These structures only

contain single chain protein interactions with non-covalently bound carbohydrates.

CAPSIF uses deep neural networks to predict carbohydrate
interaction sites

We constructed convolutional neural networks (CNNs) named CArbohydrate-Protein Site
IdentiFier (CAPSIF) to predict carbohydrate binding residues from a protein structure. CNNs were
initially developed for images, exploiting the spatial relationship of nearby pixels for prediction

87-89 and small molecule binding pockets

tasks. They have been applied to predict protein structure
of proteins.®® To predict carbohydrate binding residues using structural information, we created

two CAPSIF CNN architectures, CAPSIF:Voxel (CAPSIF:V) and CAPSIF:Graph (CAPSIF:G).

Since a protein can change its side chain conformations upon binding a small molecule or
carbohydrate (from apo to holo), we sought a protein representation that is robust to these and
other binding induced changes. We chose a residue-level representation, using only the CPB
positions of all residues (or Ca in glycine), since the CB position is frequently equivalent in both
the apo and holo states.”® Both CAPSIF architectures use the following features: unbound solvent

accessible surface area (SASA) of each residue, a backbone orientation (architecture specific), and
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encodings of amino acid properties, including hydrophobicity index (0 to 1),! “aromatophilicity”
index (0 to 1),°> hydrogen bond donor capability (0,1), and hydrogen bond acceptor capability

(0,1) (Methods/Table 2.3).

The first CAPSIF architecture, CAPSIF:V, is a 3D voxelized approach to learn
carbohydrate binding pockets. CAPSIF:V uses a UNet architecture, which comprises a grid with
a series of convolutions compressing and then decompressing the data to its original size with
residual connections to previous layers of the same size. For each grid, we used an 8 A3 voxel size
where CAPSIF:V encodes each residue’s B carbon (Cp) into a corresponding voxel. CAPSIF:V

predicts a label P(carbohydrate-binding residue) for each voxel on the initial grid (Figure 2.2A;

Methods/Figure 2.7).
Binding
A.Q’ ‘Q. Region
B

‘O. ‘Q.'St
-?

Figure 2.2: Two deep learning models that predict where proteins bind carbohydrates. (A) The first model
(CAPSIF:V) maps the B carbon (Cp) coordinates into voxels, utilizes a convolutional UNet architecture, and predicts
the binding residues. (B) The second model (CAPSIF:G) converts the CP coordinates into network nodes with edges
for residue-residue neighbors, performs convolutions on nodes with respect to neighbors with an equivariant graph

neural network (EGNN) architecture, and predicts which residues bind sugars.
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The second architecture, CAPSIF Graph (CAPSIF:G), is an equivariant graph neural
network (EGNN),” with each CP represented as a node on the graph and edges connected between
all neighbor residues within 12 A (Figure 2.2B). EGNNs use graph-based convolutions with
message passing between connected nodes based on node features and the edge features
(distances).”® We explored many variations of these neural network architectures; the Supporting

Information includes data supporting our architecture and data representation choices.

The carbohydrate-binding residues comprise 5.2% of the dataset. To ameliorate the effect
of data imbalance, we followed Stepniewska-Dziubinska et al. and chose the complement of the
Dice similarity coefficient (d) as our loss function (L =1 —d).%® The Dice coefficient is
normalized by both the correctly and incorrectly predicted residues:

2+TP
d= (TP+FP)+(TP+FN)’ (Eq 2.1)

where TP = true positives, F'P = false positives, and FN = false negatives. Since d does not depend
on true negative labels, this loss function is insensitive to imbalanced datasets where the positive

label is observed much less than the negative label %

CAPSIF predicts carbohydrate-binding residues with encouraging
accuracy

CAPSIF:V and CAPSIF:G are novel architectures for predicting carbohydrate binding
residues; however, they use 512 structures to train with a substantial data imbalance. We therefore
investigated the performance of CAPSIF on a held-out test set to determine whether the

architectures accurately predict carbohydrate-binding regions despite the small amount of training
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data. Four representative CAPSIF:V predictions are shown in Figure 2.3, highlighting 7P residue
predictions, (green), FP residues (blue), and FN residues (red). CAPSIF:V captures the binding
pocket visually for an endoglucanase (2.3A), xylanase (2.3B), and B-glucanase (2.3C), but it
performs poorly on the HINT protein that binds ribose (2.3D), a five membered ring carbohydrate

that is commonly associated with nucleotides.

\ EndoGlucanase-Cellotriose

Dice / DCC: 0.815/3.11A
FP FN TN

et d
Xlyanase-Xyl3mer Bglucanase-Glc3mer HINT-Ribose
0.963 / 0.610A 0.552/2.26A 0.300/4.76A

Figure 2.3: Prediction of carbohydrate binding sites on a protein surface using CAPSIF:Voxel. (A) Two
representations of binding residues for cellotriose bound to endoglucanase (6GLO), surface (left) and sticks (right);
Predicted surface representation of (B) xylanase bound to a xylose 3-mer (3W26), (C) B-glucanase bound to a glucose
3-mer (5A95), and (D) HINT protein bound to a ribose monomer (4RHN) predictions. True positive residue
predictions are colored green, false positives are blue, false negatives are red, true negatives are gray, and the bound
carbohydrate is cyan; Dice is defined by eq (1) and DCC is distance from center to center of the predicted binding

regions.
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For comparison, we evaluated how small molecule binding site predictors FTMap’? and
Kalasanty®® perform for carbohydrate-binding tasks. We assessed these methods using the
following metrics: the Dice coefficient (Eq 2.1), distance from the center of the crystal to the center
of the predicted binding location (DCC) of each independent binding site, positive predictive value
(PPV), sensitivity, and Matthews correlation coefficient (MCC). Similar to the Dice coefficient,
the MCC is suited for unbalanced datasets; it has been reported in previous carbohydrate binding

site studies.”” 8! MCC is:

(TP+TN—FP*FN)
J(TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)

MCC = (Eq2.2)

where TN = true negatives. MCC ranges from -1 (worst) to +1 (best). The Dice coefficient
measures the overlap of correctly predicted interacting residues to all predicted interacting
residues. We define a success as a Dice score greater than 0.6 or, following Stepniewska-

Dziubinska et al., a DCC under 4 A%

On the CAPSIF test set, FTMap achieved an average Dice coefficient of 0.351 and average
DCC of 10.5 A, and Kalasanty achieved an average Dice of 0.108 and average DCC of 14.6 A
(Table 2.1). Further, FTMap predicted 16.8% of test structures with greater than 0.6 Dice and
16.8% of test structures with less than 4 A DCC, while Kalasanty predicted 0% of test structures
with greater than 0.6 Dice and 21.4% of test structures with less than 4 A DCC (Table 2.1, Figure

2.4A,B).

62



Table 2.1: Average metric for each method on test set. Dice similarity coefficient is defined by eq (2.1), PPV is
positive predictive value = TP / (TP + FP), Sensitivity = TP / (TP + FN), DCC is distance from center to center of
predicted versus experimentally determined residues and only calculated for proteins that yield predictions (coverage),

MCC is Matthews correlation coefficient and defined by eq (2.2). Bold face indicates best performance for each metric.

Model Dice PPV  Sensitivity DCC (A) MCC Coverage (%)
FTMap 0.351 0.284 0.505 10.56 0.222 100.0
Kalasanty 0.108 0.080 0.207 14.62 -0.624 90.0
CAPSIF:V 0.597 0.598 0.647 4.48 0.599 94.4
CAPSIF:G 0.543 0.541 0.590 5.85 0.538 83.2
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Figure 2.4: Distributions of CAPSIF:V and CAPSIF:G assessment metrics compared to FTMap’?> and
Kalasanty.%® (A) Distribution of Dice similarity coefficient for all methods smoothed with a Gaussian kernel density
estimate (KDE, bandwidth h = 0.04); (B) Distance from center to center (DCC) of predicted to experimental
carbohydrate binding residues (smoothed with a Gaussian KDE, h = 0.75 A); (C) Per-target comparison of CAPSIF:V
to FTMap and (D) CAPSIF:G Dice coefficients.

We then investigated whether our CAPSIF models, which are specifically tuned for
carbohydrate binding, predict the carbohydrate binding regions more accurately than Kalasanty
and FTMap. On the held-out CAPSIF test set, CAPSIF:V achieves an average 0.596 Dice
coefficient and 4.48 A DCC metric, and CAPSIF:G achieves an average 0.543 Dice coefficient
and 5.85 A DCC metric (Table 2.1). Further CAPSIF:V successfully predicts 62.7% of test
structures with greater than 0.6 Dice and 56.5% of test structures with less than 4 A DCC, and

CAPSIF:G successfully predicts 55.2% of test structures with less than 0.6 Dice and 46.0% of test
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structures with less than 4.0 A DCC. Both CAPSIF models have a most probable prediction at 0.77

Dice and 2.5 A DCC (Table 2.1, Figure 2.4A,B).

Since CAPSIF is ML based and FTMap is energy based, FTMap may predict more
accurately on different cases compared to CAPSIF. We compared the CAPSIF:V and FTMap Dice
scores for each structure (Figure 2.4C). FTMap achieves a significantly higher Dice coeffiecents
(difference greater than 0.15 Dice) than CAPSIF:V in 10.9% of cases, and CAPSIF:V predicts the
binding region with a significantly greater Dice coefficient than FTMap in 67.9% of cases. We
also compared the computer time. On The FTMap server, FTMap requires an hour or more to
predict the binding region for a single structure, whereas both CAPSIF:V and CAPSIF:G predict
binding sites within seconds on a single CPU. Thus, on average, CAPSIF:V and CAPSIF:G

outperform current small molecule binding site predictors for carbohydrate binding.

Finally, we compared the CAPSIF:V architecture to the CAPSIF:G architecture.
CAPSIF:V has an average Dice coefficient of 0.596 and CAPSIF:G has an average Dice coefficient
of 0.543 across the test dataset (Table 2.1). When comparing the Dice on the test set, CAPSIF:V
predicts 27.3% of structures with greater than 0.15 Dice than CAPSIF:G, while CAPSIF:G predicts
11.2% of structures with greater than 0.15 Dice than CAPSIF:V (Figure 2.4D). Thus, CAPSIF:V

outperforms CAPSIF:G on carbohydrate binding site prediction.

Carbohydrates are unique biomolecules that bind to different lectins with high specificity.
Both CAPSIF architectures treat all carbohydrates agnostically, meaning that all sugar residue
types are considered equivalent for predictions. Nonetheless, we compared prediction results
across different sugar residue types. (Appendix). CAPSIF:V performs best on glucose (Glc),
galactosamine (GalN), arabinose (Ara), xylose (Xyl), ribose (Rib), and galacturonic acid

(GalNAc). It predicts regions that bind neuraminic acid (Neu/Sia), fucose (Fuc), and Glucuronic
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acid (GIcNAc) with less than an average 0.5 Dice coefficient. The weaker performance could stem
from the chemical differences or differences in the size of the training data. Neu and Fuc are
substantially chemically distinct carbohydrates, as Neu is a 9-carbon structure and Fuc adopts an
(L) conformation; both are sparse in our dataset. Further, CAPSIF:V performs best on transport
proteins, membrane proteins, and hydrolases; however, it performs weakly on viral proteins and

lyases.

CAPSIF:Voxel in most cases performs similarly on AlphaFold2
structures

Both CAPSIF models were trained and tested on bound crystal structures; however,
experimental protein structure determination can be expensive, even in the absence of a
carbohydrate. We therefore investigated whether CAPSIF:V could usefully predict carbohydrate
binding structures from computationally modeled structures. We reconstructed the test protein
structure dataset with the Colab implementation®* of AlphaFold2 (AF2)* and predicted the
carbohydrate binding residues of the predicted structures and evaluated the same performance
metrics (Table 2.2). CAPSIF:V predicts the carbohydrate binding regions with similar Dice
coefficients of 0.597 and 0.586 for protein databank versus AF2 predicted structures, respectively.
Figure 2.5A shows that the Dice distribution is similar between PDB and AF2 structures.
CAPSIF:V predicts the center of the carbohydrate binding region more accurately on AF2

structures with a DCC of 3.8 A, compared to 4.5 A on crystal structures.
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Table 2.2: Metrics for CAPSIF:Voxel inputting PDB or AF2 structures. Dice, PPV, Sensitivity, DCC, MCC, and
defined in Table 1.

Structures Dice PPV  Sensitivity DCC (A) MCC Coverage (%)
PDB 0.597 0.598 0.647 4.48 0.599 94.4
AF2 0.586 0.508 0.744 3.76 0.598 85.0
A Predicted Residue Binding Dice Score B PDB v AF2 Predictions
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Figure 2.5: Dice coefficient assessment of CAPSIF:Voxel on PDB and AlphaFold 2 (AF2) structures. (A) Kernel
density estimate (h = 0.04) showing the distribution of Dice coefficient for both methods; (B) Comparison of each test
structure between CAPSIF:V on PDB and AF2 structures.

Although CAPSIF:V has a lower average DCC on AF2 structures compared to
experimental structures, CAPSIF:V fails to predict any sites at all on 15% of AF2 structures,
whereas it fails in only 5% of PDB structures, suggesting that the signal about the sugar binding

is removed for some of the small backbone errors produced by AF2.

The multiple outliers where CAPSIF:V fails to predict the region of carbohydrate binding
in only AF2 predicted structures are sorted in Figure 2.4B. CAPSIF:V predicts a Dice coefficient
of at least 0.15 units higher for PDB structures in 14.9% of structures and predicts AF2 structures

with a 0.15 Dice coefficient or higher for 8.7% of test structures. AF2 generated structures can be
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inaccurate; however, in most of the test cases, AF2 captures the structures with angstrom level
accuracy and the carbohydrate binding residues with high pPLDDT confidence; unfortunately, the

pLDDT confidence measure does not correlate with the CAPSIF success rate (Figure 2.15).

CAPSIF assists ab initio prediction of bound protein-carbohydrate
structures

CAPSIF:V predicts the carbohydrate binding site on the majority of proteins with high
accuracy, suggesting that it might be used in a pipeline to predict bound protein-carbohydrate
structures. As a proof-of-concept, we developed a prospective pipeline and tested it on five proteins

from the GlycanDock* test dataset that were not included the CAPSIF dataset.

We constructed the following rudimentary pipeline. We predicted the binding site from
each unbound protein’s experimentally determined structure with CAPSIF:V and constructed the
known carbohydrate with Rosetta. The carbohydrate’s center of mass (CoM) was then placed in
the CoM of the predicted binding region and manually rotated to align with the binding region
shape. Next, we used the Rosetta FastRelax® protocol to remove steric clashes. Then we used
Rosetta’s standard GlycanDock® to predict the bound structures. To find the highest rated bound

structure, we filtered 9,500 decoys by their computed interaction energy.
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Xyls+CBM Gal;+GBP
71A/51A 8.0A/6.0A
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Figure 2.6: Results of CAPSIF:V-GlycanDock pipeline. CAPSIF-predicted residues are shown in green. Wild
type unbound structures are shown in surface representation in gray with the experimentally determined carbohydrate
in gray sticks and predicted bound carbohydrate in purple sticks. RMSD of entire ligand and RMSD of register-
adjusted ligand are shown below. (A) a carbohydrate binding module (CBM), 1GMM (unbound PDB)/1UXX (bound
PDB), (B) a glycan binding protein (GBP), 1L7L/2VX], (C) an enzyme, |OLR/1UU6, (D) a CBM, 2ZEW/2ZEX, and
(E) an antibody (Ab), 6N32/6N35.

We tested the pipeline on five experimentally solved unbound proteins: P. aeruginosa lectin
1, a glycan binding protein (GBP, 1L7L), two carbohydrate binding modules (CBMs, 1IGMM and
2ZEW), a glycoside hydrolase enzyme (10LR), and an anti-HIV-1 antibody (Ab) (6N32). Figure
2.6 shows structures and the root mean squared deviation (RMSD) of each predicted carbohydrate
structure from the experimental structure. CAPSIF:V predicted carbohydrate binding residues near

the correct site on four of the five proteins, but it failed to predict any binding residues on the
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antibody (6N32). For three of the proteins, CAPSIF:V predicts the region with high accuracy, but
on 1GMM, CAPSIF:V predicts regions flanking the binding site, but still provides a similar CoM
to the actual binding region. For the for carbohydrates with identified sites, the standard
GlycanDock protocol was able to refine the carbohydrate structure to an RMSD of less than 8 A
for the entire ligand and less than 6 A for register-adjusted values, where the termini were removed
before calculating RMSD. The 3-mer Gal GBP (1L7L) has the worst RMSD (6 A register adjusted,
Figure 2.6B), likely because the holo conformation (2VXJ) undergoes a conformational change at
the carbohydrate-binding site. Although this Ab case example failed, CAPSIF successfully
predicted the carbohydrate binding regions of 9 of the 11 Abs tested from the Glycan Dock test
set, which has no overlap with the CAPSIF training set. These predictions demonstrate the
potential of CAPSIF to help inform experimental hypotheses or for high throughput predictions of

bound protein-carbohydrate structures.

Discussion

We demonstrated that both CAPSIF models predict residues of proteins that bind
carbohydrates with much higher accuracy than prior approaches. CAPSIF:V uses a voxelized
approach and predicts 62.7% of crystal structures with a distance from the center of the predicted
region to the center of the experimentally determined region (DCC) within 4 A. CAPSIF:G
performs strongly on the dataset, predicting 55.2% of crystal structures with a DCC less than 4 A,
with CAPSIF:V performing similarly or outperforming CAPSIF:G in 88.8% of cases. CAPSIF:V
is robust to most errors in protein structure of the magnitude in AF2 structures (angstrom-level):

the algorithm predicts similar carbohydrate-binding residue regions independent of whether the
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input structure is experimentally determined or predicted by AF2. This algorithm is a substantial

improvement over surrogate ligand site predictors Kalasanty and FTMap.

Further, CAPSIF outperforms previous methods specifically tuned for carbohydrate
binding. CAPSIF:V achieves a 0.599 MCC and CAPSIF:G achieved a 0.538 MCC on the test
dataset. Tsia et al’s method using probability density maps achieved a 0.45 MCC on their
independent test dataset of 108 proteins,” SPOT-Struc achieved a ~0.45 MCC on their test dataset
of 14 proteins,®® and SPRINT-CBH achieves a MCC of 0.27 MCC on their test set of 158
proteins.®! While these datasets differ from ours, ours is a similarly constructed non-homologous
dataset of 162 structures, and CAPSIF has markedly stronger MCC. Although CAPSIF:V performs
best, we advocate for usage of CAPSIF:V and CAPSIF:G in tandem to predict carbohydrate-

binding residues since there are numerous cases where one CAPSIF model outperforms the other.

Although CAPSIF accurately captures the protein-carbohydrate binding interface, there are
limitations. CAPSIF is carbohydrate-agnostic, so it only predicts that a protein residue will bind
one of 16 carbohydrate monomers. That is, CAPSIF predicts the location of carbohydrate binding
but not which carbohydrate preferentially binds there. Further, CAPSIF was only trained and tested
on known non-covalent carbohydrate binding proteins, therefore CAPSIF may not be informative
on non-carbohydrate binding proteins or proteins that bind glycoconjugates such as ribose in
nucleic acids, ATP/ADP, or GTP/GDP (Figure 2.17). CAPSIF was trained on a small set of sixteen
sugar residue types, and it will be most useful for non-modified sugar residues. Another limitation
is that CAPSIF fails to predict any binding on about three times as many AF2 predicted structures
as crystal structures. Unfortunately, CAPSIF prediction accuracy on AF2 structures is not
correlated with pLDDT confidence metrics so it is not possible to know when it will fail. Further,

CAPSIF was tested on AF2 predicted structures for proteins that already exist and may already
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exist in the AF2 training set. CAPSIF additionally is unable to predict whether a protein is a

carbohydrate binding protein (Figure 2.18).

