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Abstract

Antibodies are important immunological proteins, with the capacity to bind

and neutralize a broad range of pathogens. The diversity of antibodies is

conferred through genetic recombination and mutation, largely focused in

a complementarity determining region composed of six loops. This natural

diversity and binding capability has made antibodies an increasingly impor-

tant therapeutic and diagnostic tool. However, despite their biological and

medical significance, modeling and design of antibodies remains a challenge.

In the first half of this dissertation, I detail the development of a series

of tools (DeepH3, DeepAb, and IgFold) to model increasingly complex por-

tions of the antibody variable domain. These methods have progressively

advanced the state-of-the-art in antibody modeling, first over traditional ho-

mology modeling approaches, then over highly accurate generalist methods

for structure prediction. IgFold, the current-generation antibody structure

prediction model, is capable of high-throughput antibody structure prediction

with accuracy comparable to the best generalist methods, but in a fraction

of the time. The speed and accuracy of IgFold should allow structure-based

investigation on the scale of immune repertoires and accelerate the rational

design of antibody therapeutics.
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In the second half, I present work on generative language models for

protein sequences. The first project describes ProGen2, a suite of language

models trained at massive scale. I demonstrate that these models can be used

to generate protein sequences resembling those produced by nature and to

rank the relative fitness of protein sequences. The second project describes

IgLM, a language model designed specifically for antibody design. IgLM can

be used to create antibody libraries with favorable therapeutic properties or

to generate full-length sequences with a specific species and chain type.

Taken together, my work has advanced our understanding of antibody

structure through improved modeling, and shown how we might more ef-

fectively leverage natural antibody sequence data to achieve design of novel

therapeutic molecules.
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Chapter 1

Introduction

1.1 Proteins as the building blocks of life

Scientists approach understanding of biology at several distinct scales, ranging

from the molecular to the organismal. The molecular scale is perhaps the

most fundamental, and it is the scale at which proteins operate. Proteins

are the building blocks of life, and they are responsible for nearly all of the

functions of living organisms, ranging from catalysis of biochemical reactions

to neutralization of invading pathogens. We approach the study of protein

function through an understanding their structures. Proteins are composed

of amino acids, which combine to form an unbranched polymer. There are

twenty canonical amino acids, which vary in size, hydrophobicity, charge, and

polarity. The order of amino acids determines the distinct three-dimensional

structure of a protein, which enables its function. Protein structure is stabilized

by a set of primarily non-covalent forces between their constituent amino

acids, including hydrogen bonding, hydrophobic packing, and van der Waals

interactions.
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Despite our understanding of the forces that stabilize protein structure,

we have only been able to determine the structures of a small fraction of the

proteins that exist in nature. This is due to the difficulty of determining the

structures of proteins in their native environments, which are often complex

and dynamic. The structures of proteins are often determined by X-ray crystal-

lography, which requires the protein to be crystallized in a laboratory setting.

This is a time-consuming process, and it is not always possible to crystallize

a protein of interest. As a result, we have only been able to determine the

structures of a small fraction of the proteins that exist in nature. This is a

major bottleneck in our understanding of protein function, and it is a major

challenge in the field of structural biology.

1.1.1 Physically inspired methods for protein structure pre-
diction

Since Pauling, Corey, and Branson deduced the primary elements of protein

secondary structure in 1951 [1, 2], researchers have developed increasingly

sophisticated methods for predicting protein structure. Many such methods

are inspired by Afinsen’s thermodynamic hypothesis, which postulates that

the native structure of protein corresponds to the lowest-energy state on a

landscape encoded by its amino acid sequence [3, 4]. As such, the process

of predicting the folded state of a protein can be reduced to searching over

candidate conformations in search of the energetic minimum. In practice, this

is a computationally intractable problem, as the number of possible confor-

mations grows exponentially with the length of the protein [5]. Methods for

predicting protein structure have therefore relied on human intuition and our
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understanding of the folding process to reduce the search space.

This era of protein structure prediction method development is well-

exemplified by Rosetta, a suite of tools for macromolecular modeling and

design [6]. Central to Rosetta-based methods is the energy function, a set of

physical and statistic terms that approximate the favorability of a structural

conformation given its amino acid sequence. The standard Rosetta energy

function, ref2015 [7], is made up of terms including:

• atomic attractive and repulsive energies

• atomic solvation energy

• electrostatic interaction energy

• hydrogen-bonding energy

• backbone torsion angle probability

• side-chain rotamer probability

Rosetta then formulates protein structure prediction as a Monte Carlo op-

timization problem, alternating between sampling conformations and cal-

culating their likelihood under the energy function [8]. Beyond prediction

of individual protein structures, Rosetta has enabled advances in model-

ing interactions between pairs of molecules, including protein-protein [9, 10],

protein-ligand [11], and protein-glycan [12], as well as modeling of non-protein

polymers such as RNA [13]. These extensive capabilities powered a number

of feats in protein design [14], including design of novel topologies [15] and
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assemblies [16], improvement of protein expression and stability [17], and ther-

apeutic engineering [18, 19, 20]. However, despite the steady improvement of

phsyically inspired methods like Rosetta with growing data and increasingly

sophisticated functionalities, the accuracy of these approaches remained un-

satisfactory for structural modeling, and the success of Rosetta-based methods

in protein design required enormous compute resources. These obstacles

began to be fade in 2018 with the successful application of deep learning to

protein structure prediction [21].

1.1.2 Learning to predict protein structures from data

The Critical Assessment of protein Structure Prediction (CASP) is a biennial

experiment for blind evaluation of methods for protein structure prediction.

For twenty-four years, CASP witnessed steady improvements in predictors’

ability to model the three-dimensional structures of proteins. Then, in 2018 at

CASP13 [21], the accuracy of predicted structures began to rapidly accelerate

with the development of deep learning methods from a small number of

participants [22, 23, 24]. Early deep learning methods for protein structure

prediction took inspiration from their predecessors, seeking to learn a set of

inter-residue potentials that could be used to determine a protein structure

through established methods like the CNS package [25] or Rosetta energy min-

imization. To achieve accurate prediction of these potentials, they employed

neural networks designed for computer vision, namely convolutional neural

networks (CNNs) [26] and residual neural networks (ResNets) [27]. It is im-

portant to note that deep learning alone did not enable the rapid improvement
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in accuracy of protein structure prediction. Rather, it was the combination of

deep learning with the availability of large amounts of sequence data, which

had already shown promise for protein structure prediction through extraction

of co-evolutionary information [28, 29].

Through the course of evolution, proteins acquire mutations in a con-

strained fashion that introduces diversity while maintaining (or gradually

shifting) functionality [28]. Given sufficient examples of related proteins sam-

pled across evolution, we can use machine learning to infer spatial relation-

ships between groups of residues. Effective processing of these relationships,

paired with an model architecture designed for the nuances of protein struc-

ture prediction, is the basis for the success of AlphaFold2 [30]. AlphaFold2

operates in two main stages: (1) processing of multiple sequence alignments

and (2) prediction of protein structures. The first stage is a multi-task learn-

ing problem based on multiple-sequence alignment (MSA) input, with some

aspects reminiscent of earlier approaches. The MSA processing unit, termed

EvoFormer, learns to predict inter-residue distance potentials from a corrupted

MSA. The MSA is corrupted by randomly masking identities from the input,

which are then predicted by the EvoFormer. This learning task is inspired

by techniques from natural language processing [31] (discussed more later),

and had previously shown promise for protein representation learning [32].

The second stage, termed the structure module, uses the sequential and pair-

wise representations learned by the EvoFormer to place a set of per-residue

coordinate frames in their correct tertiary positions. The entire AlphaFold2

model is trained end-to-end, meaning its outputs are directly aligned with the
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intended purpose of the model (in contrast to previous models that produced

potentials for energy minimization [33]).

1.2 Paradigms in machine learning

At a high level, machine learning can be divided into supervised and or unsu-

pervised learning. Supervised learning is the process of learning a function

that maps an input to an output, given a set of labeled examples. Protein

structure prediction is an example of supervised learning, in which the amino

acid sequence is the input and the three-dimensional structure is the output.

In unsupervised learning, the objective is to extract patterns from data without

labels. A prominent example of unsupervised learning is clustering, in which

a set of data points is partitioned into groups based on their similarity. More

relevant to this thesis is a class of unsupervised learning called self-supervised

learning, in which the unlabeled data is used as both an input and an output

for learning. Self-supervised learning is a powerful tool for learning from un-

labeled data, and has been used prominently in natural language processing

for textual representation learning [31] and generation [34]. The prediction of

masked residues from an MSA in AlphaFold2 is an example of self-supervised

learning [30]. Below, I discuss several prominent applications of supervised

and self-supervised learning to protein modeling and design to motivate and

contextualize the work of this thesis.
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1.2.1 Applications of supervised learning for proteins

As discussed above, protein structure prediction is the marquee application

of supervised learning for proteins today. However, supervised learning has

a long history of applications to protein modeling and design. Among the

earliest applications was the use of neural networks for secondary structure

prediction [35, 36]. Foreshadowing the advances to come, these methods

utilized sequence profiles and position-specific scoring matrices (PSSMs) to

predict secondary structures from amino acid sequences. Supervised learning

has also been used for rational protein design [37], peptide binder design

[38], prediction of T-cell epitopes [39], and identification of protein-protein

interactions [40]. More recently, supervised learning has shown promise for

structure-conditioned protein sequence design. The first such approach uti-

lized a graph neural network (GNN) to itereatively decode protein sequences

(one amino acid at a time) given a specified protein structure [41]. This method

outperformed its contemporaries, notably Rosetta [6], in terms of amino acid

recovery (i.e., how often the model produces the known residue identity at

each position) on a benchmark of natural proteins. In recent years, this idea

has been extended and improved upon for design of protein-protein interac-

tions, multi-state design, and protein fitness estimation [42, 43]. In addition to

the examples highlighted here, supervised learning has natural applications

to other classification tasks in protein modeling and design, such as prediction

of protein function [44], binding affinity [45], and stability [46].
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1.2.2 Applications of self-supervised learning for proteins

The commoditization of next-generation DNA sequencing techniques has lead

to a significant growth of protein sequence data [47], massively outnumbering

those with experimentally determined structures [48]. Although promini-

nently utilized in the context of structure prediction, the promise of this data

is not limited to supervised tasks. Self-supervised learning makes use of

unlabeled data by corrupting or hiding portions of the input in some way, and

then learning to reconstruct the original data. In natural language processing,

there are two dominant self-supervised learning schemes: masked language

modeling and autoregressive language modeling. Masked language modeling

is a task in which a fraction of the input tokens are randomly masked, and the

model is trained to predict the masked tokens [31]. Autoregressive language

modeling is a task in which the model is trained to predict the next token in a

sequence, given the previous tokens [34, 49]. The process of learning to per-

form these tasks is typically referred to as pretraining, as they are challenging,

yet conceptually simple tasks that require the model to build a representation

of the data distribution that can be useful for downstream applications. Both of

these tasks have proven useful for modeling proteins. ESM-1b [50] is a masked

language model trained on 250 million non-redundant sequences from UniRef

[51]. Through pretraining on evolutionarily diverse protein sequences, ESM-

1b learns representations that encode biophysical properties of amino acids,

similarity of remote homologs, and contact patterns between distant residues.

Another model, ProGen, was trained for autoregressive modeling of protein

sequences [52]. Sequences generated by ProGen are predicted to adopt stable
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folds (measured by Rosetta energy) and mirror the evolutionary signatures of

natural proteins. In later work, ProGen was finetuned (i.e., further trained)

on lysoyzme proteins and used to generate functional enzymes that diverge

significantly from sequences produced by nature [53].

1.3 Machine learning for antibodies

Antibodies are a class of proteins that are critical for human health. They

are typically composed of four protein chains (two identical heavy and two

identical light) that pair up (heavy with light) then assemble into a large Y-

shaped complex (Figure 1.1, left). In their biological role, antibodies function

as an agent of the adaptive immune system, responsible for recognizing and

neutralizing pathogens (referred to as antigens). To function effectively in

this role, antibodies must be able to recognize a wide variety of antigens,

while maintaining a high degree of specificity. This is achieved through a

combination of genetic diversity and antigen-driven selection. The genetic

diversity of antibodies begins with recombination of V(D)J genes, which can be

mixed and matched to produce a variety of naive antibody sequences. After a

specific antibody emerges from recombination events, somatic hypermutation

further diversifies the antibody through accumulation of mutations in its

antigen-binding region (FV , Figure 1.1). Mutations that increase the affinity

of the antibody for its antigen are selected for in a process called affinity

maturation. Throughout this process, only the variable (antigen-binding)

region is substantially changed, while the constant regions (FC, Figure 1.1)

remain largely the same. The exception to this conservation is class switching
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Figure 1.1: Components of antibody structure.

recombination, in which the FC region of an antibody is replaced with another.