The scope of CAPSIF makes it well suited for a computational pipeline. We suggest the
use of DeepFRI,* a deep learning model that predicts protein function, to first determine if the
protein is a carbohydrate binding protein. If the protein is a carbohydrate binding protein, then
LectinOracle * and GlyNet® can be used to predict which carbohydrates bind the protein. CAPSIF
can then predict binding locations, either from an experimental structure or AF2 generated

structures, and then GlycanDock* can predict a docked protein-carbohydrate structure.

We tested part of this pipeline by predicting the binding region using CAPSIF:V and
docking the known carbohydrate binder to the region with GlycanDock.** CAPSIF:V predicted
binding sites on four of the five proteins. The antibody case, which failed, binds a carbohydrate at
the complementary determining region (CDR) loops, split over two chains, but CAPSIF was
trained only on single chain data. When register adjusted, each structure yielded a ligand RMSD
less than 6 A. We anticipate that a more well-tuned pipeline could yield higher accuracy structures

ab initio from sequence only.

To our knowledge, voxelized and graph-based site prediction has not been presented
simultaneously before. Existing studies have used graphs to either predict binding affinity®’ or a
docked structure (in coordination with diffusion techniques),** but they have not been used to
determine small molecule binding regions. We tested two architectures utilizing either voxel or
graph representations. We showed that CAPSIF:V outperforms CAPSIF:G, both of which use
convolutions to predict the carbohydrate binding ability of residues with the same residue
representation. We can speculate about the reason by considering the differences between the

approaches. CAPSIF:V discretizes the protein structure over a 3D grid, which can obscure the Cj
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position by a few Angstroms, whereas CAPSIF:G uses the coordinates without any loss of spatial
information. CAPSIF:V encodes the initial ~1.4M feature input to a lower dimensionality ofa 512-
feature vector to encode the entire structure, whereas CAPSIF:G lifts the data from an Neesx 30 to
a higher dimensionality of Nres x 64. CAPSIF:V has ~102M parameters and CAPSIF:G has ~236K
parameters, reflecting how graph-based methods capture the spatially equivariant information in
fewer parameters. One characteristic of using the voxel representation is that the grid contains
voxels with the protein and the voxels outside the protein, including binding pocket cavities,
whereas the graph representation only contains the protein. The voxel network reasoning over the
surface pocket volume may be the key factor for improved carbohydrate-binding residue

prediction.

Building on this initial screen, future studies could focus on improving the CAPSIF data
representation for improved accuracy and extending these models to predict which carbohydrate
monomer a residue most preferentially binds as well as whether the protein is a carbohydrate-
binding protein. In the future, the dataset could include oligomeric structures that bind
carbohydrates at the oligomeric interface. Further, one could improve model performance by
leveraging homologous structures with data splits across families. Although lectins are well known
for carbohydrate binding, some protein families, such as G protein coupled receptors (GPCRs) and
antibodies, do not exclusively bind carbohydrates.”®*° Additionally, with our carbohydrate binding
site data set, one could test small molecule binding site predictor neural networks like Kalasanty®®
or PeSTo ' by fine-tuning them for sugars. High throughput methods like these could enable

proteomic scale sorting of carbohydrate binding capabilities.
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Methods

Dataset

No dataset of nonhomologous bound protein-carbohydrate structures existed that leveraged
the total size of the current PDB, so we constructed one. Simply selecting all RCSB 8¢ structures
with carbohydrates gives all docked protein-carbohydrate structures but also inherently returns all
glycosylated proteins, glycosylated peptides, as well as all protein structures that use carbohydrates
as crystallization agents. We desired to determine all true physiological protein-carbohydrate
interactions, so therefore we manually removed nonspecific crystallization buffers or
glycoproteins. Next, we removed all proteins with resolution over 3 A. Then we removed all
homologous protein structures over 30% sequence identity to remove all sequentially redundant
proteins, only accounting for chain homology and not domain homology. Some structures
containing sugars with modified monosaccharides and cyclic carbohydrates were unreadable in

the PyRosetta!?! software and therefore additionally removed.

The final dataset consists of 808 structures, with a split of 521 training structures, 125
validation structures, and 162 test structures. Each structure has one or more of the following
carbohydrate monomers: glucose (Glc), glucosamine (GlcNAc), glucuronic acid (GlcA), fucose
(Fuc), mannose (Man), mannosamine (ManNAc), galactose (Gal), galactosamine (GalNAc),
galacturonic acid (GalA), neuraminic acid (Neu)/sialic acid (Sia), arabinose (Ara), xylose (Xyl),
ribose, thamnose (Rha), abequose (Abe), and fructose (Fru). We split the training, validation, and
test sets pseudo-randomly to ensure equal representation of all carbohydrate species in each split.
The numbers of each monomer per structure and Dice coefficient for each carbohydrate monomer

type and each protein family in the test set from CAPSIF:V are included at our github link (Data
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Availability). For all following work, we defined a carbohydrate-interacting residue as residues

with any heavy atom that is within 4.2 A of a carbohydrate heavy atom.

CAPSIF:V Data Processing

Convolutional neural networks are not rotation invariant, and so data augmentation by
rotations improves their performance.!%? Therefore, we augmented the input data for CAPSIF:V
during training to overcome the rotational variance. Each time a structure was used in training, it
was rotated in Cartesian space by a random angle in {-180°,180°} around an axis defined by a
randomly-chosen residue’s location and the protein center-of-mass. With the random rotation for
each epoch, the network learned approximately 1,000 different orientations of each structure in the
data set. If the protein was too large for the grid size, the protein was split into separate grids and

run separately (about 22% of the training points).
Neural Network Architectures

Features

Due to the small dataset size of 808 structures, we chose residue-level representations
instead of atomistic. We assigned all residue information to the CP atom of each residue because
the position of the Cp is similar in apo and holo states.”® The features are listed in Table 2.3. The

101

SASA, hydrophobicity, H bond donor/acceptor indices were calculated using pyRosetta,'”" and

aromatophilicty was indexed by Hirano and Kameda.*?
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CAPSIF:Voxel

CAPSIF:Voxel
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Figure 2.7: CAPSIF:V architecture. Blue arrows indicate a double convolution, red arrows indicate an encoding

layer, and green arrows indicate a decoding layer.

CAPSIF:V utilizes a UNet architecture, encoding and decoding the input structure to
predict carbohydrate binding residues with residual connections. CAPSIF:V inputs a grid of 36 x
36 x 36 voxels with each voxel representing 2 A x 2 A x 2 A. We input a tensor of size
(28,36,36,36), with the 28 features from Table 2.3, where orientation is the normalized components

of the Ca to CP bond vector. All voxels without a Cp within are input as zero-vectors.
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Table 2.3: List of features and the associated encoding size used for both CAPSIF models.

Feature Type Encoding Size
Amino acid (one-hot) 20
SASA 1
Hydrophobicity 1
Aromatophilicity 1
H Bond Donor/Acceptor 2
Orientation (Voxel only) 3
Torsion (Graph only) 4

CAPSIF:V contains an embedding layer and 9 convolutional blocks where 4 blocks encode
the structure, 1 block forms the bottleneck, and 4 blocks decode the structural information. The
embedding layer lifts the 28-channel input into a 32-dimension space. Each block has a double
convolution, performing the following methods twice: 3D convolution, with the same number of
input channels as number of output channels, (5x5x5) kernel with a stride of 1 and padding of 2, a
batch normalization layer, and rectified linear units (ReLU) activation function. In addition, each
encoding block also has a MaxPooling layer to double the size of the channels (32,64,128,256,512)
while reducing 3D cubic voxel number (36,18,9,3,1). Each decoding block first concatenates the
results of the encoding layer of the same size and then performs a double convolution and a 3D-
transposed convolution operator, reducing the number of channels (256,128,64,32) while
increasing the 3D cubic voxel number (3,9,18,36). After the 9 blocks, there is a single
convolutional layer condensing the input channels (32) into a single output channel, which is then
followed by a sigmoid activation function to output the probability that the voxel contains a residue

that binds a sugar (Figure 2.7). CAPSIF:V contains 102,676,001 parameters.
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CAPSIF:V was trained for 1,000 epochs with a learning rate of 10-* and batch size of 20

grids using the Adam optimizer®! with the loss function L = 1 — d, where d is defined by Eq 2.1.

In optimizing CAPSIF:V, we explored several model variations. We tested various
combinations of 3x3x3, 5x5x5, and 7x7x7 convolutional filters. We used four convolutions per
layer instead of the double convolution in the primary model. Further, we used larger voxel grid
sizes (72x72x72 instead of 36x36x36) with another decoding/encoding layer in the UNet
architecture. We also attempted different configurations of skip connections, such as UNet++,103
These models required slower learning rates and showed slower convergence with no improvement
in prediction quality than the presented model. The best model from validation accuracy is detailed

above.

CAPSIF:EGNN

CAPSIF:G is an equivariant graph neural network?® that performs convolutions on each
node (chosen as each Ca for glycine and CP for all others). Graph edges are connected between
neighbors (defined as all other nodes® within 12 A) and the edge attribute is the distance between
node CP atoms. In addition to the features used in CAPSIF:V, we include a torsional component

in the node features as the sine and cosine of the ¢ and y angles of each residue (Table 2.3).

CAPSIF:G first lifts the 29-feature input node into a 64-dimension space. The 64-feature
vector, alongside the edge features (distances) is then input to eight consecutive equivariant graph
convolutional layers (EGCLs).* Each EGCL contains an edge multilayer perceptron (MLP), a
node MLP, a coordinate MLP, and attention MLP. The edge MLP consists of two blocks of a linear
layer and a rectified linear units (ReLU) activation function. The node MLP consists of a linear

layer, a ReLU activation layer, and linear layer. The coordinate MLP contains a linear layer, a
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ReLU activation layer, and a linear layer. The attention MLP contains a linear layer and a sigmoid
activation function. All layers input and output a 64-feature vector. Finally, CAPSIF returns the
embedding to a 29-feature vector per node, adds the initial input features to the final vector,
performs batch normalization, and then uses a sigmoid activation function to output a probability

of carbohydrate binding of all residues. CAPSIF:G contains 236,009 parameters.

This model was trained for 1,000 epochs with a learning rate of 10 and batch size of one
protein using the Adam optimizer’! with the loss function L = 1 — d, where d is defined by (Eg

2.0).

In optimizing CAPSIF:G, we explored changing the number of graph convolutional layers
and the latent space dimensionality. We tested the number of layers (L = 4,6,8,16) and used the
different dimensionalities of the latent space (d = 16,32,64). The best performing model is detailed

above.
Data Availability

The datasets and the code for each model are available for non-commercial use at

https://github.com/Graylab/CAPSIF.
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Appendix

Dataset

The dataset is composed of the following monomers: glucose (Glc), glucosamine
(GleNAc), glucuronic acid (GlcA), fucose (Fuc), mannose (Man), mannosamine (ManNAc),
galactose (Gal), galactosamine (GalNAc), galacturonic acid (GalA), neuraminic acid/sialic acid
(Neu/Sia), arabinose (Ara), xylose (Xyl), ribose, rhamnose (Rha), abequose (Abe), and fructose
(Fru). There are either no training structures or very few for Fru, ManNAc, Abe, Rha, ribose, GalA,
and GlcA. Although some have a high average test Dice similarity coefficient, CAPSIF may not
accurately predict protein residues that bind those carbohydrate species well. Finally,
CAPSIF:Voxel does not perform well on predicting residues that bind Neu and Fuc, likely due to

their 9-carbon structure and (L) conformation, respectively, as well as GIcNAc.

Determination of Data Representation

For voxel locations, we compared three representation choices, (1) a carbon (Ca), (2) B
carbon (Cp), or (3) Ca and CP positions for the location of voxels. We trained and tested each of
these models as described in the Methods. We compared the Dice coefficient, sensitivity and
positive predictive value to determine which representation performs best (Figure 2.8, Table 2.4).
The CP-only representation has an average test Dice coefficient of 0.551, with the Ca
representation having a test Dice coefficient of 0.545, where when both the Ca and Cp are included

together in the representation, the architecture has an average test Dice coefficient of only 0.528.

Finally, we further included orientation information of the residues themselves by

concatenating the unit vector of the Ca to CPB bond to the CP only representation. This
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representation had an average test metric of 0.597 (CB: Ca — Cp vec) (Figure 2.7, Table 2.4). This

method performed the best of all three representations, having the largest coverage and highest

average test metrics. For these reasons, we chose Cp: Ca — Cp as our representation of coordinates

and orientation for CAPSIF:V.
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Figure 2.8: Test Dice coefficient assessment for different representations with CAPSIF:V architectures: Blue

shows a CP representation including a normalized vector for alpha carbon (Ca) to CP, orange shows only a C

representation, green shows Co representation, and red shows Ca and CP representation with all voxels.

Table 2.4: Performance for each CAPSIF:V model. Dice coefficient is defined by (Eq 1); PPV and Sensitivity are

same as Table 2.1.

Voxel

Representation  Dice PPV Sensitivity
Cp 0.551  0.563 0.583

Ca 0.545  0.535 0.620
Ca+CB 0.528  0.555 0.554

CB: Ca — Cp 0.597  0.598 0.647
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Next, we investigated CAPSIF:G node representations, with the architecture described in Methods.
We constructed the following variants: CB nodes with ¢ and y angles, Cp and N, Ca, and C
backbone nodes (and one-hot encoding for atom type, without ¢ and y angles). The Cf only node
representation performed the best with a Dice coefficient of 0.543. Further, CP takes a fraction of
the time for predictions compared to the backbone due to graph construction time, therefore we

chose the CAPSIF:G to be the Cp model (Figure 2.9, Table 2.5).
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Figure 2.9: Test Dice coefficient assessment for different representations with EGNN architectures. Blue shows

all backbone atoms node representation, orange shows a CP3 node representation.
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Table 2.5: Performance for EGNN model node representation. Dice coefficient is defined by (Eq 1); PPV and

Sensitivity are same as Table 1.

EGNN

Representation  Dice PPV Sensitivity
Cp 0.543 0.541 0.590
Backbone 0.458 0.396 0.647

Random Assignment of Carbohydrate Binding Regions

As a control, we compared CAPSIF to a random baseline. For example, for 200 amino
acids with a 5.0% positivity rate, we randomly select 10 residues as a true label (sugar binding)
and computed the Dice similarity coefficient (Eg /.1). Using 1,000 trials for an endoglucanase
(6GLO), which has 331 total residues with 14 that experimentally bind carbohydrates, we observe
a theoretical maximum Dice coefficient at approximately 0.08 when all residues are predicted as
carbohydrate binders. At a rate of 5%, we observe a mean Dice coefficient of 0.046, where

CAPSIF:V predicts that protein with a Dice coefficient of 0.963 (Figure 2.10A).
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Figure 2.10: Dice coefficient assessment with random assignment smoothed with a kernel density estimate with
bandwidth h =.04. (A) Dice evaluation of random assignment of an endoglucanase (6GLO). (B) Dice evaluation over

entire test set.

The dataset has, on average, 5.16% of protein residues bind carbohydrates. With random
assignment over the entire dataset, random assignment at 5.16% yields an average 0.046 Dice
score, where CAPSIF:V outperforms random assignment by over 12-fold at an average 0.593 Dice

(Figure 2.10B).

Determination of CAPSIF probability threshold

To determine the best probability cutoff value for the final activation function, we altered the
threshold on the test dataset (Figure 2.11). CAPSIF:V differs minimally for all thresholds while
CAPSIF:G negatively correlates with increasing threshold and drops more sharply after a cutoff

of 0.6. For both architectures we chose a threshold of 0.5.
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Figure 2.11: Test Dice coefficient assessment for CAPSIF architectures for various thresholds for the final

sigmoid activation function. Blue represents CAPSIF:V, orange represents CAPSIF:G.
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Comparison of Dice and DCC metrics

A CAPSIF:V Dice v DCC score
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Figure 2.12: Comparison of Dice score and DCC. (A) Per-target comparison of Dice and DCC for CAPSIF:V
predictions on the test set. CAPSIF:V predictions (green) on (B) endo-1,4-f-mannosidase 10DZ and (C) C. pinesis

DSM 2588 (4Q52) (gray).
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Figures comparing CAPSIF:Voxel and CAPSIF:Graph predictions

B

TP FP

FN TN
CAPSIF:V CAPSIF:G CAPSIF:V CAPSIF:G
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Figure 2.13: Prediction of carbohydrate binding sites on a protein surface using CAPSIF:V and CAPSIF:G.
(A) Glc 6-phosphate dehydrogenase (PDB:5SUKW), (B) streptococcal virulence factor (PDB:2J44), (C) MCR-1
catalytic domain (PDB:5ZJV), and (D) CBM40 (PDB:6ER3). Residue labels - green: true positive, blue: false positive,
red: false negative, gray: true negative, cyan: bound carbohydrate; Dice coefficient is defined by eq (2.1) and DCC is

distance from center to center of the predicted binding regions.
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Comparison of RCSB and AF2 predicted structures

PDB Dice: 1.0 PDB Dice: 0.4
AF2 Dice: 0.0 AF2 Dice: 0.0
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Figure 2.14: AF2 structure prediction (red) of carbohydrate (purple) binding proteins compared to
experimentally solved structures (white); (A) SUFU (PDB:4BLS) (B) E. coli aminopeptidase N (PDB:4XO05), (C)
GspB siglec domain (PDB:5IUC), (D) GII.13 novovirus capsid P domain (PDB:5ZVC), (E) Glc 6-phosphate
dehydrogenase (PDB:SUKW), and (F) surface GBP B (PDB:6E57). Dice coefficient is defined by eq (2.1).
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Figure 2.15: CAPSIF:V accuracy is not correlated with AF2 accuracy or confidence. CAPSIF:V predictions on
AF?2 structure prediction metrics of carbohydrate binding proteins compared to RCSB structures. Change in Dice
metric (ADice = AF2 Dice — RCSB Dice) compared to (A) the total Ca RMSD (log scale), (B) Local average pLDDT
score of the carbohydrate binding region, and (C) total average pLDDT score of the entire structure.
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CAPSIF predicted residues
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Figure 2.17: Prediction of CAPSIF:V and CAPSIF:G on ATP and GTP-binding proteins. Both CAPSIF models
predict similar regions on the ATP/GTP binding proteins, but only qualitatively capture the binding region of the

phosphokinase, Acyl-CoA synthase, Rad, and Ras.
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CAPSIF cannot distinguish carbohydrate binding proteins from non-

binding proteins

Theoretical CAPSIF:V predictions
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Figure 2.18: Theoretical CAPSIF:V predictions compared to experimental predictions. (Top) Ideal number of
residues predicted by CAPSIF:V for carbohydrate binding proteins (red) compared to non-carbohydrate binding
proteins (red). (Bottom) CAPSIF:V predictions on protein structures from the families of lectins (red), BFLs, actin

binding proteins (BP), serine (Ser) proteases, and metalloenzymes.
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Chapter 3
PiCAP: Predictions from Deep Learning Propose

Substantial Protein-Carbohydrate Interplay

Adapted from: Canner, S. W., Schnaar, R. L. & Gray, J. J. Predictions from Deep Learning Propose Substantial Protein-
Carbohydrate Interplay. bioRxiv, (2025).
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Figure 3.1: Protein interaction of CArbohydrates Predictor (PiCAP) identifies the likelihood a protein non-
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covalently interacts with carbohydrates.

Attribution of credit: SWC (Conceptualization, Writing, Methods, Analysis, Figures), RLS (Writing, Analysis), JIG
(Conceptualization, Writing, Analysis)
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Overview

Although I previously developed a method for identifying residues implicated in protein-
carbohydrate interactions, researchers are unable to determine whether a protein binds to
carbohydrates. I therefore sought to address the grand challenge to identify protein-sugar
interactome in an organism. Direct experiments would require extensive libraries of glycans to
definitively distinguish binding from non-binding proteins. Computational screening of proteins
for carbohydrate-binding provides an attractive and ultimately testable alternative. Current
estimates label 1.5 to 5% of proteins as carbohydrate-binding proteins; however, 50-70% of
proteins are known to be glycosylated, suggesting a potential wealth of proteins that bind to
carbohydrates. I therefore developed a neural network architecture, named Protein interaction of
Carbohydrates Predictor (PiCAP), to predict whether a protein non-covalently binds to a
carbohydrate. I trained PICAP on a novel dataset of known carbohydrate binders and selected
proteins that I identified as likely not to bind carbohydrates, including transcription factors,
cytoskeletal components, and small-molecule-binding proteins. PiICAP achieves a 90% balanced
accuracy on protein-level predictions of carbohydrate binding/non-binding. Using the same
dataset, I developed a model named Carbohydrate Protein Site Identifier 2 (CAPSIF2) to predict
protein residues that interact non-covalently with carbohydrates. CAPSIF2 achieves a Dice
coefficient of 0.57 on residue-level predictions on our independent test dataset, outcompeting all
previous models for this task. To demonstrate the biological applicability of PiICAP and CAPSIF2,
I investigated cell surface proteins of human neural cells and further predicted the likelihood of
three proteomes, notably E. coli, M. musculus, and H. sapiens, to bind to carbohydrates. In the

human proteome, PiCAP predicts that 75% of extracellular and cell surface proteins are putative

94



carbohydrate binders. The PICAP predicted binders are highly enriched for functions and processes

such as growth factor receptor binding, inflammatory responses, and cell-cell adhesion.

Significance Statement

The totality of the protein-sugar interactome remains elusive, in part due to the inability to
test a proteome versus a glycome in a high throughput manner. Here I show the first high-
throughput methodology to predict protein-carbohydrate interactions at proteomic scales by using
structural and sequence information. To provide a better grasp of the role of carbohydrates in
cellular functions, I created a computational method to predict the carbohydrate binding profiles

of the human, mouse, and E. coli proteomes.

Introduction

In mammalian biology, carbohydrates are studied as two distinct families of molecules that
are the focus of two disciplines. As metabolic precursors, from food or stored reserves,
polysaccharides and monosaccharides (primarily glucose) are transported into and stored in the
cytoplasm where they are subject to catabolic transformations to produce energy.’ In contrast,
distinct covalent groupings of varied monosaccharide building blocks covalently bound to proteins
(glycoproteins and proteoglycans) and lipids (glycolipids) are relatively stable and are abundant at
the cell surface and in the extracellular milieu.® A notable exception is O-GlcNAcylation, the
reversible covalent attachment of the single sugar N-acetylglucosamine (GIcNAc) to serines and

threonines of many cytoplasmic and nuclear proteins.!%
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Like their structures, the functions of carbohydrates are diverse. Among other functions
they play essential roles in metabolism, they contribute to protein, cell and tissue structures, and
they engage in molecular recognition upstream of cell-cell adhesion and cell regulation.’ Most of
these functions involve engagement of glycans by proteins.!®> These protein-carbohydrate
interactions have predominantly been studied using chemical and biochemical methods, despite
recent advances in the computational field. 1%

With the advent of the third generation of machine learning and large datasets, many novel

algorithms have been created to better understand biophysical phenomena.!?’

Deep learning
methods have recently overtaken most traditional algorithms for all biomolecular methods on all
biopolymers, including prediction of protein structure, protein-small molecule interactions, and de
novo protein design.384243:108.109 Ty of the largest computational steps in biophysics made
recently are the releases of AlphaFold 2 (AF2)*® and ESM*. AF2 revolutionized the protein
structure landscape by creating a public, easily accessible, and accurate method for protein
structure prediction. AF2 additionally predicted the protein structures of 48 organisms that are

publicly accessible.!%®

ESM (named for evolutionary scale modeling) revolutionized protein
sequence representations through its transformer architecture, with ability to richly encode the
language of protein sequences.®

Leveraging recent computational advances, scientists are beginning to explore the breadth
of protein-carbohydrate interactions. I expect some of these protein-carbohydrate interactions to
be involved in carbohydrate metabolism, some in intermolecular recognition and regulation of
protein functions (e.g. O-GlcNAc), and others in cell adhesion and cell regulation. The goal of this

work is to use computational advances to predict the protein-sugar interactome: all proteins

amenable to carbohydrate binding, in its broadest interpretation. Conventionally, researchers have
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focused on the carbohydrate binding protein family of lectins, which excludes enzymes, carriers,
or native sugar sensors. Here I computationally explore carbohydrate-binding proteins without
excluding them based on function; I expect to capture proteins across metabolic, structural and
molecular recognition functions. Although this approach is agnostic to carbohydrate species; as
discovery progresses, our work may be expanded to provide further sub-characterization to
identify the functional definitions of carbohydrate binding.

In the previous chapter, I developed a dataset and two models, named CArbohydrate
Protein Site IdentiFier (CAPSIF):Graph and CAPSIF:Voxel, to predict the protein residues
involved in noncovalent carbohydrate-protein interactions.!®® CAPSIF:V and CAPSIF:G are
trained and tested on the same dataset and use the same residue level encodings, but CAPSIF:V
encodes proteins onto a 3D voxelized grid with a UNet architecture whereas CAPSIF:G uses an
equivariant graph neural network (EGNN) message passing framework; CAPSIF:V slightly
outperformed CAPSIF:G by all measured metrics.

Since both CAPSIF models were released, two similar models have been created. Bibekar
et al. released Protein Structure Transformer (PeSTo)-Carbs, which uses a geometric transformer
architecture to predict residues involved in protein-carbohydrate interactions.!!%!!! PeSTo-Carbs
employs a query-key-value attention mechanism with message passing across atoms that are then
pooled for residue-wise predictions.!!® He et al. released DeepGlycanSite, which leverages a
geometric message-passing architecture to predict a glycan binding site in both the case of a known
ligand and an unknown ligand.!!! PeSTo-Carbs modestly outperforms both CAPSIF models on all
reported metrics, whereas DeepGlycanSite focuses on binding to nucleotide structures as

compared to carbohydrate-only polymers.
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Most carbohydrate-protein interaction algorithms rely on multiple datasets to extract
experimental coordinates for prediction.!%!1® Currently the standard protein-carbohydrate dataset
is UniLectin; however, UniLectin focuses only on proteins in the lectin family and thereby does
not include other carbohydrate binding proteins.!''?> Recently, DIONYSUS was released detailing
an immense set of experimental carbohydrate binding proteins with non-covalently bound
carbohydrate as well as glycosylated proteins.!'!?

Since experimentally solved structures can be difficult to obtain, especially in the presence
of a carbohydrate ligand, some datasets of sequences exist that identify carbohydrate binding
proteins. The Carbohydrate Active enZYmes (CAZY) dataset identifies sequences of catalytically
active proteins that act on glycosidic bonds.® LectomeXplore is a dataset that identifies known
lectins, their associated structures (if known) and potential lectins as identified by sequence
similarity via a hidden Markov model (HMM).!¢ Rather than limiting their work to known lectins,
Zhang et al. developed high throughput experiments with a ganglioside probe that identified 873
putative human proteins that likely interact with gangliosides.!” These works are limited by their
scope, requiring either specific protein families or specific carbohydrate species to interact.

Here, 1 present novel frameworks to both predict whether a protein can bind to
carbohydrates and where on that protein the carbohydrate binds, entitled Protein interaction of
CArbohydrate Predictor (PiCAP) and CArbohydrate Protein Site IdentiFier 2 (CAPSIF2). Both
models leverage a large dataset with two training stages, first using all small molecule binding
interfaces and then fine tuning with carbohydrate-specific data. I assess the ability of these models
in their tasks. I then validate PICAP against the work of Zhang et al.!” and identify potential outliers
in their dataset. Finally, I use these models to make the first prediction of carbohydrate binding

proteins, and residues of these proteins, of three proteomes. While these first proteome-wide

98



predictions are likely noisy, they define the broad scope of the problem and invite refinement by

future experimental and computational methods.

Results

NoCAP: a novel non-binder dataset

Many datasets exist for protein-carbohydrate interactions, with the most notable being
DIONYSUS (Table 3.1). However, there is no dataset of proteins that do not bind to carbohydrates;
therefore, I developed a novel dataset consisting of proteins known to bind carbohydrates and
proteins that likely do not bind carbohydrates based on biophysical intuition. Although the non-
binder dataset is likely mildly contaminated with some currently unknown carbohydrate binding
proteins, I believe this dataset to be generally representative of proteins that do not bind
carbohydrates. I denote this novel combined dataset as Nonbinder and binder of CArbohydrate
Protein interactions (NoCAP) (Table 3.1). In addition, I created a subset of NoCAP, named
DIONYSUS-Residue (DR) as all binding proteins in NoCAP with a bound ligand, retaining the
DIONYSUS name as most protein structures were retrieved from the DIONYSUS dataset (Table

3.1).
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Table 3.1: Experimental structural datasets. Columns 2 and 3 indicate dataset inclusion in the NoCAP or DR

datasets.
Dataset NoCAP DR Description  n proteins
CAPSIF!%¢ v v Bound protein-glycan complexes 802
TS 90 v v Test set for Pesto-Carbs; a subset of the 90
CAPSIF test set
DIONYSUS!'3 v v Bound protein-glycan complexes 5,461
UniLectin!!? 4 Lectin structures and sequences 2,381
ProGen!!* v De novo designed lysozymes 69
Designed- v v List of crystal and complementary 2,800
NB!15 designed non-binders
SAbDab!!6 v v Crystalized antibodies to their antigen 2,925
(filtered)
PDB-Bind'!’ v v Small molecule binders (filtered to 17,191
remove carbs)
PDIDB!!® v DNA-binding proteins (putative non-carb 922
binders)
Manual v Biophysically putative non-binding 606
selection proteins (fatty acyl synthases, cytoskeletal

components, flippases, ion transporters,

ribosomal proteins)
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To provide a more comprehensive view of the physiologic characteristics of protein-
carbohydrate interactions, I curated the datasets to contain complete structures (e.g. not separate
chains) and incorporated both ligand-bound /olo and unbound apo forms. While DIONYSUS
already aggregated several sources including Unilectin3D and SabDADb, I additionally use
Unilectin3D to obtain unbound apo structures of lectins and leverage SabDAD to access antibody-
protein and antibody-nucleic acid complexes. In total, NoCAP contains 30,429 structures, with
9,509 carbohydrate binding proteins and 21,339 putative nonbinders. The DR set, which is that of

bound protein-carbohydrate complexes, contains 6,263 structures in total.

CAPSIF2 outcompetes all previous models identifying carbohydrate-
binding residues

I constructed an equivariant graph neural network (EGNN) named Carbohydrate Protein
Site IdentiFier 2 (CAPSIF2) leveraging the same general architecture of my previous work
CAPSIF:Graph (CAPSIF:G). Although CAPSIF:G underperformed CAPSIF:V, I chose the EGNN
architecture because it is scalable to proteins of any size, while CAPSIF:V is limited by the size of
the underlying convolutional voxels. Although the dataset of this work (6,724 protein structures)
is substantially larger than my previous work (~800 protein structures), there is still an intrinsic
data imbalance in that most protein residues (~95%) do not bind carbohydrates. To address this, I
once again leveraged the Dice loss (Table 3.2) to emphasize the residues that bind carbohydrates

(see methods).
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Table 3.2: Average metrics for each deep learning architecture on test sets. Dice coefficient is described as 2TP /
(2TP + FP + FN), where TP, FP, and FN are the counts of the true positives, false positives, and false negatives,

respectively. MCC is the Matthews correlation coefficient. Boldface indicates the best performance for each metric.

Model DR Dice DR MCC TS 90 Dice TS 90 MCC
CAPSIF2 0.573 0.574 0.616 0.607
Pesto-Carbs 0.493 0.492 0.638 0.624
CAPSIF:V 0.226 0.202 0.608 0.622
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Figure 3.2: Comparison of CAPSIF2 and PeSTo-Carbs on residue-wise prediction tasks. (A) Distribution of Dice
coefficient across prediction targets (proteins) for CAPSIF2 (blue), PeSTo-Carbs (red), and CAPSIF:V (black) on the
DR test set. Densities smoothed with a Gaussian kernel density estimate (KDE, bandwidth h = 0.04) . (B) Per-target
comparison of CAPSIF2 to PeSTo-Carbs. (C) Side-by-side comparison of carbohydrate (yellow) bound proteins (gray)
predictions by CAPSIF2 (blue, left) and PeSTo-Carbs (orange, right) on B. Subtilis a-amylase (1BAG), O. sativa
SALT protein (5GVY), E. coli poly-B-1,6-N-acetyl-D-glucosamine N-deacetylase C-terminal domain (4P7R), and

galactose binding lectin (5XFD). Per-target Dice coefficients shown below.
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In Figure 3.2 and Table 3.2, I compare my results to PesTo-Carbs!!?

and my previous model
CAPSIF:V1%_ On the TS-90 test set, CAPSIF2 achieves 0.616 Dice and 0.607 MCC metrics and
PesTo-Carbs outcompetes my model on this test set with a 0.638 Dice coefficient and 0.624 MCC
(Table 2). Contrarily on the DR test set, CAPSIF2 achieves 0.573 Dice coefficient and 0.574 MCC,
while PesTo-Carbs only achieves 0.493 Dice and 0.492 MCC metrics. On a per target basis,
CAPSIF2 performs greater than 0.15 Dice better than PesTo-Carbs on 40% of targets and PesTo-
Carbs performs greater than 0.15 Dice than CAPSIF2 on 15% of targets (Figure 1B).

I further show the results of specific targets in Figure 3.2C. In most of these cases, PesTo-
Carbs and CAPSIF2 can successfully find the binding region, with varying accuracy; however,
they both appear to fail on some targets, such as N-acetyl-D-glucosamine N-deacetylase. This
target notably has an observable pocket in the center of the structure, which CAPSIF2 and PesTo-

Carbs incorrectly identifies as the binding region, wherein the experimentally solved

oligosaccharide is proximal to the pocket.

PiCAP accurately predicts carbohydrate binding and non-binding on
experimental structures

Leveraging the same foundational network structure as CAPSIF2, I constructed the
equivariant graph neural network (EGNN) named Protein interaction of Carbohydrate Predictor
(PiCAP) with five additional layers to yield a single value prediction of whether a protein does or
does not bind a carbohydrate. PiCAP assesses the spatial relationship of residues over an increasing

context window, pooling the sequence into a fixed size 2D image, and providing a singular
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classification prediction based on that 2D representation. To my knowledge, PiCAP is the first DL

model to assess protein-noncovalent binding of carbohydrates at a protein level.

Table 3.3: Metrics for PICAP on the NoCAP test set and associated subsets with the number of proteins in parentheses.

BACC is balanced accuracy. TPR is True Positive Rate TPR = TP/ (TP + FP). TNR is True Negative Rate TNR = TN

/ (IN + EN).
Test Set Accuracy
NoCAP BACC (4,411) 0.896
NoCAP TPR (2,374) 0.963
NoCAP TNR (2,037) 0.828
TNR Ribosome (7) 1.0
TNR Holdout (92) 0.902
TPR ProGen Lysozymes (69) 0.841

TNR Designed Nonbinders (186) 0.608

Antibody BACC (50) 0.562
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Before Training After Training

® Nonbinder ‘ ® Nonbinder

Figure 3.3: T-distributed stochastic neighbor embedding (T-SNE) diagrams of the PiCAP final layer
embeddings of the NoCAP test set. (A) The randomly initialized model’s final layer output. (B) The final trained

model’s final layer output.

I tested PiICAP on a holdout set based on sequence similarity, finding that PICAP achieves
an 89.6% balanced accuracy (BACC), with a 96.3% true positive rate (TPR) and 82.8% true
negative rate (TNR) (Table 3.3). The ability to separate out carbohydrate binding (blue) and non-
binding (red) proteins is further demonstrated in 2D t-distributed stochastic neighbor embedding
(T-SNE) plots (Figure 3.3)!'°. Despite my best efforts, I do expect that the nonbinder dataset is
likely contaminated with some carbohydrate binding proteins, therefore I must further discriminate
PiCAP’s ability to predict on specific test set subsets.

When inspecting subsets of NoCAP (Table 3.3), I find PiCAP correctly predicts all the
protein chains of the ribosome assembly as non-binders. I further have a holdout set of multiple
proteins from various protein families, consisting of fatty acyl synthases, actin, myosin, and
flippases, where PiCAP achieves an encouraging 90.2% accuracy on this negative subset. |
1114

observed that PICAP performed well on designed lysozymes from the ProGen language mode

with an 84.1% accuracy. This high accuracy may be a result from the high redundancy of the
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ProGen lysozymes, which span only five families. Contrarily, PICAP achieves poor accuracy on
computationally designed non-binder proteins, these being poor designs regarded as non-binding
to the carbohydrate on the designed pocket, with an accuracy of only 60.8%. As a final test, [ asked
how my model performed on antibodies — specifically to identify antibodies that bind proteins or
the glycans of glycoproteins. Of the 50 tested antibody structures, PICAP achieved a 79% TNR
and 33% TPR for a BACC of 56%. The antibodies and designed nonbinders are proteins
hypervariably mutated at the binding site for specificity, which has the poorest performance of
PiCAP, whereas PiCAP performs encouragingly on more evolutionarily and biologically defined

proteins.

PiCAP agrees with LectomeXplore and experimental evidence

The NoCAP dataset for training and testing PICAP comprises experimentally solved
structures; therefore, I decided to investigate how the model performs on two datasets of
computationally predicted structures. The first dataset is LectomeXplore published by Bonnardel
et al., which identifies likely lectins across 37,794 organisms using a hidden Markov model
(HMM) based on sequence and structural similarity.!® T also investigated the ganglioside
interactome as published by Zhang et al., where they developed a high throughput assay to identify
putative human proteins that interact with gangliosides.!” Both of these datasets have only
sequence/UniProt gene IDs, therefore, for input into my algorithm, I used the predicted structures
of the AF2 model proteomes,!*® only retaining confident segments of the structure (pLDDT larger

than 70).
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Figure 3.4: PiCAP validation against computational datasets. (A) Plot of Zhang et al. identified proteins across
nine experiments alongside the fraction of proteins in each bin predicted as a carbohydrate binder by PiCAP. (B)
PiCAP and CAPSIF2 predictions of selected ganglioside interactome proteins. The top row (blue) indicates proteins
predicted as carbohydrate binders by PICAP and bottom row (red) as proteins predicted as non-binders by PiICAP with
the number of experiments the protein was identified by in parentheses. Highlighted residues in cyan (top column)

and red (bottom column) are the predicted binding regions by CAPSIF2.

LectomeXplore

The most closely related work to PiICAP is LectomeXplore, which identified putative
lectins through sequence and structure homology. Unlike LectomeXplore, PICAP does not limit
proteins to be only of the lectin superfamily. I compared the likelihood of all predicted
LectomeXplore lectins (greater than 0.25 confidence) present in the AF2 reference proteomes of
two model species, M. Musculus and H. Sapiens, finding the agreement between the available AF2
structures of LectomeXplore and PICAP to be 100% (225 of 225) for M. Musculus and 99.6% (229

of 230) for H. Sapiens. Further, PICAP has a 100% (109 of 109) agreement between the available
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AF?2 structures on all confirmed human lectins from HumanLectome.!?® These results suggest a

strong true positive rate (TPR) of PICAP on the simplest class of sugar binding proteins.

Ganglioside Interactome

Zhang et al. developed a high throughput method to identify proteins that interact with
gangliosides. They created ganglioside probes with photoaffinity tags that covalently linked the
probe to nearby proteins, and then they used mass spectroscopy and statistical methods to identify
those proteins. They used six different probes in two different cell lines (A431 and SH-SYS5Y),
and for a total of nine experiments; I filtered the putative proteins by experiment. I selected the top
250 proteins above background from each experiment and removed CRAPome proteins.'?! This
identified 873 unique proteins across all nine experiments.!” As a high throughput method, and the
first and largest of its kind, the error rates of their method have yet to be explored and cross-
validated across other experimental methods. I therefore will use PiICAP to investigate the putative
proteins of the ganglioside interactome work.