This process allows an antibody to interface with different effector cells to

elicit alternative immune responses.

The binding of an antibody to its antigen is mediated by six hyper-variable

loops in its variable region, referred to as the complementarity determining

regions (CDRs). During affinity maturation, these loops undergo significant

genetic alteration, including mutations, insertions, and deletions. As a result,

these loops are highly variable in sequence and length. Structural modeling of

these loops can provide insights into the binding mechanisms of antibodies,

and can be used to guide the design of novel antibody therapeutics.

1.3.1 Homology modeling for antibody structures

Prior to the work presented in this thesis, homology modeling was the stan-

dard approach to predict antibody structures [54]. In homology modeling,
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the antibody sequence of interest is aligned to experimentally determined

structures sharing a similar sequence [55, 56, 57]. If a sufficient number of

templates can be found, they can be grafted together to form an accurate struc-

ture. For the more conserved framework regions of the antibody FV , there

are usually sufficient templates to produce highly accurate homology models

(with 1 Å RMSD). Indeed, for five of the six hypervariable CDR loops, there

are typically sufficient templates to classify the loop sequence into a canonical

structural class [58]. However, the immense conformational diversity of the

third CDR loop of the heavy chain (CDR H3) makes it difficult to identify

suitable templates in many cases. This is a major limitation of homology

modeling for antibody structure prediction, as the CDR H3 loop occupies a

central role in the antigen-binding surface. As such, inaccurate prediction

of the CDR H3 loop can reduce utility for downstream applications, such as

antibody-antigen docking and therapeutic design.

1.4 Dissertation outline

My thesis presents a series of methods developed to address key problems

in antibody structure prediction and design with machine learning. The next

three chapters focus on methods for antibody structure prediction, while the

following two chapters focus on generative language modeling for protein

sequence design.

In Chaper 2, I detail the development of DeepH3 [59], a method for scoring

and modeling CDR H3 loops of antibody varaible regions. DeepH3 demon-

strated that antibody-specific models could make better use of experimentally
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determined structures than homology modeling for this critical component of

antibody structure. Further, with DeepH3 we showed that antibody-specific

deep learning models can outperform generalist structure prediction methods,

giving rise to a distinct subfield of method development [60, 61, 62]. In Chap-

ter 3, I present DeepAb [63], a method for prediction of the entire antibody

FV region. DeepAb further demonstrated that deep learning methods offer

improvements over homology modeling approaches. Additionally, the con-

struction of DeepAb provided interpretability and use as a method for ranking

antibody design candidates. In Chapter 4, I present IgFold [64], a method

for fast, accurate antibody structure prediction. With IgFold, we made use of

considerably more data than is available in the PDB through self-supervised

learning and synthetic dataset generation. These advances allow IgFold to

predict state-of-the-art structures in a fraction of the time required by prior

deep learning methods. As a demonstration of these capabilities, we released

a set of 1.4 million predicted antibody structures to the research community.

In Chapter 5, I describe the ProGen2 suite of autoregressive protein lan-

guage models [65], developed in collaboration with Salesforce Research. We

trained a series of models – ranging in scale from 151 million up to 6.4 bil-

lion parameters (the largest ever such model) – on protein sequences from

genomic, metagenomic, and immune repertoire sequences. ProGen2 is use-

ful in a variety of sequence generation contexts, and it is a state-of-the-art

predictor of protein fitness. In Chapter 6, I present IgLM [66], a language

model designed specifically for antibody library generation. IgLM generates

sequences conditioned on a given species and chain type, and it can also be
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used for diversification of targeted segments of an antibody sequence. The

latter capability enables design of therapeutic antibody libraries, which we

show resemble sequences produced by humans and have favorable physical

properties.

Finally, in Chapter 7, I reflect on my contributions presented in this disser-

tation and discuss future directions for machine learning in antibody structure

prediction and design.
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Chapter 2

Geometric potentials from deep
learning improve prediction of CDR
H3 loop structures

Adapted from Jeffrey A Ruffolo, Carlos Guerra, Sai Pooja Mahajan,

Jeremias Sulam, and Jeffrey J Gray. “Geometric potentials from

deep learning improve prediction of CDR H3 loop structures”.

Bioinformatics 36.Supplement1 (2020), pp. i268-i275. Reproduced

with permission.

2.1 Abstract

Antibody structure is largely conserved, except for a complementarity-determining

region featuring six variable loops. Five of these loops adopt canonical folds

which can typically be predicted with existing methods, while the remaining

loop (CDR H3) remains a challenge due to its highly diverse set of observed

conformations. In recent years, deep neural networks have proven to be effec-

tive at capturing the complex patterns of protein structure. This work proposes

22



DeepH3, a deep residual neural network that learns to predict inter-residue

distances and orientations from antibody heavy and light chain sequence. The

output of DeepH3 is a set of probability distributions over distances and ori-

entation angles between pairs of residues. These distributions are converted

to geometric potentials and used to discriminate between decoy structures

produced by RosettaAntibody and predict new CDR H3 loop structures de

novo. When evaluated on the Rosetta antibody benchmark dataset of 49 tar-

gets, DeepH3-predicted potentials identified better, same and worse structures

[measured by root-mean-squared distance (RMSD) from the experimental

CDR H3 loop structure] than the standard Rosetta energy function for 33, 6

and 10 targets, respectively, and improved the average RMSD of predictions

by 32.1% (1.4 Å). Analysis of individual geometric potentials revealed that

inter-residue orientations were more effective than inter-residue distances for

discriminating near-native CDR H3 loops. When applied to de novo predic-

tion of CDR H3 loop structures, DeepH3 achieves an average RMSD of 2.2 ±

1.1 Å on the Rosetta antibody benchmark.

2.2 Introduction

The adaptive immune system of vertebrates is responsible for coordinating

highly specific responses to pathogens. In such a response, B cells of the

adaptive immune system secrete antibodies to bind and neutralize their re-

spective antigen. The central role of antibodies in adaptive immunity makes

them attractive for the development of new therapeutics. However, rational
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design of antibodies is hindered by the difficulty of experimental determina-

tion of macromolecular structures in a high-throughput manner. Advances

in computational modeling of antibody structures provides an alternative to

experiments, but computations are not yet sufficiently accurate and reliable.

Antibody structure consists of two sets of heavy and light chains that

form a highly conserved framework region (FC) and two variable regions

responsible for antigen binding (FV). The structural conservation of the FC

is functionally significant, enabling the recognition of different antibody iso-

types by their receptors and the FC lends well to homology modeling. The

FV contains several segments of sequence hypervariability that provide the

structural diversity necessary to bind a variety of antigens. This diversity is

largely focused in six β-strand loops known as the complementarity determin-

ing regions (CDRs). Five of these loops (L1-L3, H1 and H2) typically fold into

one of several canonical conformations [1] that are predicted well by existing

methods [2]. However, the third CDR loop of the heavy chain (H3) is observed

in a diverse set of conformations and remains a challenge to model [3, 4, 5, 6, 7,

8, 9]. Although the CDR loops are sometimes flexible and context-dependent,

the change is typically small (<1 Å) between bound and unbound forms [10].

Because each antibody CDR H3 sequence evolves in an individual organism,

evolutionary sequence history is not generally available (although there are

exceptions [11, 12]).

Application of deep learning techniques has yielded significant advances

in the prediction of protein structure in recent years. At CASP13, AlphaFold
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[13] and RaptorX [14] demonstrated that inter-residue distances could be accu-

rately learned from sequence and co-evolutionary features. Both approaches

used deep residual network architectures with dilated convolutions to predict

inter-residue distances, which provide a more complete structural description

than contacts alone. trRosetta built on this progress by expanding beyond

distances to predict a set of interresidue orientations [15]. This rich set of

inter-residue geometries allows trRosetta to outperform leading approaches

on the CASP13 dataset, even with a shallower network [15].

The effectiveness of inter-residue orientations for discriminating protein

structures has also recently been demonstrated by methods such as SBROD

and KORP [16, 17]. SBROD is a single-model quality assessment function that

considers inter-residue interactions, backbone atom interactions, hydrogen

bonding and solvent-solute interactions. Those features are extracted from a

set of decoys from various CASP experiments and the SBROD scoring function

is trained via ridge regression [16]. KORP is a knowledge-based potential

constructed from a set of six inter-residue geometric descriptors similar to

those of trRosetta [17]. Structures are scored according to a 6D joint probability

distribution extracted from a database of non-redundant protein structures.

Our work expands on the progress in general protein structure prediction

by applying similar techniques to a challenging problem in antibody structure

prediction. Specifically, we propose DeepH3, a deep residual network that

learns to predict inter-residue distances and orientations from antibody heavy

and light chain sequence alone. When compared to state-of-the-art scoring

methods, DeepH3 can identify near-native CDR H3 loops more accurately.
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When used for de novo prediction of CDR H3 loop structures, DeepH3 pro-

duces lower-root-mean-squared distance (RMSD) structures than existing

methods.

2.3 Methods

2.3.1 Overview

DeepH3 is a deep residual network [18] that learns to predict inter-residue

distances and orientations from antibody heavy and light chain sequences.

The architecture of DeepH3 draws inspiration from RaptorX [19, 14], which

performed well on general protein structure prediction at CASP13. The rel-

ative scarcity of structural data for antibodies compared to general proteins

presents challenges (as in any subproblems of structure prediction). We allevi-

ate this limitation by reducing the depth of our network compared to previous

methods, and we verify the generalization by examining performance on a

highly diverse benchmark dataset. The outputs of DeepH3 are converted into

geometric potentials to better discriminate between CDR H3 loop structures

(decoys) generated using a standard homology modeling approach [20] and

to predict new CDR H3 loop structures de novo.

2.3.2 Antibody structure datasets

Benchmark dataset

The Rosetta antibody benchmark dataset consists of 49 FV structures with

CDR H3 loop lengths ranging from 9 to 20 residues [20, 21]. These structures

were selected from the PyIgClassify database [22] based on their quality, with
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each having resolution of 2.5 Å or better, a maximum R value of 0.2 and a

maximum B factor of 80.0 Å2 for every atom [20, 21]. The diversity of the set

is enhanced by ensuring that no two structures share a common CDR H3 loop

sequence, but the set is limited by the restriction to structures from humans

and mice.

Training dataset

The training dataset for this work was extracted from SAbDab, a curated

database of all antibody structures in the Protein Data Bank [23]. We enforced

thresholds of 99% sequence identity and 3.0 Å resolution to produce a bal-

anced, high-quality dataset. This high sequence identity cutoff was chosen

due to the high conservation of sequence characteristic of antibodies. In cases

where multiple chains existed for the same structure, only the first chain in

the PDB file was used. Finally, any structures present in the Rosetta antibody

benchmark dataset were removed. These steps resulted in 1433 structures,

of which a random 95% were used for model training and 5% were used for

validation. This small validation set was found to be sufficient to control for

overfitting. Note that testing is carried out on an independent benchmark

sharing no structures with the training/validation sets.

2.3.3 Learning inter-residue geometries from antibody sequence

Input features

Unlike most comparable networks, DeepH3 relies only on amino acid se-

quence as input. For general protein structure prediction, current methods
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typically utilize some combination of multiple sequence alignments (MSAs),

sequence profiles, co-evolutionary data, secondary structures, etc. [13, 19,

14, 15]. While these additional input features provide rich information for

general protein structure predictions, each antibody evolves independently in

one single organism, and we rarely have relevant evolutionary histories for

CDR H3 loop sequences. Thus, we omit sequence alignment data like MSAs.

DeepH3 takes as input a one-hot encoded sequence formed by concatenating

the target heavy and light chains (FV) sequences. A chain delimiter is added to

the last position in the heavy chain, resulting in an input of dimension L × 21,

where L is the cumulative length of the heavy and light chain sequences.

Inter-residue geometries

In addition to inter-residue distances, DeepH3 is also trained to predict the

set of dihedral and planar angles previously proposed for trRosetta [15]. For

two residues i and j, the relative orientation is defined by six parameters [d,

ω, θij, θji, ϕij and ϕji, Figure 2.1A-B, adapted from [15]]. The distance (d) is

defined using Cβ atoms or for glycine residues, Cα. Distances were discretized

into 26 bins, with 24 in the range of [4, 16 Å] and two additional bins for all

distances below 4 Å or above 16 Å. The dihedral angle ω is formed by atoms

Cαi, Cβi, Cβj and Cαj, and the dihedral angle θij is formed by atoms Ni, Cαi, Cβi,

and Cβj. Both dihedral angles were discretized into 26 equal-sized bins in the

range of [-180, 180deg]. The planar angle ϕij is formed by atoms Cαi, Cβi, and

Cβj. Planar angles were discretized into 26 equal-sized bins in the range of [0,

180deg]. Orientation angles were not calculated for glycine residues, due to

the absence of the Cβ atom.
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Figure 2.1: Architecture of DeepH3 deep residual neural network

(A) Illustration of the distance d and dihedral ω for two residues. (B) Illustration
of the dihedrals θ12 and θ21 and planar angles ϕ12 and ϕ21 for two residues. (C)
Architecture diagram of residual neural network to learn inter-residue geometries
from concatenated antibody FV chain sequences.