Of the 873 identified candidate ganglioside binding proteins, I was able to identify 848
proteins in the AF2 reference human proteome. PiCAP predicts 506 (60%) of these proteins as
carbohydrate binders. Further, PICAP also predicts that 988 of 3,500 putative non-ganglioside
binding proteins (28%) as likely carbohydrate binders. Although these numbers at first suggest a
substantial disagreement between my works, I observe a strong positive increase in the fraction of
proteins predicted as carbohydrate binders compared to the number of experiments that identified
a binding protein (Figure 3.4A).

To explore the agreement and disagreement between the experiments, I selected four

representative proteins: Frizzled-1 (Entry Name: FZDI; UniProt: Q9ULW2), ATPase
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sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (AT2A2; P16615), Double-stranded
RNA-specific editase B2 (RED2; Q9NS39), and mothers against decapentaplegic homolog 4
(SMAD4; Q13485). FZDI is involved in the Wnt signalling pathway and was identified by four
of Zhang et al.’s experiments; PiCAP predicts FZD1 as a carbohydrate binder, and FZD1 was a
subject of close scrutiny in the ganglioside interactome work!'’. ATP2A2 is an intracellular
calcium/ATP pump and was identified by three experiments and predicted as a carbohydrate
binding protein by PICAP. ATP2A2 has a specific role in ATP-mediated transport of calcium ions
and likely little specific affinity for carbohydrates, let alone gangliosides'??.. RED2 is an enzyme
that converts adenosine to inosine in pre-mRNA and was identified by three experiments'?*, PICAP
disagrees with the experimental results and predicts RED2 as a non-binder, which could indicate
a potential error in the experimental evidence. Finally, SMAD4 is a transcription factor!?4, which
was identified to not interact with gangliosides in all experiments, where PiICAP agrees and

predicts the protein as a carbohydrate non-binder.

PiCAP and CAPSIF2 can predict putative proteome scale
interactomes

With PiCAP validated to an acceptable level, I sought to understand the protein-
carbohydrate interactome with greater breadth than studied before. I chose three model organisms
from the AF2 proteome datasets!®®, E. coli, M. musculus, and H. sapiens. Of the 4,363 proteins in
the AF2 E.coli strain K12 proteome (UP000000625), PiCAP yielded predictions on 4,339
accessible proteins and predicted 1,677 (39%) proteins as carbohydrate binders. Of the 21,615

proteins in the AF2 M. musculus proteome (UP000000589), PICAP yielded predictions on 21,304
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proteins and predicts 8,177 (38%) proteins as carbohydrate binders. Of the 20,650 proteins in the
AF2 H. sapiens proteome (UP000005640), PiCAP yielded predictions on 20,067 proteins and
predicts 7,029 (35%) proteins as carbohydrate binders (Figure 3.5A). I further provide the results
of three additional model species: Drosophila Melanogaster, C. elegans, and S. cerevisiae in the

supplemental information, without detailed analysis.
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Figure 3.5: PiCAP predictions of proteomes. (A) Comparison of the fraction of proteins predicted as carbohydrate
binders by PiCAP across three proteomes. (B) Cellular components of human proteome predicted carbohydrate
binding and non-binding proteins (see also Table 3.6). Human proteome statistical tests showing the -logio of the false
discovery rate (FDR) and overrepresentation (blue) and underrepresentation (red) for select (C) molecular functions
and (D) biological processes. FDR measures the expected proportion of false positives among the list of putative

carbohydrate binders and non-binders.
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Human Proteome

The primary proteome I analyzed was the AF2 human proteome (UP000005640), which
contains 20,650 unique proteins with substantial resolution. PICAP predicted 7,029, or 34%, of
proteins to bind to carbohydrates. For comparison, the total number of lectins identified by
LectomeXplore is 230, or 1.1% of the UniProt reference proteome'®, and the number known by
CaZy is 349, or 1.7%?. In contrast, the number of proteins experimentally identified as likely to
bind gangliosides, a unique glycan family, is 873, or 4.2%!7. To reconcile the differences between
my work and the work of many others, I analyzed the subcellular localization, molecular functions,
and biological processes of predicted binding and non-binding proteins.

I investigated the subcellular compartments wherein PiCAP predicted carbohydrate
binding proteins and non-binders reside based on Gene Ontology (GO) terms (Figure 3.5, Table
3.6). The compartments with the highest fraction of sugar-binding proteins are extracellular (75%),
cell surface (75%) and ER/Golgi (50%), which aligns with these being subcellular compartments
involved in intercellular communication. The regions mostly devoid of carbohydrates and glycans
are the nucleus and cytoplasm; PiCAP predicts 85-97% of these proteins as non-carbohydrate-
binding proteins. To further investigate the binding profiles of PICAP, I queried co-factor binding.
A significant portion of carbohydrate-binding proteins depend on a co-factor such as calcium in
C-type lectins®, whereas zinc is more dominantly oriented as a DNA/RNA binding co-factor. 12°
PiCAP predicts 58% of calcium-binding proteins and 22% of zinc-binding proteins as
carbohydrate binding proteins, indicating that PICAP does not conflate co-factor binding for
carbohydrate binding (Figure 3.7). Additionally, PiCAP predicts 94% of human GO associated

carbohydrate binding proteins as binders and 91.5% of GO associated DNA/RNA binding proteins
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as non-binders, indicating an overall ~93% accuracy, which agrees with the NoCAP dataset
evaluation (Figures 3.7, 3.11).

To discern higher specificity from the AF2 human proteome predicted by PiCAP, I selected
representative GO terms with PANTHER.!?%!127 Using the false discovery rate (FDR) for human
proteome related molecular functions, I find PICAP-predicted binding proteins are significantly
overrepresented to act in growth factor receptor binding, transmembrane signaling, and
unsurprisingly, carbohydrate binding (Figure 3.5C). Additionally, PiICAP-predicted binders are
highly underrepresented for carbohydrate derivative binding but also protein binding, nucleic acid
binding, zinc ion binding, and actin binding. Next, I analyzed the biological processes of human
PiCAP predicted carbohydrate binding proteins, finding them overrepresented in proteoglycan and
glycolipid metabolic processes, cell-cell adhesion, inflammation response, monosaccharide
metabolic process, and unsurprisingly glycosylation (Figure 3.5D). Comparatively, I found that
carbohydrate binding proteins are underrepresented in RNA processing, protein deubiquitinization
and DNA recombination cellular processes. Analysis for E. coli strain K12 and M. Musculus AF2

proteomes is provided in the supporting information (Figures 3.8-11), showing similar predictions.

Discussion

I have demonstrated (1) an updated protein carbohydrate site identifier CAPSIF2 that
outcompetes all current models on a generalized dataset and (2) a novel model named PiCAP that
predicts whether a protein binds to carbohydrates or not. I validate the models against other models
and datasets and applied to proteome scale analysis to garner more information about the protein-

carbohydrate interactome.
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CAPSIF2 boasts modest improvements in prediction accuracy on the original
CAPSIF/TS90 dataset compared to CAPSIF:G and CAPSIF:V, but it underperforms PesTo-Carbs.
CAPSIF2 however excels the most at a larger dataset containing ~1k structures with substantially
larger sequence variability, outcompeting all tested models. CAPSIF2 leverages a graph neural
network operating on residues, using the same foundational approach as CAPSIF:G, while
CAPSIF:V used a 3D voxelized CNN approach. PesTo-Carbs also leverages a graph neural
network approach; however, it operates at an atom-wise level and only pools to the residue level
late in the architecture. These graph architectures however have a similar level of parameters,
where CAPSIF:G has 236K parameters, CAPSIF2 has 1.6M parameters, and PesTo-Carbs has
1.1M parameters; while CAPSIF:V has substantially more with 102M parameters.

I believe that the differences in performance are primarily not attributable to the
architectures themselves, but rather the datasets. All models perform in a Matthews correlation
coefficient (MCC) range from 0.55 to 0.63; thus, I attribute the largest differences to the stochastic
training of these models and the slight variations in architectures. Structural protein-carbohydrate
datasets are limited currently by the size of the PDB, as these interactions must be strong and stable
to observe with experimental methods, where in physiology these interactions are often guided by
avidity over affinity and/or enzymatic activity on the carbohydrates themselves. I believe larger
datasets is only one part to improving these models, but improving the datasets with manual
interrogation of all structures and with the identification of continuous biophysical pockets is
necessary to improve the models’ performance.

To improve carbohydrate-protein structural datasets and improve the general biological
understanding of the carbohydrate-protein interactome, I created PICAP. PiCAP is the first model

of its kind as it predicts the protein-sugar interactome - carbohydrate binding of proteins
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independent of family/function — whether it be a cell surface protein for adhesion and
communication or for metabolic enzymatics. The dataset [ used to train PICAP primarily separates
known carbohydrate binders and proteins that are unlikely to bind to carbohydrates physiologically
inside the cell — ranging from small molecule binders to cytoskeletal components. Although this
approach is imperfect, it is the first attempt of this kind and, while limited by the underlying
skewed PDB species distribution toward soluble proteins from human and simple prokarya, it still
leverages a generalizable biophysical intuition of the cellular systems. Further augmentation of the
NoCAP dataset could improve on the breadth of the training data by using sequence databases in
conjunction with structure predictions such as AlphaFold3#?, or Boltz-1!2%. Additional positive
sugar binders can come from CAZY®® which contains 5M+ enzymes. Additional negatives can be
identified across many species using specific GO terms with known presence in the cytoplasm,
nucleus, or nuclear membrane.

Ultimately PiCAP achieves 89.6% accuracy on the experimental NoCAP dataset with 1.8M
parameters. PiICAP predicts most subsets of the test set with equivalent accuracy (designed
lysozymes, cytoskeletal proteins, flippases, and fatty acyl binding proteins); however, it proves
notably worse on designed-non binders and antibodies. The designed non-binders were created
using Rosetta, where the binding pocket itself was designed but the remainder of the protein
remained untouched!!®. These designs were labeled as non-binders by positive Rosetta binding
energy scores — and never experimentally expressed nor tested. In a similar vein, to bind
carbohydrates, antibodies use their hypervariable regions which are local regions that undergo
somatic hypermutation. My input to the protein is ESM2 embeddings, which uses full sequence
context to extract a large 1280-dimensional embedding of each residue. As the ESM2 model is

only trained and tested on biological proteins, the signal specificity of the binding pocket sequence
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of the designed non-binders may be masked by its more evolutionarily conserved residue, leading
PiCAP to predict these non-biological proteins as carbohydrate binders. PICAP studies protein
sequence and structural information together, indicating PiCAP as a strong candidate for proteome
wide studies of protein-carbohydrate interactions.

Since PiICAP performed well on NoCAP data, I sought to validate the model against other
methods that predicted carbohydrate binders: the ganglioside interactome and LectomeXplore.
While I saw only 60% of proteins in the ganglioside interactome as positive, after closely
evaluating a subset of the data, I reconciled the difference with the error of the high throughput
experimental method. Although PiCAP appears to disagree with a good fraction of the ganglioside
dataset, it has a strong linear relationship with the high throughput experiments. The more
experiments that identified a protein, the higher likelihood that PICAP predicted the protein as a
carbohydrate binder. I further observe strong agreement between LectomeXplore and PiICAP, with
an average of 95% agreement across three model species.

With experimental and computational validation, I then leveraged PiCAP against the AF2
proteome datasets. PICAP predicts 35~40% of all proteins in three biological model species to be
carbohydrate binding proteins — the highest prediction to date. As carbohydrates are ubiquitous
across all species and are the foundational building block of energy storage and integral to most
all extracellular communication, it is unsurprising for such a high fraction of proteins bind to
carbohydrates. PICAP results can be further validated by proteomic evaluation by experiments
such as the pull-downs from Zhang et al.!” or liquid glycan arrays!'?®!3°. The computational
predictions can help elucidate more functionality of proteins and provide a larger context to their

roles inside the cell and the suggestion of more protein moonlighting than previously understood.
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Despite their biophysical importance in most all cellular functions, carbohydrates remain
elusive with few studies determining the exact extent of protein-carbohydrate interactions. My
work expands to all proteins/carbohydrates in an agnostic manner that abstains from any limits on
protein family or carbohydrate species. I released the results of CAPSIF2 and PiCAP of six model
system proteomes for all proteins for open-source scientific use. Additional steps can now be taken
for the ultimate goals to design proteins to carbohydrate and glycoprotein targets for therapeutic
purposes. Firstly, I encourage the expansion of this work or LectinOracle *® or GlyNet®® to predict
carbohydrate species to all carbohydrate binding proteins. One simple step would be to predict
whether proteins bind to just a specific species of carbohydrate — such as chitins or sialic acids.
Another step would a high throughput computational docking of those carbohydrate species to the
identified proteins, using CAPSIF2 or PesTo-Carbs!!? or DeepGlycanSite!!! to identify an initial
hypothesis to feed GlycanDock?®, or directly de novo with programs like DiffDock*, RosettaFold-
All Atom (RF-AA)"!, AlphaFold3*?, or Boltz-1!?® (although there are currently no validation
studies testing whether these methods provide high accuracy on carbohydrate-specific docking).
In addition, all these methods leverage deep learning techniques. Deep learning methods require
multitudes of data, and although 1 was able to demonstrate impressive results on low
accuracy/messy data, I believe a clean dataset is integral and necessary for the future of this field.
A better annotated set of proteins that do not bind carbohydrates would be helpful, as well as all
structural proteins to have all ligands together, where currently there is a high redundancy in
protein structures with slightly different ligands or crystallization techniques, which reduce the
accuracy of the test metrics in comparing CAPSIF2 and PesTo-Carbs. I also believe tandem
experiments, such as those done by Zhang et al.!” or selective exo-enzymatic labeling (SEEL)

glyco-engineering high throughput methods  to validate these models could further demonstrate

118



a larger wealth of carbohydrate binding proteins, alongside their specificity, allowing for further
annotation of the genome on a large scale.

In total, I present a novel framework to predict the protein-sugar interactome across any
species. Taking a sugar agnostic approach, categorizing glycans and metabolic glucose together,
PiCAP accurately predicts evolutionarily conserved proteins as carbohydrate binding proteins with
approximately 90% accuracy (Table 3.3, Figures 3.7, 3.11). PICAP’s predictions align with
established biophysical principles, indicating that carbohydrate binding is largely absent from the
cytoplasm and nucleus and approximately 75% of all cell surface and extracellular proteins bind
carbohydrates (Figure 3.5). This suggests that a majority of membrane, surface, and extracellular
proteins may predominantly interact with glycans for localization and binding, rather than entirely
relying on protein-protein specific interactions. These findings highlight the potential of PICAP to
not only accelerate glycoproteomic research but also refine the understanding of protein function

in the broader context of cellular communication and molecular recognition.

Methods

Dataset

Carbohydrate-binding proteins were selected by combining multiple datasets. I selected
carbohydrate binding antibodies from SAbDab,!!® all experimentally solved proteins from
UniLectin!'? (with and without bound carbohydrates), the CAPSIF dataset,'’ and most notably,
the DIONYSUS dataset,!!* which was filtered for only saccharide containing complexes. Further,
I included the computationally designed and experimentally viable lysozymes from ProGen,!'!*

with structures predicted by the Colab distribution of AlphaFold2.%*
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There are several datasets of protein-carbohydrate interactions; however, there is no dataset
of proteins that do not bind to carbohydrates, so I constructed one (Table 3.1). In the creation of
such dataset, an intrinsic difficulty is that it is not possible to prove that a protein does not bind to
a carbohydrate of any kind; therefore, I selected proteins that biophysically have low likelihood to
bind to carbohydrates due to their function or location inside the cell. The experimentally solved
proteins selected were primarily chosen as small molecule binding proteins, DNA binding proteins,
nuclear pore complex proteins, serine proteases, cytoskeletal proteins, aminotransferases,
flippases, fatty acid binding proteins, selected antibodies (antibodies), and ribosomal proteins. In
addition to these proteins, Luo et al. computationally constructed a dataset of carbohydrate non-
binder proteins with the Rosetta software!!>.

Small molecule data constitutes the largest portion of the non-binders (~18k pdbs), as I
used the PDB-Bind 2020 dataset.!!” Some proteins in the PDB-Bind dataset contain carbohydrates

101 and removed them from

as the ligand, in which case I identified those ligands using PyRosetta
the non-binder dataset and added them to the binder dataset. Antibodies were selected using the
SAbDab dataset by finding all proteins that were bound to proteins or nucleic acids and further
filtering to structures not containing any carbohydrates in the structure nor an NX(S/T) motif in
the antigen.!'® Ribosomal proteins were selected from the bacterial ribosome structure.!3? The
remainder of protein structures were selected by inspection from the RCSB PDB.!3

After combining the datasets and adjusting for duplicate PDBs across different datasets,
the final NoCAP dataset contains 30,849 total unique protein structures. Of these structures, 9,608
bind to carbohydrates, with 6,724 having an experimentally bound carbohydrate. Of the 21,412

non carbohydrate binders, 17,191 have an experimentally resolved small molecule bound to it,

leaving 4,221 as nonbinders. To encourage generalizability to minor errors in structure predictions,
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I also reconstructed the 12,021 shortest sequence proteins of the 30,849 with the Colab
implementation of AlphaFold 2%, where I only kept the 11,042 of predicted structures with a

pLDDT greater than 80.

Preprocessing

With the dataset, I desired to leverage both sequence and structural information to predict
carbohydrate-binding capabilities of proteins. Family information of sequence similarity can
strongly indicate carbohydrate binding capabilities, while structural motifs can be present across
protein families for carbohydrate binding, and I desire my method to identify both. I extracted the
sequence and the CP positions of all protein residues (Ca. for glycine) using PyRosetta.!%! Next, I
used ESM2% to provide a high-dimensional sequence embedding for each protein residue of each
protein chain. I labeled protein residues that were within 4.2 A of a non-covalently bound
carbohydrate (or small molecule) as a binding residue.

Most previous work has used single protein chains for protein-carbohydrate
predictions!®®!1%; however, many proteins only exist in the context of multiple chains. For this
reason, | preprocessed all protein structures with all chains in the PDB file, except the initial
CAPSIF dataset and antibodies. To limit the redundancy of the training set, I used MMseqs to
cluster protein sequences by 60% sequence identity into distinct clusters for training/testing.%¢ I
then split the clusters into an 80/5/15 train/validation/test, maintaining the same proteins from
CAPSIF remain in the same dataset distribution. This left 24,957 structures in training, 1,479

structures for validation, and 4,413 structures for testing.
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Secondary validation set

I have a primary dataset of carbohydrate-protein binding; however, I need to demonstrate
the ability of PiCAP to predict outside of the crystally solved structures. To do this, I gathered all
UniProt!'3* accession codes from Zhang et al.!” and LectomeXplore!® and matched them to the AF2
publicly accessible organism proteomes. This captured 848 of 878 (97%) of putative ganglioside
binding proteins and 3,400 of 4,335 (78%) of non-ganglioside binding proteins. LectomeXplore
uses sequence and structural protein information, alongside infectious pathogens that affect these
species, and lists all reference sequences and structures (UniProt, ensembl, NCBI, RCSB, etc.)
with severe redundancy. Therefore, for a direct quantitative comparison, I therefore used only those
that existed singly as UniProt values inside the reference proteomes of AF2. I used the confidence
metric of 0.25 for identification of lectins, which yielded 230 human proteins and 225 mouse
proteins.

For the proteome analysis, I used the AF2 publicly accessible organism proteomes.!%® AF2
generates structures with an internal confidence metric called pLDDT, where low confidence
regions will have pLDDTs under 70. I therefore performed analysis and studies on AF2 protein
regions with high confidence, or residues with greater than 70 pLDDT, independent of structural
continuity. I applied the analysis to the following model organisms: E. Coli, M. Musculus, and H.
Sapiens. 1 further provide the results of the full-length sequence, independent of pLDDT in the
Appendix alongside the results of three other model organisms: C. elegans, D. melanogaster, and

S. cerevesia.
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Architectures

I fed the residue coordinates and sequence embeddings into the CAPSIF2 and PiCAP
architectures (Figure 1A) into the main model block, which uses a message passing equivariant
graph neural network (EGNN) of equivariant graph convolutional layers (EGCL).**> Each layer
sums the outputs of a multilayer perceptron (MLP) that inputs the features of the central node and
the features of all of its neighboring nodes and the edge attributes of the neighbors. Following
Ingraham et al.’®, the edge attributes are a radial basis function (RBF) of the distance, the
orientation, and direction of the neighboring residues.

CAPSIF2, a carbohydrate binding residue predictor, has 12 residual ECGLs with an
embedding dimension of 128 (Figure 3.6). The neighborhood context window is fixed at the 16
nearest neighbors. After the graph convolutions, each residue is passed to a two-layer dense
decoder, finally outputting the carbohydrate-binding likelihood of each residue. CAPSIF2 contains
1,600,387 parameters.

PiCAP, a predictor of whether a protein binds to carbohydrates, has 12 total residual
EGCLs with an embedding dimension of 128 and leverages an increasing neighborhood context
window for information propagation, as inspired by PeSTo!'%’ and PeSTo-Carbs'!?. The first three
layers use the 10 nearest neighbors, layers 4 to 6 use the 20 nearest neighbors, layers 7 to 9 use 40
neighbors, and layers 10 to 12 use 60 neighbors. (Figure 3.6). The model specific block is a pooling
block that uses an adaptive pool to truncate or slightly expand the size of the protein to a fixed
length (150), where the model then uses two convolutional layers and three dense layers to predict

the likelihood of a protein to bind to carbohydrates. PICAP contains 1,798,895 parameters.
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Figure 3.6: Architectures of CArbohydrate Protein Site IdentiFier 2 (CAPSIF2) and Protein interaction of

CArbohydrate Predictor (PiCAP).
Training

I trained both models using two cycles: small molecule binding residue prediction and the
model specific task (protein or residue level predictions). The first training cycle used the
CAPSIF2 base architecture with randomized initial weights ~N(0,0.02) for the residue level
prediction. The model was trained for a maximum of 1,000 epochs, with training prematurely
stopped once the validation loss did not decrease after 35 epochs. This training cycle had a learning
rate of 2 x 10 and a weight decay of 10”7 with the Adam optimizer with the loss function L =
1 — d, where d is the Dice-Sorenson coefficient (also known as the F1 score) and a batch size of
1. To improve model generalization, each epoch sampled a single protein from every training
cluster available from the small molecule dataset. The smallest 12,000 protein sequences were

modeled structurally with the colab distribution of AF2,%** and if the selected protein was
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available via AF2, I selected the crystal structure 40% of the time and the AF2 structure 60% of
the time.

For the second training cycle, CAPSIF2 used the same architecture as the first training
cycle and required no randomization. CAPSIF2 was trained only on proteins with experimentally
determined carbohydrate binding sites with learning rate of 2 x 10> and weight decay of 106 with
the Adam optimizer and the same loss function of L = 1 — d. Similar to the first training cycle, I
randomly selected an available AF2 structure 60% of the time.

For the second training cycle, PICAP used the weights where available from the first
training iteration of CAPSIF2 and randomized weights for the model specific block ~N(0,0.02).
PiCAP was trained on the entire training set for binary classification with a learning rate of
2 x 10 and weight decay of 10" with the Adam optimizer and binary cross entropy (BCE) loss
function. Similar to the first training cycle, I randomly used an available AF2 structure 60% of the

time.

Data Availability

Data, code, and datasets are available at Github, where CAPSIF2 and PiCAP can be run at:

https://github.com/Graylab/picap. With the assistance of Matt Mulqueen, I further provide

a webserver on ROSIE where CAPSIF2 and PiCAP can additionally be run:

https://r2.graylab. jhu.edu/apps/index.
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Appendix

Dataset Description

I provide all proteome data as an Excel document (xIsx) on the Github (Data Availability).

This Excel document contains all prediction information of PiICAP and CAPSIF2 on the AlphaFold
2 proteomic data'®®. Since PiCAP can produce false negative binders, the separate predictions of
CAPSIF2 in all cases may assist in hypotheses of known carbohydrate and small molecule binding
proteins. In addition, I show predictions on all proteins in the dataset, even in cases with low
pLDDT, although the analysis in the primary text only analyzes predictions of proteins with greater
than an average of 70 pLDDT. In all sheets, I provide the following columns:

e UniProt Entry

e Common Gene Name (Entry Name)

e Protein_name

e Gene Ontology terms

e PiCAP prediction on only residues with greater than 70 pLDDT

e CAPSIF2 predicted binding residues on residues with greater than 70 pLDDT

The PiCAP output is a probability value in the range from 0 to 1. In the main text I use the
cutoff value of 0.23 to indicate that any protein with predicted probability greater than 0.23 is
predicted as a carbohydrate binding protein. The PiCAP prediction may be used as a confidence
metric, where the higher probabilities suggest more confidence PiCAP has that the model is a

carbohydrate non-binder or binder, respectively.
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Model Hyperparameterization

To optimize performance on a neural network, I assessed multiple hyperparameters in both
models to achieve their performance. I focused primarily on the following hyperparameters:
embedding dimension, k-nearest neighbors (knn), and number of layers. For simplicity, I treat each
network as a series of four (4) blocks, composed of a certain number of layers where I vary knn

per block.
CAPSIF?2 parameterization

In my previous work on CAPSIF:G, I used one-hot encodings of amino acid type and
biophysical properties with simple edge embeddings. To contain more information, in this work, I
altered the node features to ESM2 embeddings and edges. With these input features, I then focused
on the size and depths of the network.!% A full account of all tested hyperparameters is listed below
in Table 3.4. I selected CAPSIF2 as the model that performed the best on the DR test set, which

was composed of 12 layers with a static number of k nearest neighbors of 16.
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Table 3.4: Performance of various CAPSIF2 models on the Dionysus Residue (DR) test set. Dice and Matthews
correlation coefficient (MCC) are as defined in the main text. Boldface indicates the best performance in each metric.

Selected CAPSIF2 model is highlighted in yellow.

Layers per block KNN per block DR Dice DR MCC TSS90 Dice
3 6,6,6,6 0.541 0.542 0.533
3 8,8,8,8 0.477 0.484 0.431
3 8,12,16,20 0.391 0.407 0.366
3 6,10,14,18 0.528 0.528 0.572
3 10,20,40,60 0.289 0.312 0.364
3 16,16,16,16 0.573 0.574 0.616
3 20,20,20,20 0.498 0.496 0.575
4 8,12,16,20 0.566 0.567 0.639
4 6,10,14,18 0.408 0.419 0.319
4 8,8,8,8 0.491 0.486 0.548
CAPSIF:V N/A 0.226 0.202 0.608

PiCAP parameterization

I followed the same methodology as CAPSIF2 to identify the strongest performing PiCAP
model parameters. The hyperparameter search is provided below in Table 3.5. The decision on
which model performed strongest was less straightforward than CAPSIF2, as all multiple models
performed strongly across the NoCAP test set. I selected a model that performed well across most

metrics placing just below the top of every other category to encourage generalizability, as some
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of the top performing models were prone to overfitting and unstable predictions. The chosen
PiCAP model consisted of 12 layers, with the knn gradually increasing from 10 to 60 neighbors

across the layers.

Table 3.5: Performance of various PICAP models on the NoCAP test set. BACC is balanced accuracy. TPR is True

Positive Rate TPR = TP / (TP + FP). TNR is True Negative Rate TNR = TN/ (TN + FN).

Layers KNN per  cutoff NoCAP NoCAP NoCAP Nonbinders Ribosome Holdout

per block block BACC TPR TNR TNR TNR TNR
3 6,6,6,6 0.94 0.85 0.87 0.83 0.624 1.0 0.857
3 8,8,8,8 033  0.892 0.964 0.82 0.667 0.857 0.929
3 20,20,20,20  0.21  0.856 0.88 0.833 0.683 1.0 0.429
3 10,20,40,60  0.23  0.896 0.963 0.828 0.608 1.0 0.902
3 6,10,14,18 099  0.779 0.927 0.631 0.656 0.857 0.571
4 6,6,6,6 0.77  0.885 0.976 0.794 0.731 1.0 0.857
4 8,8,8,8 0.19  0.897 0.951 0.842 0.704 1.0 0.857
4 6,10,14,18 032  0.861 0.974 0.745 0.134 0.857 0.643
4 8,12,16,20  0.84  0.877 0.954 0.801 0.785 1.0 0.643
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Proteomic Data

In the excel document in the Github (see Data Availability), I provide a list of all proteins
from six organisms. Here I list the overall metrics of the three organisms in the excel document
that were not discussed in the main text. PiICAP predicts that in C. elegans (nematode worm) 9,278
of the 19,227 proteins (48%) bind carbohydrates. PICAP predicts that in D. melanogaster (fruit
fly) 5,248 of the 13,351 proteins (39%) bind carbohydrates. PiICAP predicts that in S. cerevisiae

(yeast) 1,749 of the 5,849 proteins (29%) bind carbohydrates.

Cellular component analysis

To analyze the E. coli strain K12, M. musculus, and H. sapiens AF2 reference proteomes,
I employed the use of Gene Ontology (GO) terms and PANTHER.!?%!27 For Figure 3.5B, I
analyzed the GO terms representative of cellular compartments, I performed a limited search
limited to Table 3.6, where any protein observed in multiple of the compartments (excluding just
nucleus and cytoplasm) were placed in the “shared” compartment. PANTHER provided the
statistical overrepresentation tests and false discovery rates (FDRs) of all cellular compartments,

molecular functions, and cellular processes (when the FDR was less than 0.05).
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Table 3.6: Simplified cellular compartment GO Terms

Compartment GO Terms

Cell Surface cell surface [GO:0009986]
plasma membrane [GO:0005886]
extracellular space [GO:0005615]
extracellular matrix [GO:0031012]
Cytoplasm cytosol [GO:0005829]

cytoplasm [GO:0005737]

Nucleus nucleus [GO:0005634]
Mitochondrion mitochondrion [GO:0005739]
ER/Golgi endoplasmic reticulum [GO:0005783]

Golgi apparatus [GO:0005794]
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Supplemental Human Proteome Analysis

carbohydrate binding DNA/RNA Binding
n=182 n=2293

small molecule binding GPCR activity
n=28 n=697

Ca?* binding Zn?* binding
n=717 n=849

Figure 3.7: Human carbohydrate binding protein functionality. Percentage of proteins with known binding
functions predicted as carbohydrate binding (blue) and non-carbohydrate binding (red) proteins for sets of proteins
with Gene ontology terms for carbohydrate binding [GO:0030246], DNA and RNA binding [GO:0003677, 0003723],
small molecule binding [GO:0036094], GPCR Activity (G protein-coupled receptor activity [GO:0004930]), Calcium
binding (calcium ion binding [GO:0005509]), and (Bottom Right) Zinc binding (zinc ion binding [GO:00082701]).
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To assess the overall accuracy of PiCAP, I identified the percentage of proteins with GO
terms associated with carbohydrate binding, DNA/RNA binding, small molecule binding, G
protein coupled receptor (GPCR) activity, calcium ion binding, and zinc ion binding (Figure 3.7).
Of the 182 proteins with a GO term for carbohydrate binding in the human proteome, PiCAP
predicts 94% of these proteins as carbohydrate binding proteins, indicating a 6% false negative
rate.

Here, 1 defined nucleic acids as non-carbohydrates, and PiCAP identifies 91.5% of
DNA/RNA binding proteins as carbohydrate non-binders. PICAP predicts 8.5% of DNA/RNA
binding proteins as carbohydrate binding; where several nucleic acid binding proteins are known
to bind carbohydrates, such as DNA polymerase I (such as in PDB 1NK4), so those predicted
binders cannot be completely ignored as false positives. There are limited proteins with small
molecule binding GO terms associated (28), and PiCAP predicts only 25% of these proteins to
bind carbohydrates, which could include small molecules with hydrated ring structures, mimicking
carbohydrate epitopes. Additionally, zinc is an ion commonly associated with nucleic acid binding
with zinc finger motifs; however, zinc is established in other pathways like neuron excitability.
PiCAP predicts 22% of known zinc ion binding proteins as carbohydrate binding proteins, and
78% as carbohydrate nonbinders.

I further assessed calcium ion binding, where calcium is ubiquitous across many cellular
processes from muscular contraction to being a secondary ligand necessary for C-type lectin
binding. In NoCAP, there are 2263 structures containing calcium, where 946 (41%) of those
proteins bind carbohydrates. In the training set specifically, there are 1619 proteins that have
calcium ions present and only 614 (38%) of those bind carbohydrates. On the human proteome,

PiCAP predicts 58% of calcium binding proteins as carbohydrate binders and 42% as carbohydrate
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non-binders, indicating that PICAP effectively distinguishes C-type lectins and calcium cofactor-
carbohydrate binding proteins from other calcium binding proteins.

Finally, I investigated GPCRs, where proteins with GPCR activity are integral across many
unrelated intercellular communication pathways, where PiCAP predicts 69% of proteins with
GPCR activity as carbohydrate binding proteins, suggesting a wealth of agonists and antagonists
being carbohydrates (or carbohydrate-like molecules with hydrated rings) may be critical in GPCR

binding.
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E. Coli Proteome analysis
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Figure 3.8: Statistical analysis of E. coli strain K12 PiCAP predicted carbohydrate binding and non-binding
proteins. The false discovery rate (FDR) alongside the overrepresentation (blue) and underrepresentation (red) are

shown for select cellular compartments, molecular functions, and cellular processes.
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Mouse Proteome Analysis

Cellular Component

Mouse Proteome
PiCAP predicted Binder Compartments

0.8

0.6 A

0.4+

Fraction of predicted binders

0.2

0.0 -
12 N N N S 2 & 23 9
C o N O D N
Lo N v S S & @ LGP °
S0 D PG L L O R '~ >
WAV L )N 9y, ER° LA Sy Lo
L o < N N R I < S
NEFOURN &< &
RN
%)

Figure 3.9: Cellular components of M. musculus proteome predicted carbohydrate binding and non-binding

proteins according to Table 3.6.
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Overrepresentation of protein processes and functions
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Figure 3.10: Statistical analysis of M. musculus PiCAP predicted carbohydrate binding and non-binding
proteins. The FDR and overrepresentation (blue) and underrepresentation (red) are shown for select cellular functions

and molecular processes.
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carbohydrate binding DNA/RNA Binding
n=177 n=1733

small molecule binding GPCR activity
n=40 n=1477

Ca?* binding Zn?* binding
n=629 n=715

Figure 3.11: M. musculus carbohydrate binding protein functionality. Percentage of proteins with known binding
functions predicted as carbohydrate binding (blue) and non-carbohydrate binding (red) proteins for Gene ontology
terms for carbohydrate binding [GO:0030246], DNA and RNA binding [GO:0003677, 0003723], small molecule
binding [G0:0036094], GPCR Activity (G protein-coupled receptor activity [G0:0004930]), Calcium binding
(calcium ion binding [GO:0005509]), and (Bottom Right) Zinc binding (zinc ion binding [GO:0008270]).
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Chapter 4
BCAPIN: Evaluation of De Novo Deep Learning Models

on the Protein-Sugar Interactome

B CAPIN
Benchmark of

CArbohydrate Protein INteractions

Figure 4.1: Benchmarking Carbohydrate Predictions with BCAPIN

Attribution of credit: this work was performed primarily alongside Dr. Lei Lu, with support from Sho S. Takeshita, and advised by
Dr.’s William F. DeGrado and Jeffrey J. Gray.
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Overview

Advances in deep learning have produced a range of models for predicting the protein-
sugar interactome; however, structural docking of noncovalent protein-carbohydrate complexes
remains largely unexplored. Although all-atom structure prediction models like AlphaFold3 (AF3),
Boltz-1, Chai-1, DiffDock, and RosettaFold-All Atom (RFAA) were validated on protein-small
molecule complexes, no benchmark or evaluation exists specifically for noncovalent protein-
carbohydrate docking. To address this, I developed a high-quality dataset of experimental
structures — Benchmark of CArbohydrate Protein Interactions (BCAPIN). Using BCAPIN and a
novel evaluation metric, DockQC, I assessed the performance of all-atom structure prediction
models on non-covalent protein-carbohydrate docking. I found all methods achieved comparable
results, with an 85% success rate for structures of at least acceptable quality. However, I found that
the predictive power of all models declined with increasing carbohydrate polymer length. With the
capabilities and limitations assessed, I evaluated AF3’s ability to predict binding for a set of
putative human carbohydrate binding and carbohydrate non-binding proteins. While current
models show promise, further development is needed to enable high-confidence, high-throughput

prediction of the complete protein-sugar interactome.

Introduction

Many new computational prediction tools have recently been developed to decode the
protein-sugar interactome. Bonnardel et al. created LectomeXplore, which annotates all known
proteomes with a hidden Markov model (HMM) for lectins (glycan-binding proteins).'® If the
protein is identified as a lectin, one could use Lundstrem et al.’s model LectinOracle to predict

which carbohydrate the lectin binds.*® However, not all carbohydrate binding proteins are lectins,
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for example native sugar sensors and antibodies.® Leveraging this gap, some of us (Canner, Gray)
developed PiCAP to predict whether a protein binds to carbohydrates, irrespective of protein
family, and released predicted annotations on six different species, predicting a putative list of all
the proteins present in the protein-sugar interactome.?* To further elucidate these protein-
carbohydrate interactions, Canner, Shanker et al. and Bibekar et al. created CAPSIF!% and PeSTo-
Carbs,'!? respectively, to predict which residues a protein uses to bind to carbohydrates. The
combination of these breakthrough models can be used to predict whether any given protein binds
to a carbohydrate (as a lectin or non-lectin), what carbohydrate it binds to (if the protein is a lectin),
and what residues are implicated in the protein for carbohydrate binding. Now, with all-atom
biomolecular prediction software like AlphaFold3 (AF3),*? protein-carbohydrate complex
structures can be readily predicted. AF3 and other deep learning models thereby make possible the
development of a complete putative structural dataset of the entire protein-sugar interactome: all
protein-carbohydrate interactions across a species. First however, researchers must evaluate the
performance of AF3 and other all-atom biomolecular structure prediction models on protein-
carbohydrate complexes.

The development of AlphaFold3#? built upon a string of advances in protein structure
prediction, such as the Nobel Prize research of David Baker, Demis Hassabis, and John Jumper:
Rosetta and AlphaFold2.%° In the past few years, the leap in the most recent generation of de novo
prediction methods was the ability to model any molecule with all-atom structure prediction. The
Jaakkola lab developed DiffDock to predict small molecule docking on a provided protein
structure.*>!13° The Baker lab developed RosettaFold-AllAtom (RFAA), becoming the first end-to-
end all-atom biomolecule structure prediction.!3! Google DeepMind released their first end-to-end

all atom prediction model AlphaFold3 (AF3). Building on previous work from DiffDock, the
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Jaakkola lab developed Boltz-1.12 With partnerships from OpenAl and other industry
representatives, the Chai Discovery team released their (proprietary) model Chai-1.4%136

Given this growing suite of models (albeit non-exhaustive), identification of their
performance on specific tasks is critical, with one of the most used metrics being the success rate
when benchmarked against a dataset called Posebusters.!3” Posebusters contains non-covalent
protein-small molecule complexes. Posebusters provides well-defined specificity of the small
molecule and binding protein pocket, with a model’s success measured by its ability to predict
small molecule complexes under 2 A RMSD from the solved structure. In total, DiffDock and
RFAA both achieve 42% success on PoseBusters,!*! while AF3 and Chai-1 achieve 76% and 77%

42,136

success on PoseBusters, respectively. No success rate was reported on PoseBusters for Boltz-

1.128

While PoseBusters emphasizes strong specific protein-ligand binding, protein-
carbohydrate interactions present unique challenges. Unlike protein-small molecule interactions,
protein-carbohydrate interactions are commonly less specific, with proteins containing multiple
binding sites for long linear heterogenous polymers containing various epitopes, and therefore
sugars require extra attention that is not provided in the dataset.?®!9>-138 Moreover, proteins
stabilize carbohydrates through a combination of direct contacts (hydrogen bonding,
electrostatics), indirect (water mediated) interactions, and by CH-m bonds via aromatic
residues.!®?° Finally, the binding affinity of protein-carbohydrate complexes are commonly weak
(UM — mM), but rather driven by high avidity (nM) of multiple binding sites on the protein or
multiple repeats of the glycan epitope.®

Due to the distinct binding mechanisms involved in noncovalent protein-carbohydrate

interactions, solved experimental structures of bound non-covalent carbohydrates to proteins are
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limited. From all solved structures in the Protein Data Bank,% DIONYSUS identifies protein
structures with non-covalent specific interactions with carbohydrates to be 2.5% (5,461).!'* With
the advent of high-throughput diazirine photoaffinity linker experimental data of protein-
carbohydrate interactions, ?? researchers are attaining more knowledge of protein-carbohydrate
interactions on a protein level.!” T therefore propose that all-atom deep learning (DL) structure
prediction pipeline may enhance general understanding of the protein-sugar interactome.