Network architecture

DeepH3 applies a series of 1D and 2D convolutions to the aforementioned se-

quence input feature to predict four inter-residue geometries, as diagrammed

in Figure 2.1C. The first 1D convolution (kernel size of 17) projects the L × 21

input features up to an L × 32 tensor. Next, the L × 32 tensor passes through

a set of three 1D residual blocks (two 1D convolutions with kernel size of

17), which maintain dimensionality. Following the 1D residual blocks, the se-

quential channels are transformed to pairwise by redundantly expanding the
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L × 32 tensor to dimension L × L × 32 and concatenating with the transpose,

resulting in a L × L × 64 tensor. This tensor passes through 25 2D residual

blocks (two 2D convolutions with kernel size of 5 × 5) that maintain dimen-

sionality. Dilation of the 2D convolutions cycles through values of 1, 2, 4, 8 and

16 every five blocks (five cycles in total). Each of the preceding convolutions

is followed by a batch normalization. Next, the network branches into four

paths, which each apply a 2D convolution (kernel size of 5× 5) to project down

to dimension L × L × 26 (for 26 output bins). Symmetry is enforced for the d

and ω branches after the final convolution by summing the resulting tensor

with its transpose. The four resulting L × L × 26 tensors are converted to

pairwise probability distributions for each output using the softmax function.

Training

Categorical cross-entropy loss was calculated for each output tensor and the

resulting losses were summed with equal weight before back propagation. The

Adam optimizer was used with an initial learning rate of 0.01 and reduction

of learning rate upon plateauing of total loss. Dropout was used after the last

2D residual block, with entire channels being zeroed out at 20% probability.

The network was trained using 95% of antibody dataset described above (1388

structures) for 30 epochs. Each epoch utilized the entire training dataset, with

a batch size of 4. Training lasted about 35 hours using one NVIDIA Tesla K80

GPU on the Maryland Advanced Research Computing Center (MARCC).
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2.3.4 Network predictions as geometric potentials

Implementation

We applied DeepH3 to each sequence in the Rosetta antibody benchmark

dataset to produce pairwise probability distributions for the four output ge-

ometries. Distributions for pairs of residues that did not include a member of

the CDR H3 (according to Chothia number) loop were discarded. Addition-

ally, pairs of residues for which the maximum probability bin of the distance

output was greater than 12 Å were discarded to focus on local interactions that

are likely to carry biophysical meaning. We also disregarded those predicted

distributions that were not informative enough, chosen as those with a maxi-

mum probability below 10%. The remaining distributions were converted to

potentials by taking the negative natural log of each output bin probability.

Continuous, differentiable Rosetta constraints (AtomPair for d, Dihedral for

ω and θ and Angle for ϕ) were created for each potential using the built-in

spline function. Within Rosetta, a histogram corresponding to each pairwise

potential is fit to a cubic spline. These constraint functions are used calculate

the DeepH3 energy term for each structure.

CDR H3 loop discrimination

To test the effectiveness of predicted geometric potentials for discriminating

between near-native CDR H3 loops, we collected a set of 2800 decoy structures

generated by RosettaAntibody for each of the 49 Rosetta antibody benchmark

targets [20]. These structures were generated by homology modeling, with

decoys for each target assuming various heavy/light-chain orientations and
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non-H3 CDR loop conformations [20, 24]. After scoring each structure with

DeepH3, we compared the discrimination performance to three other stateof-

the-art scoring methods: SBROD [16], KORP [17] and the ref2015 full-atom

energy function (referred to as Rosetta energy) [25].

Discrimination score

The discrimination score is a common metric for measuring the success of

structure prediction calculations by assessing whether the minimum energy

structures are near-native, with a lower value being indicative of a more

successful prediction [21]. To compare between different energy schemes,

we first scale the scores for all decoy structures such that the 95th percentile

energy has a value of 0.0 and the 5th percentile energy has a value of 1.0. The

discrimination score is then calculated as [26]:

D = ∑
r∈{1,1.5,2,2.5,3,4,6}

min
i,RMSD(i)∈[0,r]

Ei − min
i,RMSD(i)∈[0,∞]

Ei (2.1)

where r is the RMSD cutoff in Å, Ei is the scaled energy for the i-th decoy

structure, and the discrimination score, D, is the sum of the energy differences

for the best scoring decoys above and below each RMSD cutoff.

2.3.5 De novo prediction of CDR H3 loop structures

DeepH3 prediction of crystal Fv framework

We applied the Rosetta LoopModeler protocol [27, 28] to each target in the

Rosetta antibody benchmark to build the CDR H3 loop onto the FV crystal

structure. Prior to modeling, the crystallographic loop was extended by
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setting ϕ and ψ angles to 180deg to emulate a blind prediction. Throughout

the modeling process, the KIC algorithm was guided only by DeepH3 energy,

with all Rosetta energy function terms disabled. For each target, 500 decoys

were generated. We elected to use a relatively low number of decoys after

observing faster convergence with DeepH3 energy than is typical for Rosetta

energy.

trRosetta heavy chain prediction

The most similar approach to DeepH3 is trRosetta for general protein structure

prediction. To better understand the impacts of designing a network specifi-

cally for antibody structures, we tested the performance of trRosetta on the

Rosetta antibody benchmark using the public trRosetta server [15]. Because

trRosetta was designed to predict the structure of single-chain proteins, we

submitted only heavy chain sequences (i.e. omitting the light chain). The five

resulting structures were aligned to the heavy chain in the crystal structure to

measure the RMSDs of the CDR H3 loop heavy atoms.