Here, I benchmark DL structural models: AF3, Boltz-1, Chai-1, RFAA, and DiffDock on
the task of predicting docked de novo protein-carbohydrate structures. To benchmark the models,
I constructed a novel dataset of proteins unseen during each model’s training. I identify the
strengths and shortcomings of these models and evaluate test cases where all models perform
poorly. With strengths and limitations identified, I then use AF3 as a proof-of-concept tool for
predicting the structural de novo human protein-sugar interactome. This work sets the stage for
future integration of deep learning tools in structural glycobiology to fully characterize the protein-

sugar interactome across all species.

Results

BCAPIN and DockQC: Novel datasets and analysis

To assess the capabilities of AlphaFold3 (AF3), Boltz-1, Chai-1, DiffDock, and
RosettaFold All-Atom (RFAA) at predicting protein-carbohydrate complexes, it is essential to
have an independent test set of high-quality experimentally resolved protein-carbohydrate
structures and a suitable evaluation metric. For the dataset, I leveraged DIONYSUS,!'3 which
aggregates all experimentally determined protein-glycan structures from the PDB. I first excluded

all protein-nucleic acid complexes and clustered the remaining protein sequences at 50% identity.
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I removed clusters with structures solved before the latest model’s training cutoff dataset
(September 2021). Importantly, due to experimental limitations, not all experimental structures are
of equal quality. To ensure structural reliability, I applied a filter using the real space correlation
coefficient (RSCC)!*, which measures the agreement between the calculated and experimental
density. Structures with an RSCC greater than or equal to 0.9 were retained (Figure 4.10). The
resulting Benchmark of CArbohydrate Protein INteractions (BCAPIN) test set consists of 20
structures: 9 structures that bind sugar monomers, 3 structures that bind dimers, 5 structures that

bind polymers, and 3 structures that bind at least a nucleotide (NTP) and a saccharide (Table 4.1).
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Table 4.1: Benchmark of CArbohydrate Protein INteractions (BCAPIN) test set. The table lists the PDB 4-letter

ID, protein name, UniProt ID, glycan input string for GlyLES, and any secondary ligands if present.

PDB

7Tblg
Ten5

Texj

Texo
719g
7jnf
Tjwf
Tmzs
Trft
Trpy
Tvi7
Twll

Twl18

Tzon
8axs
8bf3
8d0r
8dzd

8icl

8inp

Protein Name

Carbohydrate-binding protein family 32
HTH-type transcriptional regulator MurR
Probable galactinol-sucrose
galactosyltransferase 6

Putative L-type lectin

Thrombocorticin

F5/8 type C domain protein

Glycoside hydrolase Family 110
Fimbrial adhesin

SAS protein 20

Cohesin containing protein
B-N-acetylhexosaminidase
3-O-Glycosyltransferase

Alginate lyase

Glycoside hydrolase family 18
Exo-a-Sialidase

Feruloyl esterase wtsFac1B
Fucosyltransferase

MS3494 : putative secreted protein

Endo-a-D-arabinanase mutant

7-O-uridine diphosphate glycosyltransferase

UniProt

Q8A3D9
P77245

Q8RX87

Q58791
COHMG62
AOAOH2YN38
N/A
AOA2X2BLR9
N/A

N/A

B2UPPO
AOA385Z7H9

D2KX85

A0A979GQH9
N/A
AOA5SSWFAO
Q9Y231
AOQY10

N/A

N/A

GIyLES Input String Secondary
Ligand
Gal

MurNAc

Fruf(b2-1)[Gal(al-6)]Glc

Man

Fucp

GalNAc

Gal(al-3)Galb

Gal

Glc(al-4)Gle(al-4)Gle(al-4)Gle(al-4)Glca
Gle(al-4)Gle(al-4)Glca

GlcNAc

Gle uDP
ManA(bl1-4)ManA(b1-4)ManA(b1-
4)ManA(b1-4)ManA(bl-4)ManA(b1-
4)ManA(b1-4)ManA(bl-4)ManA(b1-
4)ManAb

Glcb

NeuSAc

Xyl(b1-4)Xylb
Fucp(al-2)Gal(b1-4)GlcNAcb GDP
Fru(b2-1)Glca
Araf(al-5)Araf(al-5)Araf(al-5)Araf(al-
5)Araf(al-5)Araf(al-5)Araf

Gle UDP

To evaluate the performance of predicted protein-carbohydrate complexes, I developed a

single continuous scoring metric named DockQC. DockQC is inspired by the DockQ metric from

the CASP-CAPRI challenge, averaging the fraction of native contacts (F,), interface root mean
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squared deviation (IRMS), and ligand RMS (LRMS) to designate a predicted structure’s quality.
While DockQ is widely used for protein-protein docking, the native code is unusable on the test
cases, and, when reimplemented, it tends to overestimate the quality for protein-carbohydrate
complexes, often assigning medium-to-high scores even when the predicted ligand position is
incorrect (Figure 4.9, Table 4.2).

DockQC addresses these issues by averaging three terms: F, 4, ring-ring RMSD (rRMS),
and LRMS. F, ,;measures the fraction of native residue-residue contacts, »RMS is a novel metric
that measures the RMSD between the center of mass (COM) of each carbohydrate ring in the
aligned predicted and experimental structures, and LRMS measures the RMSD of all aligned ligand
heavy atoms.

With the BCAPIN test set and evaluation metrics established, I investigated the
performance of five methods, AlphaFold3, (AF3), Boltz-1, Chai-1, RosettaFold All-Atom
(RFAA), and DiffDock, at predicting protein-carbohydrate structure. I first evaluated the behavior
of DockQC on the set. Thresholds were chosen after inspecting many predictions and tuning metric

weights, some examples are described next.
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Figure 4.2: Protein-carbohydrate docked structures across DL methods. (A) Incorrect prediction of Chai-1 (red)
on 7PGK (DockQC = 0.11). (B) Acceptable quality prediction of RFAA (orange) on 7EQR (DockQC = 0.26). (C)
Medium quality prediction of Boltz-1 (violet) on 8AXS (DockQC=0.65). (D) High quality prediction of AF3 (green)
on 7JWF (DockQC=0.96)

On hedgehog interacting protein (7PGK), which binds a disaccharide heparin analog, Chai-
1 failed to predict the protein structure accurately, leading to an incorrect carbohydrate placement
with a low DockQC score of 0.11 (Figure 4.2A). For chitoporin (7EQR), a B-barrel protein that
binds an oligosaccharide with a degree of polymerization (DP) of six, RFAA captured the binding
pocket of the carbohydrate, but lacked broader structural accuracy, yielding an acceptable
prediction a DockQC of 0.26 (Figure 4.2B). With sialidase-sialic acid complex (8AXS), Boltz-1
achieved a medium quality prediction, correctly modeling the binding pocket and ring position
(but not its orientation), with a DockQC of 0.65 (Figure 4.2C). In contrast, on glycoside hydrolase

family 110 protein binding a Gal dimer (7JWF), AF3 nearly recapitulated the experimental
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structure delivering a high-quality structure with a 0.96 DockQC (Figure 4.2D). In total, my
DockQC quality thresholds chosen to be incorrect (DockQC < 0.25), acceptable (0.25 <= DockQC

< 0.50), medium (0.50 <= DockQC < 0.80), and high (DockQC >= 0.80) (Figure 4.9, Table 4.2).

DL Methods achieve medium or high accuracy on over 80% of

cases
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Figure 4.3: DL model success rates on BCAPIN Test Set. Each labeled method has the top-1 model on the left and
top-5 model on the right

After tuning the DockQC metric, I evaluated overall model performances on all BCAPIN
targets (Figure 4.3). Across methods, I found comparable results for all end-to-end models, at least
80% of their highest confidence predictions (top-1) scored with at least acceptable quality.
Expanding scoring to include the most accurate of each model’s top 5 confidence predictions (top-
5) led to only marginal improvements. AF3 was the best-performing model: its top-1 predictions
yielded 10% acceptable, 40% medium, and 35% high quality structures; top-5 predictions

improved slightly to 15% acceptable, 35% medium, and 40% high quality structures.
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Given the strong performance of end-to-end models on BCAPIN, I next examined how
starting structure influences DiffDock’s predictive power. DiffDock-Aolo (initialized with the
experimentally solved holo protein structure) performed equivalently to the end-to-end models,
achieving at least acceptable quality on 85% of all top-1 predictions. In contrast, Diffdock-4F3
(initialized from AF3-predicted apo protein) achieved only 60% acceptable or better quality in
top-1 predictions. However, when extending to the top-5 predictions, Diffdock-AF3 improved
substantially, yielding 85% acceptable quality structures. Thus, DiffDock is sensitive to the initial

input structure.

Methods fail to capture all interactions

Although all models perform strongly on BCAPIN, I sought to identify cases where all
models still struggle. Notably, all models fail to predict on two complexes: 8DZD and 7ZON

(Figure 4.4).

Failure Cases
A B

- MS3494: , Glycosidase
Putative secreted protein
(8DZD)

Boltz-1
DiffDock-holo +AF3

Figure 4.4: Failure of DL prediction algorithms on select proteins from the BCAPIN test set. Experimentally
solved structures of (A) secreted protein (8DZD) and (B) glycosidase family 18 (7ZON, right) in gray, alongside AF3
predictions (blue), Boltz-1 (orange), Chai-1 (green), Diffdock (red), and RFAA (magenta).
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8DZD is a Mycobacterium smegmatis secreted protein composed entirely of a-helices
bound to a fructose-glucose disaccharide. While most models (except Chai-1) accurately predict
the protein backbone, none correctly dock the ligand. RFAA places the ligand inside the protein.
7ZON is a glycosidase primarily composed of B-sheets bound to three independent glucose
monosaccharides. Although most models correctly predict two of the binding sites, the models

consistently misplace the third monosaccharide on the opposite side of the protein surface.

Low Quality Examples
A B

Arabinase SAS protein 20
AF3 rank 1 (7RFT)

o, DiffDock
(2 { Chai-1

B% AF3 rank 3
Boltz rank 1

Figure 4.5: Low Quality DL predictions select proteins from the BCAPIN test set. We show the experimentally
solved structures of (A) arabinose (8IC1) and (B) SAS protein 20 (7RFT), in gray, alongside AF3 predictions (blue),
Boltz-1 (orange), Chai-1 (green), Diffdock (red), and RFAA (magenta).

I further scrutinized all predictions to identify additional cases of sub-optimal performance.
I found that all models produced only acceptable to medium quality on 8IC1 and 7RFT (Figure
4.5).

8IC1 is an arabinose that binds a homogenous arabinofuranose oligosaccharide of DP 4

along a B-sheet. Several models, such as AF3 and Boltz-1, incorrectly predict binding at an
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alternative [(-sheet, while others (DiffDock and RFAA) incorrectly predict the saccharide
conformation (Figure 4.5A). 7RFT is a SAS protein 20 that binds a glucose oligosaccharide of DP
3 at a B-sheet. Although all methods identify the binding pocket of 7RFT correctly, none accurately
reproduce the specific experimental conformation, particularly the orientation of the terminal Glc,
which experimentally makes minimal contact with the B-strand (Figure 4.5B). These data suggest
that current models may have difficulty on a-helical binding pockets of saccharides, simultaneous

binding of multiple ligands, and docking longer saccharides.
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Prediction Power decreases with carbohydrate length

DockQC by saccharide length

® AF3
Boltz-1
1.0 - X Chai-1
o VY DiffDock-Holo
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Figure 4.6: Comparison of average and standard deviation DockQC of predicted structures versus saccharide
length. I group saccharide length into a degree of polymerization (DP) of 1 (mono), 2 (di), and 3+ (oligo), and further
group all glycosyltransferases (GTs) together that require multiple inputs (e.g. a saccharide and NTP) and with the
number of proteins in each group listed. Dashed lines indicate the DockQC cutoffs between acceptable (red), medium
(blue), and high (green) quality structures. Top-1 prediction on BCAPIN with AF3 (blue circle), Boltz-1 (orange
square), Chai-1 (Green X), Diffdock-4olo (red triangle), Diffdock-4F3 (purple triangle), and RFAA (brown diamond).

I next hypothesized that model performance may correlate with saccharide complexity. To
explore the role of DP on performance, I plotted the top-1 DockQC score against saccharide length
(Figure 4.6). In total, all models showed similar trends across saccharide length categories:
medium quality for monosaccharides, medium to high quality for disaccharides, acceptable quality

for oligosaccharides, and acceptable quality for glycosyltransferases (GTs). Thus, I observed a
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decline in performance as complexity increased from simple mono and disaccharides to DP of

three or greater and coordination of small ligands, in the case of GTs.

Prediction confidence is a mediocre metric
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Figure 4.7: Comparison of confidence metrics and DockQC accuracy on the BCAPIN test set. Lines of best fit
are provided for each plot. (A) Comparison of DockQC and ligand pLDDT for AF3 (blue circle), Boltz-1 (red square),
Chai-1 (green X) and RFAA (gray diamond). (B) Comparison of DiffDock confidence for both DiffDock-kolo (red
circle) and DiffDock-AF3 (blue square). (C) Comparison of DockQC and ipTM for AF3, Boltz-1, and Chai-1. (D)
Comparison of DockQC versus the pAE for AF3, Boltz-1 (called pDE), and RFAA.

Although all current models perform strongly on BCAPIN, performance varies across

predictions. I therefore assessed whether models can reliably self-assess the accuracy of their own
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predictions using internal confidence metrics, such as predicted local distance difference test
(pLDDT), interface predicted template modeling score (ipTM), and predicted absolute error
(PAE). For average ligand pLDDT, AF3 and Boltz-1 show moderate correlations with DockQC,
whereas Chai-1 and RFAA produce strong correlations (Figure 4.7). Since pLDDT reflects only
the ligand confidence, I also evaluated ipTM, which incorporates the protein-ligand interface.
Among models reporting ipTM (AF3, Boltz-1, Chai-1), all show moderate correlations, with Chai-
1 performing best (Figure 4.11). For PAE, Boltz-1 showed a weak negative of -0.26, AF3 a
moderate correlation, with RFAA a strong correlation of -0.7 with DockQC (Figure 4.12).

Contrary to the end-to-end models, DiffDock provides only one confidence metric. While
both DiffDock-holo and DiffDock-AF3 use the same scoring, DiffDock-4F3’s provides a
significantly weaker correlation than DiffDock-kolo, reinforcing DiffDock’s sensitivity to the
starting structure (Figure 4.13).

Overall, all end-to-end models show moderate correlations between their internal
confidence metrics to the DockQC, with RFAA demonstrating the strongest predictive reliability.
Contrarily, DiffDock’s confidence metric is more susceptible to small perturbations in the input

structure, limiting its reliability.

Proteome scale predictions require refinement

The BCAPIN dataset is limited to small (less than 600 residues) single- or two-domain
structurally resolved proteins with strong binding affinities. Despite being implicated in important
physiological interactions, binding characteristics of large multidomain or multichain structures
with carbohydrates are less well characterized due to their relative low binding affinity (but high

avidity). To elucidate the protein-sugar interactome, researchers currently employ photoaffinity
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tag experiments'” or use computational tools like LectinOracle*® or PICAP.2* However, these tools
do not provide structural protein-carbohydrate complex predictions. Therefore, I aimed to assess
if any end-to-end all atom structure prediction models could provide a high-throughput de novo
approach for predicting docked protein-carbohydrate complexes with high confidence. To evaluate
a de novo protein-carbohydrate docking pipeline, I selected nine proteins from the human
proteome and used AF3 with its ipTM confidence metric to predict their structures in complex
with either a GM1 ganglioside or a hybrid N-glycan (Figure 4.8). I used GM1 ganglioside ligands
for proteins experimentally identified to interact with GM1 gangliosides in Zhang et al. and the
hybrid N-glycan ligand for all others, as it is a common covalent modification on membrane and

secreted proteins.
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Predicted
Binders

. g 3 ! -
Interleukin 31 Sonic Hedgehog Scrapie-responsive protein 1
(IL31) ipTM=0.81 (SHH) ipTM=0.49 (SCRG) ipTM=0.34
Hybrid Hybrid

Arachidonoyl ether Receptor-type tyrosine-protein
phospholipid synthase phosphatase S Frizzled 1
(TM164) ipTM=0.85 (PTPRS) ipTM=0.74 (FZD1) ipTM=0.64

GM1 GM1

Predicted
Non Binders

3 O
Mothers against decapentaplegic NEDD8-activating enzyme Tudor domain
homolog 4 E1 regulatory subunit containing 10
(SMAD4) ipTM=0.82 (ULA1) ipTM=0.61 (TDR10) ipTM=0.79
GM1 Hybrid Hybrid

Hybrid N-glycan GM1 glycan

Figure 4.8: AlphaFold3 predictions on selected human protein-glycan interactions. PiCAP provides the protein-
level prediction, and CAPSIF2 residue predictions (cyan). The bound glycan is either a complex N-glycan (green) or
a GMI ganglioside (yellow), with the initial GIcNAc of the N-glycan highlighted in blue and all sialic acids
highlighted in magenta.
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PiCAP predicted interleukin 31 (IL31), sonic hedgehog (SHH), and scrapie-responsive
protein 1 (SCRG) as putative carbohydrate binding proteins. Here, I used AF3 to dock these
proteins with a hybrid N-glycan, a common branched saccharide where one branch terminates in
an oligomannose chain and the other in a sialic acid. CAPSIF2 predicted no carbohydrate-binding
residues on IL31; however, AF3 predicted the glycan to bind at an unstructured region of the
protein with a high interaction confidence (ipTM = 0.81). Conversely, AF3 docked the N-glycan
at the CAPSIF2 predicted residues of SHH and SCRG with a lower confidence (ipTM = 0.49).

Experimentally, arachindonyl ether phospholipid synthase (TM164), receptor-type
tyrosine-protein phosphatase S (PTPRS), and Frizzled 1 (FZD1) were identified in multiple
experiments as ganglioside binding proteins.!” These proteins were also predicted by PiCAP to
bind a carbohydrate. I therefore modeled these proteins in complex with the GM1 ganglioside
glycan (Figure 4.8). AF3 predicted TM164 to bind GM1 in the CAPSIF2 predicted pocket with
high confidence (ipTM = 0.85). However, AF3 however predicts PTPRS and FZDI1 to bind the
ganglioside glycan at sites outside of the CAPSIF2 predicted pockets. Notably, CAPSIF2 predicts
on intracellular binding pocket for FZD1, whereas both AF3, experimental data, and CAPSIF:V
suggest binding occurs in the extracellular region.!”

While PiCAP predicts approximately 7,000 human proteins to bind carbohydrates, it also
predicts ~13,000 human proteins as non-binders. To assess whether AF3 could also discriminate
between physiologically relevant and irrelevant interactions, I selected three proteins: mothers
against decapentaplegic homolog 4 (SMAD4), NEDD-8 activating enzyme E1 regulatory subunit
(ULA1), and Tudor domain containing 10 (TDR10). Since SMAD4 was previously investigated
by Zhang et al. and identified as a putative non-binder of GM1, I modeled the protein with GM1.