2.4 Results

2.4.1 DeepH3 accurately predicts inter-residue geometries

To evaluate the accuracy of DeepH3’s predictions, we applied our model to

the entire Rosetta antibody benchmark dataset (not seen during training or

validation). For residue pairs involving a CDR H3 loop residue, the predicted

values for each geometry are plotted against experimental structure values

in Figure 2.2. We limit our analysis to pairs including an H3 loop residue to
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Figure 2.2: Accuracy of predicted inter-residue geometries

Pearson correlation coefficients (for d and ϕ) and circular correlation coefficients (for
ω and θ) are calculated between DeepH3 predictions and experimental values.

ensure that DeepH3 is effectively learning the most variable regions of the

antibody structure, rather than just the conserved framework. DeepH3 dis-

plays effective learning across all outputs; the Pearson correlation coefficients

(r) for d and ϕ were 0.87 and 0.79, respectively, and the circular correlation

coefficients (rc) for dihedrals ω and θ were 0.52 and 0.88, respectively.
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Figure 2.3: Effectiveness of predicted inter-residue geometries for decoy discrimina-
tion

(A, B) Comparison of the quality of structures selected by Rosetta energy and DeepH3
energy (using all geometric potentials). The quality of structures is considered the
same if the difference in RMSD is within 60.25 Å , indicated with dashed lines. (A)
DeepH3 energy selected better-, sameand worse-RMSD structures for 33, 6 and 10
out of 49 targets, respectively, when the best-scoring structures were compared (top
1). (B) When the set of five best-scoring structures were considered (top 5), DeepH3
energy identified better-, sameand worse-RMSD structures for 24, 16 and 9 out of 49
targets, respectively. (C) Comparison of the discrimination scores for Rosetta energy
and DeepH3 energy.

2.4.2 Geometric potentials discriminate near-native CDR H3
loop structures

To evaluate the effectiveness of DeepH3 energy for identifying near-native

structures, predicted DeepH3 geometric histograms were converted to po-

tentials (Section 2) that were then evaluated on RosettaAntibody generated

structure decoys. Reported RMSD values are measured between the heavy

atoms of CDR H3 loops after aligning the FV backbone heavy atoms. When

the best-scoring structures (top 1) by Rosetta energy and DeepH3 energy were

compared, DeepH3 selected better-, same-, and worse-RMSD structures for

33, 6 and 10 out of 49 targets, respectively, with an average RMSD improve-

ment of 1.4 Å (Figure 2.3A). When the set of five best-scoring structures (top
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Table 2.1: Performance of DeepH3 energy versus alternative methods for selecting
low-RMSD antibody decoys

Top 1 Top 5
Energy function Better Same Worse ∆RMSD Better Same Worse ∆RMSD

SBROD 38 6 5 -1.8 35 11 3 -1.1
KORP 32 10 7 -0.9 25 18 6 -0.6
Rosetta 33 6 10 -1.4 24 16 9 -0.8

Top-1 metrics compare the RMSD of the best-scoring structure by DeepH3 energy
against that of a given energy function. Top-5 metrics compare the lowest-RMSD
structure among the five best-scoring structures selected by DeepH3 energy and that
of a given energy function. The average difference in RMSD between the structures
selected by DeepH3 energy and a given energy function is reported as ∆RMSD (Å).
"Better," "Same," and "Worse" indicate the number of targets that achieve a lower,
same, or higher RMSD, respectively, when scored by DeepH3.

5) by Rosetta energy and DeepH3 energy were considered, DeepH3 energy

identified better-, same-, and worse RMSD structures for 24, 16 and 9 out of

49 targets, respectively, with an average RMSD improvement of 0.8 Å (Fig-

ure 2.3B). We also compared the ability of Rosetta energy and DeepH3 energy

to discriminate between decoys for each benchmark target (Figure 2.3C, Ta-

ble 2.2). The mean discrimination scores for Rosetta energy and DeepH3

energy across the benchmark were 1.7 and -12.2, respectively, indicating that

DeepH3 was much more successful in general. When individual targets are

considered, DeepH3 energy was successful in discriminating between decoys

for 36 out of 49 targets, while Rosetta energy was successful for only 15 out of

49 targets.

To compare against alternative state-of-the-art methods, we also scored

the RosettaAntibody decoy using SBROD [16] and KORP [17] (Tables 2.1 and

2.2). In a comparison of the top-rated structures from the decoy set, DeepH3

demonstrated improvements over SBROD (38 targets were better, 6 same and
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Table 2.2: Discrimination score metrics for DeepH3 energy and several state-of-the-art
energy functions

Energy terms Successful Unsuccessful Mean D

SBROD 8 41 3.7
KORP 21 28 0.2
Rosetta 15 34 1.7
DeepH3 36 13 -12.2
d 32 17 -7.4
ω 32 17 -7.8
θ 38 11 -15.6
ϕ 36 13 -9.6

DeepH3 energy is further divided into individual inter-residue geometries. Negative
discrimination scores, D, are considered successful and positive are considered un-
successful.

5 worse; average ∆RMSD of -1.8 Å). The comparison of the five top-scoring

structures was similar (35 better, 11 same and 3 worse; ∆RMSD = -1.1 Å).

In general, SBROD was unsuccessful in discriminating near-native decoys,

with only 8 out of 49 benchmark targets having a negative discrimination

score and an average D of 3.7. DeepH3 also outperformed KORP among

best-scoring structures (32 better, 10 same and 7 worse; ∆RMSD = -0.9 Å)

and when comparing the lowest-RMSD structure among the five best-scoring

decoys for each target (25 better, 18 same and 6 worse; ∆RMSD = -0.6 Å).

KORP was generally unsuccessful in discriminating near-native CDR H3 loop

decoys, with only 21 out of 49 targets having negative discrimination scores

and an average D = 0.2.

To provide a better understanding of how predicted geometric potentials

improve discrimination between CDR H3 structures, we detail two case stud-

ies: anti-ALOX12 scFV (scFV of mouse antibody with a 12-residue CDR H3

loop, PDB ID: 4H0H) and anti-dansyl mAb (humanized mouse antibody with
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Figure 2.4: Results for two Rosetta antibody benchmark targets

(A) Plots of Rosetta energy and DeepH3 energy versus RMSD from the experimental
structure for 2800 decoy structures for anti-ALOX12 scFV . The five best-scoring
structures in each funnel plot are indicated in red. Five relaxed native structures are
plotted as orange triangles. (B) Experimental structure of anti-ALOX12 scFV (green)
with best-scoring structures by Rosetta energy (orange, 7.2 Å RMSD) and DeepH3
energy (violet, 1.6 Å RMSD). (C) Plots of energy versus RMSD from the experimental
structure for anti-dansyl mAb. (D) Experimental structure of anti-dansyl mAb (green)
with best-scoring structures by Rosetta energy (orange, 2.5 Å RMSD) and DeepH3
energy (violet, 4.0 Å RMSD).

a 12-residue CDR H3 loop, PDB ID: 1DLF) [21]. Figure 2.4A and Figure 2.4C

shows energy funnels for anti-ALOX12 and anti-dansyl, respectively, with the

discrimination score calculated for each. For anti-ALOX12, Rosetta energy dis-

plays little ability to discriminate with structures ranging from 2 to 8 Å RMSD

(D = 10.0). DeepH3 energy, however, earns a negative discrimination score (D

= -3.7), indicating an ability to easily distinguish the near-native structures.