AF3 however predicts the SMAD4-GM1 complex with a high confidence (ipTM = 0.82).
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Similarly, AF3 predicted moderate to high confidence interactions for an N-glycan in complex
with ULAIT (ipTM = 0.61) and TDR10 (ipTM = 0.79). These findings suggest that ipTM values
alone may not be sufficient to distinguish between physiologic and non-physiologic interactions

in a high-throughput manner.

Discussion

I present an evaluation of multiple end-to-end all-atom prediction frameworks for
carbohydrate-protein docking and interrogate their capabilities at unveiling the structural secrets
of the protein-sugar interactome. Overall, all methods perform incredibly well at this task — all
end-to-end models capture 80% of their highest confidence models at least acceptable quality
(Figure 4.3). These models improve upon previous energy-based protein-carbohydrate docking
methods like GlycanDock* and HADDOCK!'¥, which are useful for refinement but not full de
novo docking. Although the models I tested improve upon previous methods and models, they still
have limitations, including reduced performance with increased complexity. Specifically, the
models perform worse on multi-ligand targets (GTs) and saccharides with DP greater or equal to
three. Also, the models lack robust confidence metrics for protein-carbohydrate complexes.

The BCAPIN dataset is the first study of protein-carbohydrate noncovalent docking,
including all protein-carbohydrate complexes in the PDB. However, BCAPIN primarily comprises
small, globular, single-domain proteins bound to linear glycan chains, which is not representative
of the diverse protein-carbohydrate interactions found in physiological contexts. Thus, as more
experimental data becomes available, alongside further developments in these prediction
techniques, the framework presented here can be iterated to better elucidate the protein-sugar

interactome.
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The largest limitation in continually iterating and benchmarking this structure prediction
software is the availability of high-quality experimental structures. Although the DIONYSUS
dataset is impressive in its scope, containing 5,461 protein-carbohydrate complexes, only 1,842
unique protein structures remain after 95% sequence similarity®®!!3, Further, when assessing the
individual unique binding pockets of these DIONYSUS proteins, there are only 258 unique
clusters of binding pockets.!*! With this limited set of ~1,800 unique structures and ~250 unique
binding mechanisms, data science and machine learning approaches are restricted. Therefore,
discovery of novel carbohydrate binding proteins and their structural interactions is critical.

To better improve computational approaches, I believe that one of the most promising
sources of future data future lies in liquid glycan arrays and photoaffinity labeling experiments
(e.g. those using diazirine linkers).!”-!2>13% These in vivo high throughput techniques enable
identification of protein-carbohydrate interactions on a proteome-wide scale; however, they
currently lack immediate structural resolution. Computational modeling stands poised to fill this
gap by providing structural hypotheses at atomic level detail, thereby accelerating the validation
and functional understanding of these experimentally identified interactions. To push the scope of
the BCAPIN test set, I selected two branched polysaccharides with distinct properties to explore
AF3’s capabilities. Although this study does not demonstrate that AF3 is yet ready to support full
scale high-throughput experiments comparable to photoaffinity labeling, it shows that AF3 can
generate useful, testable hypotheses on a case-by-case basis that may expedite wet lab
investigations.

To aid wet lab experiments, my lab has computationally studied protein-carbohydrate
structural interactions. I developed GlycanDock*’, CAPSIF!%, and PiCAP? as ways to elucidate

these interactions. PICAP in particular, represents a significant advancement, as it was the first
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model to predict whether a protein binds to carbohydrate, irrespective of protein family on a
proteome scale. However, these current models rely on the fundamental work of thousands of
scientists solving crystal structures of protein-carbohydrate complexes. While high-throughput
technologies are likely to uncover many more non-covalent protein carbohydrate interactions in
vivo, reliably obtaining the bound structure or identifying the full glycan repertoire for each protein
remains a computational bottleneck.

I envision a full suite of models and methods will fill the gap to identify the full protein
sugar interactome of a species. I advocate for a model that would improve upon LectinOracle*,
integrating the glycan embeddings from methods like SweetNet*’ or Gifflar!*? using sequence and
structural information insights from structure prediction models, current photoaffinity
experiments, and CAZY® can predict the glycan binding repertoire of all proteins. With this
addition, one can use PiCAP to predict whether a protein binds carbohydrates, use CAPSIF2 or
PeSTo-Carbs to predict how the protein binds the carbohydrate structurally, and finally, use the
proposed model to predict which carbohydrates are recognized, all at high-throughput scales. This
integrated approach will be essential to fully map the protein-sugar interactome, advancing general
understanding of glycan-mediated biology, enabling translational applications in therapeutics and

diagnostics.

Methods

Dataset

To evaluate how all-atom prediction software extrapolates to glycans, I used DIONYSUS
(access date: October 8, 2024), to construct the dataset. I first selected all protein-carbohydrate

complexes after the September 2021 training cutoff date used by all models. Of the 5,461 identified
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structures by DIONYSUS, 614 proteins were deposited in the PDB after the training date cutoff. I
then clustered all 5,461 protein sequences using MMSEQS?S into 50% sequence identity clusters
and removed any post-cutoff proteins with sequence homology with any protein published before
the training date cutoff, leaving 105 structures. I then selected a single structure from each cluster,
selecting the complex with the highest degree of polymerization (DP), leaving 35 protein
structures. Of these 35 protein structures, 11 experimentally bind monomers, 6 experimentally bind
dimers, 13 bind polymers (3+ saccharides), and 5 bind a saccharide and nucleotide triphosphate
(NTP).

For each structure, I analyzed the ligand structure quality measures, notably real space R
factor (RSR) and real space correlation coefficient (RSCC) (Figure 4.10).!1% When these metrics
weren’t available, (7TOH, 7Y WF, 8CSF) I provide their root-mean-squared deviation Z-scores
(RMSZ). T define the set of high-quality structures with an RSCC greater than 0.9,'% which
contains 20 structures: 9 that bind monomers, 3 that bind dimers, 5 that bind polymers, and 3 that
bind at least an NTP and a saccharide. I named the dataset the Benchmark of CArbohydrate Protein

INteractions (BCAPIN).

Prediction methodology

To provide an equivalent and biologically relevant input ligand for all structures, I
generated the SMILES strings of the original PDB ligand using GIyLES!'* (part of the
Glycowork!'# Python package). In the case of homogenous polymers, I extended the length of the
original carbohydrate by a DP of 2 to provide additional biological context. AF3, Boltz-1, Chai-1
and Diffdock input a SMILES string,*>43128:136 byt RFAA requires an SDF file input (ligand
coordinates) to perform the calculations, which I used RDKit to calculate the initial ligand

coordinates. In the case of heparin binding proteins (8EDI and 7PGK), I used the SMILES
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retrieved from the PubChem compound instead.!* For the five glycosyltransferases (GTs) targets,
I input both the carbohydrate(s) and NTP to the software for multi-body docking.

To replicate the process of a simple de novo pipeline, I ran all methods without
modifications or customizations. AF3, Boltz-1, and RFAA were run with a local distribution with
five random seeds using the SMILES strings (or RDKit generated SDF from the SMILES for
RFAA). Chai-1 was run using the Chai-1 servers, which uses five random seeds for predictions.
All confidence metrics were extracted from provided mmCIF and json files. For predicted absolute
error, | rather used Boltz-1’s interface predicted distance error (ipde).

Diffdock is not an end-to-end method, therefore I ran DiffDock in two different contexts,
(1) with the solved experimental structure, which I call DiffDock-Aolo, and (2) with a predicted
AF3 protein structure, which I call Diffdock-4F3. The AF3 structure for the input into DiffDock-
AF3 was chosen as the best ranking AF3 apo model running from 5 random seeds. I ran both
DiffDock methods using the HuggingFace server with the SMILES strings, resulting in 10 total
models. On GTs with multiple ligands, I concatenate the structures of the same rank together for a

singular prediction.

Metrics

Carbohydrates differ substantially from conventional small molecules, as they range from
small monosaccharides to branched polymers. I therefore selected the following metrics to analyze
protein-carbohydrate complex predictions: full ligand Fp5¢ (Fhatfun), residue Fyae (Fpat res), ligand
RMSD (LRMS), and ring-ring RMSD (rRMS).

F,q¢ 1s the fraction of native contacts, defined as all residue-residue contacts (any heavy

atom to any heavy atom) within 5 A:
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TP
TP+FN "’

Fhat =
where TP (True Positives) is the overlap between predicted contacts and experimentally known
contacts and FN (False negatives) are all experimental contacts not observed in the predicted
structure. I use this formal definition of residue-residue contacts which I call Fj ¢ es. In addition,
as these are small molecule-like ligands, I additionally define Fpapg,; , which instead of
carbohydrate residue-protein residue contacts, instead is the full ligand F, ., or any carbohydrate

heavy atom-protein residue contacts (effectively treating the full ligand as a singular residue).

In addition to F,¢, I leverage the root means squared deviation (RMSD) metric:

RMSDG,Y) = [FE0x - w2,

where x; are the coordinates of select heavy atoms of the predicted structure and y; are the same
heavy atom coordinates of the experimentally determined structure after optimal superposition of
the protein’s binding pocket (all residues within 10 A of the ligand). I chose two different RMSDs
to indicate the fine-grained nature of carbohydrate polymers: ligand RMSD and ring RMSD.
Ligand RMSD (LRMS) measures the distance between the predicted and experimental structures
of the ligand’s heavy atoms. For LRMS, I use the RDKit implementation that compares the
maximal similar substructures.!®!%” Ring RMSD (rRMS) simplifies the problem to only
measuring the distance between the center of mass (COM) of each carbohydrate ring. I use a
greedy implementation of »RMS, where each saccharide species is equivariant to any other
saccharide species along the polymer chain.

I combine the four separate measurements to “DockQC,” which represents the overall
quality of the predicted protein-carbohydrate structure on a scale from 0 to 1. This metric is

inspired by the foundational DockQ metric for measuring protein-protein docking.!#%!% DockQ
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measures on a scale from [0,1] by combining the fraction of natural contacts (F,,;), LRMS, and

interface RMS (iRMS). 148,149
1 .
DockQ = §(Fnat + iRMSscated,a, + LRMSscaled,a,)

where d; = 1.5 A and d>=8.5 A and

1
RMS)2

RMSscaled,di =
1+ 7

Currently, DockQ does not allow the ligands to differ in size between the crystal and
predicted structure. Additionally for small molecules, DockQ only reports the LRMS value.!#
When I reimplemented the DockQ metric with these values accounted for, I found it
unrepresentative of the predictions (Table 4.2, Figure 4.9). I therefore constructed the DockQC

based on the metrics as follows:

1/1
DOCkQC = § < E (Fnat,res + Fnat,full) + rRMSscaled,dl + LRMSscaled,dz)

where d; = 2.0 A, d>=4.0 A. 1 tuned the scaling factors of d; and d- to fit the DockQC into the
four different categories: incorrect (DockQC < 0.25), acceptable (0.25 <= DockQC < 0.50),

medium (0.50 <= DockQC < 0.80), and high (DockQC >= 0.80) (Figure 4.9, Table 4.2).
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Human proteome predictions

I selected nine proteins from the human proteome to evaluate de novo docking on
proteomic scales, where PICAP predicts six of these proteins as carbohydrate binding proteins and
three as non-binding proteins. I used the following purported glycans for docking based on the
function of each protein: GMI1, Gal(f1-3)GaINAc(B1-4)[NeuSAc(al-3)]Gal(f1-4)Glcp, for
ganglioside binding proteins and a hybrid N-glycan for the remaining proteins, NeuSAc(al-
6)Gal(P1-4)GlcNAc(B1-2)Man(al-3)[Man(al-6)[Man(al-3)][Man(al-6)[Man(f1-4)GIcNAc(B1-

4)GleNACP.

Data Availability

The BCAPIN dataset and all model inputs, code, and analysis data are available at Github:

github.com/graylab/dockqc.
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Appendix

DockQC parameterization

Table 4.2: DockQC with different d; values compared to DockQ'*® on 8 targets. Human labels for “High” quality,

“Medium” quality, “Acceptable” (Acc) quality, and “Low” quality are provided.
PDB | DockQ DockQC DockQC DockQC DockQC
di=3.0,d>=1.5 = di=5.0,d>=1.5 | d1=4.0, d>=2.0 di=3.0, d>=2.0
High 7BLG 0.94 0.93 0.94 0.94 0.93
8AD2 0.94 0.80 0.83 0.85 0.83
Med @ 7ENS 0.86 0.47 0.55 0.56 0.52
TW18 0.68 0.51 0.52 0.56 0.56
Ace | 7F9G 0.73 0.32 0.40 0.39 0.35
7EQR 0.61 0.35 0.36 0.40 0.40
Low | 8DZD 0.37 0.01 0.02 0.01 0.01
8EDI 0.61 0.21 0.23 0.22 0.21

166



Medium

Figure 4.9: Predicted protein structures deemed to be of high, medium, acceptable, and incorrect quality.
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BCAPIN RSC and RSRR values

BCAPIN RSR v RSCC
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Figure 4.10: Analysis of the BCAPIN real space R factor (RSR) and real space correlation coefficient (RSCC).
Lines at RSCC values of 0.95, 0.9 (the cutoff for the BCAPIN set), and 0.8 are shown.'*
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BCAPIN confidence metrics

DockQC v ipTM
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Figure 4.11: Comparison of ipTM and DockQC accuracy on BCAPIN. AF3 (blue circle), Boltz-1 (red square),

and Chai-1 (green X) were the only models which reported such metric.
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DockQC v pAE
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Figure 4.12: Comparison of pAE and DockQC accuracy on BCAPIN. AF3 (blue circle), Boltz-1 (red square), and
RFAA (gray Diamond) were the only models which reported such metric.
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DockQC v DiffDock Confidence
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Figure 4.13: Comparison of pAE and DockQC accuracy on BCAPIN. AF3 (blue circle), Boltz-1 (red square), and

DiffDock Confidence
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RFAA (gray Diamond) were the only models which reported such metric.
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BCAPIN: Full Set analysis

To identify any discrepancies between high quality and low quality protein-carbohydrate
complexes, I analyzed the total 35 structures (20 high quality, 15 low quality) below. I found
similar results to analyzing only the high quality structure predictions, all models perform strongly,

capturing at least 80% of all top-5 complexes with at least acceptable quality DockQC.

172



Table 4.3: Benchmark of CArbohydrate Protein INteractions (BCAPIN) low quality proteins (RSCC < 0.9).

The table lists the PDB 4-letter ID, protein name, UniProt ID, glycan input string for GlyLES, and any secondary

ligands if present.

PDB

Teqr

Tivy

Tp8g

Tpgk

Tpug

Ttoh

7tvp

Tvul

Tvwb

Txtn

Tywf

8ad2

8csf

8edi

8ped

Protein Name

Chitoporin

UDP-glycosyltransferase 203A2
Glucosyl-3-phosphoglycerate
synthase

Hedgehog-interacting protein

GH115

SGNH hydrolase

Ciral AMG chitosanase

Chitoporin

17 kDa phloem lectin
a-1,3-mannosyl-glycoprotein 4-f-N-
acetylglucosaminyltransferase A-like
isoform X1

Dirigent protein

Nictaba

WbbB D232C-Kdo adduct

Netrin receptor unc-5

Alginate lyase

UniProt

LORVUO

T1K1RS5

K5B774

Q96QV1

N/A

AO0ASM4AV20

Unk

P75733

QSLK69

A0A6J2K041

Q306J3

Q94EW1

Q6USBO

Q26261

AO0ATI9C8Z1
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GIyLES Input String

GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc(b1-

4)GIcNAc(b1-4)GIcNAc(b1-4)GlcNAc(b1-

4)GIeNAc(b1-4)GIeNAc(b1-4)GIcNAc
Glc

Glc

Heparin_analog: PDB SMILES used

Xyl(b1-4)Xyl(b1-4)Xyl(b1-4)Xyl(b1-4)Xyl(b1-

4)Xyl(b1-4)Xylb

GlcA4Me(al-2)Xylb

GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc(b1-

4)GlcNAc(b1-4)GlcNAc

GlcNAc(b1-4)GleNAc(b1-4)GlcNAc(b1-

4)GIcNAc(b1-4)GIcNAc(b1-4)GlcNAc(b1-

4)GIcNAc
Gal(b1-4)GlcNAca

GlcNAc

Gal(al-3)Galb

GlcNAc(b1-4)GleNAc(b1-4)GlcNAc(b1-

4)GlcNAc(b1-4)GIcNAc

Rha(al-3)GlcNAcb

Heparin_analog: PDB SMILES used

ManA (b1-4)ManA(b1-4)ManA(b1-4)ManA(b]-

4)ManA(b1-4)ManA(bl-4)ManA(b1-4)ManA(b1-

4)ManA(b1-4)ManAb

Secondary

Ligand

UDP

Ligand 2: GDP

Ligand 3: Kdo


https://www.uniprot.org/uniprot/A0A7I9C8Z1
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Figure 4.14: Analysis of the BCAPIN test set, including the low quality structures (RSCC < 0.9) (n=35). Top-1
(left) and top-5 (right) predictions of each method.

174



BCAPIN + low quality: DockQC by saccharide length
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Figure 4.15: Comparison of average and standard deviation DockQC of predicted structures versus saccharide
length for BCAPIN set with the low quality structures (RSCC < 0.9). I group saccharide length into a degree of
polymerization (DP) of 1 (mono), 2 (di), and 3+ (oligo), and further group all glycosyltransferases (GTs) together that
require multiple inputs (e.g. a saccharide and NTP) and with the number of proteins in each group listed. I also show
the DockQC cutoffs between acceptable (red), medium (blue), and high (green) quality structures. I show the top-1
predictions for AF3 (blue circle), Boltz-1 (orange square), Chai-1 (Green X), Diffdock-Aolo (red triangle), Diffdock-
AF3 (purple triangle), and RFAA (brown diamond).
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Chapter 5

Conclusion

As the primary means of intercellular communication, protein-carbohydrate interactions
are critical to multicellular organism survival and proliferation; however, their weak, dynamic, and
avidity-driven nature make them challenging to purify and experimentally study. Given these
experimental difficulties, it is critical to also investigate carbohydrates and generate hypotheses
with computational algorithms. However, prior to my dissertation work, computational methods

for analyzing protein-carbohydrate interactions were notably limited.
My Contributions

I began my dissertation research at an inflection point in the field of biophysics. Rapid
advancements in DL algorithms, 3D molecular representations, and computational hardware
ushered in a data-driven wave of novel approaches for the analysis of biological data at
unprecedented scales.’-% Leveraging these developments, I aimed to synthesize innovative
structural glycobiology methods to uncover new biological phenomena. This dissertation details
my efforts in developing and benchmarking deep learning tools to characterize the protein-sugar
interactome at both the protein and residue levels.

Computational modeling of protein-carbohydrate complexes is a difficult task. The
available structural data is sparse, often low-resolution, and sometimes lacking the full biological
context of the bound glycan. To address these limitations, I systematically utilized all accessible
data, while prioritizing experimentally solved, high-resolution structures for more critical data

analysis.
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CAPSIF is the first open and accessible structural deep learning algorithm designed to
predict protein-carbohydrate interactions at a residue level. Dr. Sudhanshu Shanker and I trained
two different models, a 3D voxel-based model (CAPSIF:V) and a 3D graph-based model
(CAPSIF:G). We analyzed the capabilities of both models and demonstrated the power of these
models by developing a de novo pipeline with AlphaFold2, CAPSIF, GlycanDock,* and Rosetta
tools for protein-carbohydrate docking. Overall, CAPSIF achieved a 0.59 Matthews correlation
coefficient (MCC); indicating strong performance with opportunities for future improvement.

To advance CAPSIF, I expanded the dataset and enhanced the input protein representation
using ESM2, while also investigating the distinction between carbohydrate binding and non-
binding proteins. I curated the Nonbinder and binder of CArbohydrate Protein interactions
(NoCAP) dataset, which comprises experimentally determined carbohydrate binding proteins
(with and without their associated ligand) as well as proteins presumed to not bind carbohydrates
(such as small molecule binders, DNA binding proteins, cytoskeletal components).