The best scoring anti-ALOX12 decoy structures as selected by Rosetta energy
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Figure 2.5: Performance of DeepH3 and alternative methods across various loop
lengths

Comparison across loop lengths of the error in structures selected by SBROD (green),
KORP (blue), Rosetta energy (orange) and DeepH3 score (violet). The shaded areas
show the range of lowest RMSD values sampled for targets across loop lengths.

(orange, 7.2 Å RMSD) and DeepH3 energy (violet, 1.6 Å RMSD) are shown in

Figure 2.4B and Figure 2.4D.

For anti-dansyl, Rosetta energy is generally unsuccessful in discriminating

between decoys (D = 0.6), again with minor energetic differences across a wide

range of RMSD values. DeepH3 energy appears to converge to an alternative

loop conformation around 4 Å RMSD, resulting in a poor discrimination score

(D = 3.8). Figure 2.4D shows the best-scoring anti-dansyl decoy structures as

selected by Rosetta energy (orange, 2.5 Å RMSD) and DeepH3 energy (violet,

4.0 Å RMSD).

2.4.3 Longer loops remain a challenge

The Rosetta antibody benchmark dataset encompasses a diverse set of CDR H3

loop lengths. Longer loops introduce greater degrees of freedom (two DOFs
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Table 2.3: Performance of DeepH3 energy versus alternative methods for selecting
low-RMSD antibody decoys

Top 1 Top 5
Energy function Better Same Worse ∆RMSD Better Same Worse ∆RMSD

d 27 9 13 -1.1 22 14 13 -0.5
ω 30 8 11 -1.3 26 14 9 -0.4
θ 31 7 11 -1.5 23 13 13 -0.7
ϕ 29 7 13 -1.4 26 14 9 -0.8

Top-1 metrics compare the RMSD of the best-scoring structure by Rosetta energy
against that of a given DeepH3 potential. Top-5 metrics compare the lowest-RMSD
structure among the five best-scoring structures selected by Rosetta energy and that
of a given DeepH3 potential. The average difference in RMSD between the structures
selected by a given DeepH3 potential and Rosetta energy is reported as ∆RMSD (Å).

per residue), and thus present additional challenges to effective sampling and

discrimination. To investigate the performance of DeepH3 across loop lengths,

we sub-divided the benchmark targets by length and compared to three

alternative scoring methods: SBROD, KORP and the Rosetta energy function

(Figure 2.5). For nearly every loop length considered, DeepH3 identified the

lowest RMSD structures according to the top-1 and top-5 criteria (see above).

For several loop lengths, DeepH3 identified decoys near the lowest-RMSD for

particular targets in the dataset, as indicated by the shaded region. In general,

the average RMSD increased with loop length across all four methods, though

DeepH3 displayed notable consistency across loop lengths according to the

top-5 criteria.

2.4.4 Orientation potentials are more effective than distance
potentials

We also evaluated the utility of individual geometric potentials for selecting

low-RMSD decoys (Table 2.3). Notably, when DeepH3 distance potentials
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alone were used, performance was only moderately better than Rosetta energy.

When the best-scoring structures by Rosetta energy and distance potentials

were compared, distance potentials selected better-, same-, and worse-RMSD

structures for 27, 9 and 13 out of 49 targets, respectively, with an average

RMSD improvement of 1.1 Å. When the set of five best-scoring structures

by Rosetta energy and distance potentials were considered, DeepH3 energy

identified better-, same-, and worse-RMSD structures for 22, 14 and 13 out of

49 targets, respectively, with an average RMSD improvement of 0.5 Å. Individ-

ual orientation potentials were more effective at selecting low-RMSD decoys

than distance, even matching or outperforming the total DeepH3 energy by

some metrics. We also calculated discrimination scores for each geometric

potential (Table 2.2). Distance and ω orientation potentials displayed the

weakest performance among geometric potentials but still showed significant

improvement over Rosetta energy, with 32 out of 49 simulations being suc-

cessful for both. The other orientation potentials produced more successful

simulations and lower mean discrimination scores.

2.4.5 DeepH3 effectively predicts new CDR H3 structures de
novo

The ultimate goal of DeepH3 was to improve the de novo prediction of CDR

H3 loops. Towards this end, we used DeepH3 to create potentials that we then

used in Rosetta for de novo structure prediction of the CDR H3 loops (Section

2). The average (± SD) RMSD of the best-scoring structures generated with

DeepH3 potentials for each target (top 1) was 2.2 ± 1.1 Å. When the set of five

best-scoring structures for each target were considered (top 5), the average
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Figure 2.6: Performance of DeepH3 for de novo CDR H3 loop structure prediction

(A) DeepH3 achieves lower average RMSD (2.2 ± 1.1 Å) than trRosetta (4.7 ± 1.4
Å) and ties Weitzner et al. (2.2 ± 1.5 Å) [24] when the best scoring structures for
each target were compared (top 1). When the lowest-RMSD structure among the five
best-scoring structures were considered (top 5), DeepH3 (1.9 ± 0.9 Å) outperformed
trRosetta (4.3 ± 1.3 Å). Top-5 metrics were not available for Weitzner et al. (B)
Comparison of the minimum RMSD sampled by DeepH3 to the RMSD of the best-
scoring structure (top 1) for each target. (C) Comparison of the minimum RMSD
sampled by DeepH3 to the lowest RMSD within the set of five best-scoring structures
(top 5) for each target.