Utilizing NoCAP, I trained two new models — CAPSIF2 and Protein interaction of
CArbohydrates Predictor (PiCAP). CAPSIF2 surpassed both CAPSIF:V and CAPSIF:G across all
performance metrics, achieving a 0.62 MCC on the original CAPSIF dataset and 0.57 MCC on the
expanded dataset. PICAP, however, predicts whether a protein has carbohydrate binding
capabilities. PiCAP distinguishes carbohydrate-binding proteins with a 90% accuracy on
experimentally solved structures and strongly correlates with results from high-throughput
experiments, such as those profiling the ganglioside interactome. I then investigated how
proteomes interact with carbohydrates, finding that PICAP predicts 35-40% of proteins in the
human, mouse, and E. coli proteomes bind to carbohydrates. I further analyzed the subcellular

components, molecular functions, and biological processes of these predicted binding proteins,
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finding that 75% of human and mouse extracellular and cell surface proteins are predicted to bind
carbohydrates.

While identification of carbohydrate-binding sites aids experimental design, predicting the
full structure of protein-carbohydrate complexes is even more lucrative for hypothesis generation
and testing. To this end, I benchmarked all atom structure prediction deep learning models,
including AlphaFold 3, Boltz-1, Chai-1, DiffDock, and RosettaFold-AllAtom on their ability to
predict non-covalently bound protein-carbohydrate complexes. To test these models, I first
compiled a dataset of protein-carbohydrate complexes excluded from their training sets and
evaluated the experimental fits of these structures. I also developed DockQC, a novel scalar metric
(0 to 1) to quantitatively assess prediction accuracy relative to the native structure. In general, the
tested models attained comparable performance in protein-carbohydrate docking with strong
predictive capabilities on monosaccharides and disaccharides and reduced performance on
oligosaccharides and multi-ligand targets. I then used AlphaFold3 to predict the protein-
carbohydrate binding of several PiICAP predicted carbohydrate binding and non-binding human
proteins, finding that further advances are necessary to enable high-confidence high-throughput

predictions on the protein-sugar interactome.
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Future Directions

The field of biophysics has changed dramatically since I began my dissertation. Like most
other fields, biophysics became increasingly data-driven, leveraging the immense corpus of protein
structures and sequences amassed over past decades. The most influential models in this field
focused on solving general biological problems like protein structure prediction; however, there
was limited focus on smaller subfields, such as glycobiology, where the data are much more sparse.
I believe continued innovation in dataset curation, transfer learning of PiCAP/CAPSIF, creation of
virtual glycan arrays, and new approaches to protein design will pave way to deeper insights in

glycobiology.
Dataset Cleaning

In Chapter 4, I observed that the DIONYSUS dataset, despite listing 5,460 carbohydrate-
binding proteins, includes significant redundancy: at 95% sequence homology DIONYSUS yields
only 1,842 unique protein structures.!!3> Many of these are slight sequence or ligand variants, and
about 40% have low resolution glycan data (as measured by RSCC). Additionally, experimental
limitations often prevent the capture of complete binding interfaces (Figure 5.1). In Chapter 4, I
cleaned 105 structures to 35 representative structures; however, the remaining 5,355 structures are
also in need of refinement and cleaning to serve as an appropriate training set and benchmark for
future work.

Two example cases are provided in Figure 5.1 where data cleaning and in-filling are clear.
Figure 5.1A shows two structures of a glucanase solved under similar conditions, where there is a
near perfect overlap of the bound ligand between the structures, indicating the structures should

be merged. Figure 5.1B shows a single structure of an alginate lyase with two bound mannose
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(Man) trimer ligands; however, there is a clear pattern in the binding, indicating that computational
infilling could provide a more complete bound ligand. These structures could be computationally
infilled with classical techniques like Rosetta, or de novo predicted by AF3 or Boltz-2 and retained
in the dataset when they have a high quality DockQC with the solved structure.

Further, one dataset ripe for de novo structure prediction is Carbohydrate Active enZYmes
(CAZY) which lists all sequences of known carbohydrate binding enzymes, commonly alongside
their bound ligands. Using the RSCC of crystal structures, DockQC of computationally
merged/infilled/extrapolated predictions, and pLDDT of predicted CAZY proteins, researchers can
construct a well classified dataset with quality assessments for proper training and testing of future

models.

1UUS / 1UU6

Figure 5.1: Examples of solved protein-carbohydrate structures requiring manual refinement. (A) 1UUS (red)
/1UUG (teal) have the same bound carbohydrate but in different overlapping locations. (B) 8PED binds two of the
same trisaccharide suggesting a continuous pocket that binds an oligosaccharide DP 8 that is not experimentally

solved.
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Sialic Acid PiCAP and CAPSIF

Gangliosides and sialic acids are incredibly important to most mammalian systems, being
critical to neural development and proper immune signaling. In chapter 3, I validated PiCAP
against the ganglioside interactome work of Zhang et al. I next suggest the development of PiICAP
and CAPSIF2 models specific to sialic acids. These models perform encouragingly on generalized
sugars, and with a single targeted training step of transfer learning, these models can be fine-tuned
to predict on protein-sialic acid interactions. Sialic acid is one of the most unique saccharides,
containing nine carbons, an acetyl group, and carboxyl group (Figure 1.2), and therefore likely the
easiest saccharide signal for a model to specifically understand on an individual basis.

To create a sialic acid-specific PICAP/CAPSIF2, we would leverage the DR/NoCAP
dataset (Table 3.1) for negative samples and select all sialic acid containing structures in the PDB
(n=616) to provide positive samples. A single transfer learning step with the current training/testing
scheme would provide the foundation, with a similar analysis. Naturally, problems may emerge
since 616 proteins is a very limited number, especially before filtering for sequence redundancy;
however, with the litany of glycan arrays and the ganglioside interactome work, external validation

can be attained.

Virtual Glycan Arrays

Glycan arrays are widely used to qualitatively probe protein-carbohydrate interactions by
presenting a protein to diverse glycans.?! Current computational methods for glycan arrays are
LectinOracle and GlyNet. LectinOracle uses a SweetNet glycan embedding and an ESM lectin

embedding to predict if a lectin binds to the given glycan.*® GlyNet rather predicts that for a given
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glycan, which of 352 select lectins binds the glycan.®®> Both methods however are constrained by
the limited set of known lectins.

PiCAP predicts 35% of the human proteome could bind carbohydrates, where only 2.5%
of those predicted binders are known lectins, underscoring the need for algorithms capable of
predicting specific protein-carbohydrate binding beyond the current scope of lectins. For this, I
propose the development of a virtual glycan array. A virtual glycan array would be a neural network
model trained to identify the glycan binding epitopes of a provided input protein. A novel algorithm
to perform virtual glycan arrays would leverage input data from lectins, native sugar sensors, and
the incoming influx of data from high throughput photoaffinity tag pulldown assays. Such an
algorithm could concatenate GIFFLAR'#? glycan embeddings, ESM3!>* protein sequence
embeddings, and AlphaFold3 *? apo structures to predict the binding profiles of proteins. This
proposed method could then be applied to PiCAP predictions of the human protein-sugar

interactome to unveil the specific interactions for direct experimental validation.
Design

My dissertation work has been focused on elucidating the protein-sugar interactome. A
natural next step with these interactions identified is protein design targeting glycoproteins, such
as viral spike proteins. Although limited experimental data hamper current deep learning
approaches, iterative development and application of computational and experimental strategies
will continually improve all aspects of protein therapeutic design. I envision protein design can
occur in three different domains to further glycobiology: glycosylation, binding site design, and

protein design.
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Glycosylation

Glycosylation, the enzymatic attachment process of carbohydrates to biomolecules, is
central to protein function. Reliably predicting N-linked and O-linked glycosylation sites on ‘omic
scales, as well as which glycans are present at those sites, would facilitate experimental procedures
and protein design. Although tools are beginning to emerge in this field, there is substantial room
for improvement, as with all introductory techniques.®® For example, the INSANNE model
predicts glycosylation of only human proteins in human systems;’ however, does not account for
what expression system, nor that typical human therapeutic expression happens in Chinese hamster
ovary (CHO) cells."”! Such predictive capabilities would enable de novo design of specific
glycosylation on glycoproteins, thus advancing researchers’ ability to perform experiments and

uncover more protein-glycan interactions.

CAPSIF Site and Design

Currently, CAPSIF models provide binary classification of carbohydrate-binding sites
without confidence metrics or specificity to carbohydrate type. I believe that a next-generation
CAPSIF model should aim to predict not just the presence, but the identity of carbohydrate ligands.
More specifically, the model should leverage an improved loss function (binary cross entropy
(BCE) instead of Dice) and more granular binding site categories (e.g. Hex, HexNAc, Sia).
Achieving this resolution would enable “hallucination” design strategies'>? to engineer proteins

with high-confidence experimentally testable binding sites using virtual and in vitro glycan arrays.
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De Novo Protein Design

While protein structure prediction has been revolutionized by deep learning, the same
strides are being made in the world of de novo protein design. A fine-tuned algorithm for de novo
design of proteins for carbohydrate ligands would be incredibly lucrative: as it could assist in
probing cell/tissue glycosylation patterns, cellular targeting of therapeutics, development of
antibodies to emerging viruses, and components for tissue engineering.

Current techniques for de novo protein design began with a slightly round-about
methodology. To design a protein to bind a target protein, a researcher would use a diffusion model,
such as RFDiffusion!™ to generate a protein backbone, which would then be fed into
ProteinMPNN!** to predict a protein sequence without the given binding context, and then
validating the structure with AF2. Although the external use of AF2 provided some validation; the
compounding biases and errors of no context-ProteinMPNN sequence predictions from
RFDiffusion yielded low hit rates. Now, as these methods have been maturing, more context has
been incorporated by new models like RFDiffusion All-atom!3! and LigandMPNN!%3,

Creating a singular end-to-end DL algorithm for designing proteins to bind small molecules
could streamline the process and reduce cumulative model error. And with this developed model,
one could then transfer learn and fine-tune the model to protein-carbohydrate interactions on a
high-quality curated dataset, as envisioned in the Dataset Cleaning section. With these models
trained and validated against de novo protein-carbohydrate design, researchers can then expand to
bind novel glycoprotein motifs and epitopes with therapeutic relevance to more quickly respond

to future pathogenic outbreaks, such as the one that my PhD began with.
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e  Analyze six organism proteomes in terms of protein-carbohydrate interactions to assess biological functionality
e Dock carbohydrates to proteins using the Rosetta software to gain physiological insight

e Benchmark and evaluate protein-small molecule complex predictions across multitude of DL models

e  Predict critical residues implicated in enzymatic activity of antibody-carbohydrate complexes

e Collaborate with experimental colleagues to design experimental protocols

e Work alongside the lab to predict bound protein-protein complexes in the CASP15-CAPRI competition

AUGMENT BIOLOGICS Remote

Founding Al Scientist February 2025 — Current
e  Migrate academic code into a server-based platform (Modal, AWS S3)

e Implement unit tests and API calls, architectures, and benchmarks for CI/CD

e Integrate LLM approaches to predict protein glycosylation patterns

e  Perform hyper parameterization and compare benchmark capabilities

e  Perform fundamental R&D of the DL algorithm to better capture the scientific goals of glycosylation prediction
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IUPUI BIOPHYSICS RESEARCH: STEVEN R. WASSALL LAB Indianapolis, IN

Researcher August 2016 — May 2020

e Create and run lipid membrane Molecular Dynamics (MD) simulations on high performance computing (HPC)
clusters

e Use all atom (AA) and coarse grained (CG) approaches to determine molecular interactions

e  Perform umbrella sampling simulations to determine the binding of molecules to lipid membranes

e  Parameterize new computational models of molecules

e Run fluorescence spectroscopy experiments to validate computational results

e  Mentor students in both computational and experimental attributes of laboratory work

e Secured an allocation on the ANTON2 supercomputer through a competitive PSC grant

e  Presented at numerous IUPUI campus research poster sessions

REGENERON: PROTEIN BIOCHEMISTRY INTERNSHIP Tarrytown, NY

Researcher May 2019 — August 2019
e  Perform modulated differential scanning calorimetry (mDSC) on antibodies
e  Analyze mDSC to identify thermostability of drug candidates

e Run MD simulations to develop an ir sifu method to screen antibody candidates

BIOCOMP TEACHER Baltimore, MD

High School Bootcamp Teacher July 2023

e Collaborate alongside a colleague to create and run a high school program for underrepresented students in
STEM

e  Create lecture materials to cover the fundamentals molecular biology

e Create python notebooks to assist students in learning the fundamentals of coding

e Organize two weeks of coursework and material with a final project of ab initio folding of unique proteins

e Qutreach to all JHU departments and industry affiliates for guest lectures and discussions on different research
paths

e  Apply and receive funding from multiple internal JHU and Rosetta Community sources

e Create outreach materials to present and send to different organizations in the Baltimore City area

e  Photograph the event to create materials for future years
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TEACHING ASSISTANT, TUTOR Indianapolis, IN and Baltimore, MD

Tutor and Teaching Assistant August 2018 — May 2020; July - October 2023

e Led recitations and individual support for 250.649: Introduction to Computing in Biology, helping students
strengthen computational and biological analysis

e Aid students in introductory physics classes, requiring strong understanding of physics material and good
communication to explain difficult concepts

e  Assist students in PHYS 29900: Introduction to Computational Physics, requiring both solid foundation in

computational tools and physics understanding

FREELANCE PHOTOGRAPHER Indianapolis, IN and Baltimore, MD

Photographer August 2018 — Current

e Event photography for events ranging from weddings, parties, dances, concerts, and community gatherings
e Consistently photograph for the Baltimore City Waterfront Partnership’s events, notably Baltimore by Baltimore
e  Photograph for Baltimore City Downtown Sailing Center (DSC)’s Regatta

COMPUTATIONAL LANGUAGE AND TOOLS PROFICIENCY
C, C++, Python (PyTorch, TensorFlow), Tcl/Tk, Java, MATLAB, R, LaTeX, Node.js, React.js, Linux/Unix, Modal

PUBLICATIONS

e Canner, S.W.,, Kelley, P, Phillips, A.Q., Feller, S.E., Wassall, S.R. 2025. a-Tocopherol and a
Polyunsaturated Phospholipid Prefer Each Other’s Company in Mixed Membranes with Raft-forming
Sphingomyelin and Cholesterol: MD Simulations. J. Phys Chem B.

o https://doi.org/10.1021/acs.jpcb.5¢05553
e Canner, S.W,, Lu, L., Takeshita, S.S., Gray, J.J. 2015. Evaluation of De Novo Deep Learning Models on

the Protein-Sugar Interactome. bioRxiv.
o https://doi.org/10.1101/2025.09.02.673778
e Harmalkar, A., Chu, L.S., Canner, S.W., Samanta, R., Frick, R., Davila-Hernandez, F.A., Sarma, S.,
Hitawala, F. Gray, J.J. 2025. Docking With Rosetta and Deep Learning Approaches in CAPRI Rounds 47-
55. Proteins.
o https://doi.org/10.1002/prot.70016

e Canner, S.W., Schnaar, R.L., Gray, J.J. 2025. Predictions from Deep Learning Propose Substantial Protein-
Carbohydrate Interplay. bioRxiv.
o  https://doi.org/10.1101/2025.03.07.641884
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Zhang G.L., Porter M.J., Awol A.K., Orsburn B.C., Canner, S.W., Gray J.J., O’Meally R.N., Cole R.N.,
Schnaar R.L. 2024. The Human Ganglioside Interactome in Lie Cells Revealed Using Clickable
Photoaffinity Ganglioside Probes. JACS, 149(26):17801-17816.

o https://doi.org/10.1021/jacs.4c03196
Martins M., dos Santos A.M., da Costa C.H.S., Canner S.W., Chungyoun M., Gray J.J., Skaf M.S.,
Ostermeier M., Goldbeck R. 2024. Thermostability Enhancement of GH 62 a-1-Arabinofuranosidase by

Directed Evolution and Rational Design, ACS Journal of Agricultural and Food Chemistry
o https://doi.org/10.1021/acs.jafc.3c08019
Lensink, M., Brysbaert, G. Raouraoua, N... Canner, S.W., ... S. Wodak J. 2023. Impact of AlphaFold on
Structure Prediction of Protein Complexes: The CASP15-CAPRI Experiment. Proteins, 91(12):1658-1683.
o https://doi.org/10.22541/au.168888815.53957253/v1

Canner, S.W., Shanker S., and Gray J.J. 2023. Structure-based neural network protein-carbohydrate
interaction predictions at the residue level. Front. Bioinform. 3.

o  https://doi.org/10.3389/tbinf.2023.1186531
Canner, S.W., Feller S.E., and Wassall S.R. 2021. Molecular Organization of a Raft-like Domain in a

Polyunsaturated Phosopholipid Bilayer: A Supervised Machine Learning Analysis of Molecular Dynamics
Simulations. J Phys Chem B. 125(48):13158-13167.

o  https://doi.org/10.1021/acs.jpcb.1c06511
Wassall S.R., Leng X., Canner S.W., Pennington E.R., Kinnun J.J., Cavazos A.T., Dadoo S., Johnson D.,

Heberle F. A., J. Katsaras and S.R. Shaikh. 2018. Docosahexaenoic acid regulates the formation of lipid
rafts: A unified view from experiment and simulation. Biochim. Biophys. Acta, 1860(10):1985-1993.

o  https://doi.org/10.1016/j.bbamem.2018.04.016
Leng, X., Kinnun J.J., Cavazos A.T., Canner S.W., Shaikh S.R., Feller S.E., and Wassall S.R. 2018. All n-3

PUFA are not the same: MD simulations reveal differences in membrane organization for EPA, DHA and
DPA. Biochim. Biophys. Acta. 1860(5):1125-1134.
o https://doi.org/10.1016/j.bbamem.2018.01.002

PRESENTATIONS

The Sugar Science, Thlnk Tank, May 8
o “The Proteome as a Lectome: predictions from deep learning propose substantial protein-
carbohydrate interplay”
Society For Glycobiology 2024, Poster and Oral Presentation
o “The Proteome as a Lectome: predictions from deep learning propose substantial protein-
carbohydrate interplay”

Jr. Mathematical Institute for Data Science Seminar, Oral Presentation
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o “Leveraging imperfect datasets to elucidate the cellular functionality of protein-glycan interactions
on proteomic scales”
e Institute for Biophysical Research (IBR) at Johns Hopkins 2024, Oral Presentation
o “The Proteome as a Lectome: predictions from deep learning propose substantial protein-
carbohydrate interplay”
e  EuroCarb21 2023, Oral Presentation
o  Structure based neural network predictions of protein carbohydrate interactions
e NIH-FDA Glycosience Research Day 2024, Poster
e  Summer RosettaCon 2022, Poster
e  Winter RosettaCon 2022, Poster
e Biophysical Society, Poster: 2024, 2020, 2019, 2018

EDUCATION
JOHNS HOPKINS UNIVERSITY Baltimore, MD
Program in Molecular Biophysics August 2020 — October 2025

Lab of Jeffrey J. Gray

INDIANA UNIVERSITY-PURDUE UNIVERSITY AT INDIANAPOLIS Indianapolis, IN
Physics BS, Computer Science BS, Mathematics and Creative Writing MinorAugust 2016 — May
2020

e GPA:3.985
e Credit Hours: 151

AWARDS AND COMMUNITY INVOLVEMENT

e NSF GRFP Honorable Mention 2021

e [UPUI Chancellor’s Award for Outstanding Research (2020): Top Undergraduate Researcher Award
e [UPUI Top 100 Undergraduate Students (2020)

e [UPUI Honors College Chancellor’s and Dean of Science Scholar

e 2018 IUPUI Undergraduate Physics Student

e  Former board member of Naptown Stomp

e  Taught two introductory coding classes at the Johnson County White River Library

e IUPUI School of Science Ambassador

e Former Alpha Lambda Delta/Phi Eta Sigma Community Service Committee Member

e Crochet blankets/prayer shawls for the sick and elderly
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