RMSD fell to 1.9 ± 0.9 Å. We compare the best-scoring structures generated

with DeepH3 potentials to those published by Weitzner et al. [21] (Figure 2.6A)

and find effectively equivalent performance (∆RMSD < 0.1 Å) (Top-5 met-

rics were not reported by Weitzner et al.). The recently published trRosetta

provides another deep learning prediction method to compare. trRosetta is

trained broadly on diverse protein structures, and DeepH3 has fewer input

features (just sequence). trRosetta is designed for single-chain proteins, so we

omitted the light chain and predicted structures for the heavy chain alone. On

the same benchmark, trRosetta achieves average accuracies of 4.7 ± 1.4 Å(top

1) and 4.3 ± 1.3 Å(top 5, Figure 2.6A). Compared to trRosetta, DeepH3’s top-1

and top-5 metrics are 2.5 Å and 2.4 Å RMSD better, respectively.
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To better understand the sampling performance of DeepH3, we compared

the lowest-RMSD decoy sampled to the best-scoring (top 1, Figure 2.6B) and

the lowest-RMSD among the five best-scoring (top 5, Figure 2.6C). DeepH3

samples structures with sub-angstrom RMSD for 38.8% of the targets and

95.9% for <2 Å. On the other hand, DeepH3 is able to identify a sub-angstrom

decoy as the best-scoring structure (top 1) for 14.3% of targets and 55.1% for

<2 Å. When considering the set of five best-scoring decoys (top 5), DeepH3

identifies a sub-angstrom decoy for 18.4% of targets and 63.2% for <2 Å. These

results are promising and point to possibility of further refining the DeepH3

geometric potentials for de novo prediction.

2.5 Discussion

The results here suggest that the significant advances by deep learning ap-

proaches in general protein structure can be realized in subproblems in struc-

tural modeling. Specifically, we demonstrate that a deep residual network

can effectively capture the local inter-residue interactions that define antibody

CDR H3 loop structure. DeepH3 achieves these results without MSAs and

co-evolutionary data, while using significantly fewer residual blocks (3 1D

and 25 2D blocks) than similar networks, such as AlphaFold (220 2D blocks)

[13], RaptorX (6 1D and 60 2D blocks) [19, 14] and trRosetta (61 2D blocks)

[15]. Fewer blocks may suffice because we limited our focus to antibodies,

which are highly conserved, rather than the entire universe of protein struc-

tures. By omitting MSAs and co-evolutionary data, we demonstrate that these

features, which have seemed essential to the advances in general protein
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structure prediction, may not be necessary for some subproblems. In the

future, similar specialized networks could achieve enhanced performance in

other challenging areas of protein structure prediction, but further research is

required.

Breakdown of DeepH3 energy into individual geometric potentials re-

vealed that inter-residue orientations were significantly more effective for

scoring CDR H3 loop structures than distances. This finding was surprising,

given the improvements that distances alone have enabled in general pro-

tein structure prediction. This observation could also underlie the improved

performance of trRosetta compared to methods that do not use orientations.

Alternatively, distance restraints may be more effective at placing residues

globally while local interactions in loops are better captured by inter-residue

orientations.

Application of DeepH3 to de novo prediction of CDR H3 loop structures

highlights the promise of deep learning in this challenging area. Comparison

with the results from Weitzner et al., which leveraged an explicit H3-kink

geometric constraint [21], demonstrates that DeepH3 effectively learned chal-

lenging features of H3 loop structure. While this work focused only on the

CDR H3 loop, we anticipate that applying DeepH3 to other aspects of an-

tibody structure prediction may yield further advances. Because DeepH3

learns from full FV heavy and light chain sequences, the current network may

already capture other critical aspects of antibody structure prediction (VL-VH

orientations [20], non-H3 CDR loop conformations [2] etc.), though future

work will be necessary to explore these areas.
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Chapter 3

Antibody structure prediction using
interpretable deep learning

Adapted from Jeffrey A Ruffolo, Jeremias Sulam, and Jeffrey J Gray.

“Antibody structure prediction using interpretable deep learning”.

Patterns 3.2 (2022), p. 100406. Reproduced with permission.

3.1 Abstract

Therapeutic antibodies make up a rapidly growing segment of the biologics

market. However, rational design of antibodies is hindered by reliance on

experimental methods for determining antibody structures. Here, we present

DeepAb, a deep learning method for predicting accurate antibody FV struc-

tures from sequence. We evaluate DeepAb on a set of structurally diverse,

therapeutically relevant antibodies and find that our method consistently

outperforms the leading alternatives. Previous deep learning methods have

operated as "black boxes" and offered few insights into their predictions. By
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introducing a directly interpretable attention mechanism, we show our net-

work attends to physically important residue pairs (e.g., proximal aromatics

and key hydrogen bonding interactions). Finally, we present a novel mutant

scoring metric derived from network confidence and show that for a particular

antibody, all eight of the top-ranked mutations improve binding affinity. This

model will be useful for a broad range of antibody prediction and design

tasks.

3.2 Introduction

The adaptive immune system of vertebrates is capable of mounting robust

responses to a broad range of potential pathogens. Critical to this flexibility

are antibodies, which are specialized to recognize a diverse set of molecular

patterns with high affinity and specificity. This natural role in the defense

against foreign particles makes antibodies an increasingly popular choice

for therapeutic development [1, 2]. Presently, the design of therapeutic anti-

bodies comes with significant barriers [1]. For example, the rational design

of antibody-antigen interactions often depends upon an accurate model of

antibody structure. However, experimental methods for protein structure de-

termination such as crystallography, NMR, and cryo-EM are low throughput

and time consuming.

Antibody structure consists of two heavy and two light chains that assem-

ble into a large Y-shaped complex. The crystallizable fragment (FC) region is

involved in immune effector function and is highly conserved within isotypes.

The variable fragment (FV) region is responsible for antigen binding through
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a set of six hypervariable loops that form a complementarity determining

region (CDR). Structural modeling of the FV is critical for understanding the

mechanism of antigen binding and for rational engineering of specific an-

tibodies. Most methods for antibody FV structure prediction employ some

form of grafting, by which pieces of previously solved FV structures with

similar sequences are combined to form a predicted model [3, 4, 5, 6]. Because

much of the FV is structurally conserved, these techniques are typically able

to produce models with an overall root-mean-square deviation (RMSD) less

than 1 Å from the native structure. However, the length and conformational

diversity of the third CDR loop of the heavy chain (CDR H3) make it difficult

to identify high-quality templates. Further, the H3 loop’s position between

the heavy and light chains makes it dependent on the chain orientation and

multiple adjacent loops [7, 8]. Thus the CDR H3 loop presents a longstanding

challenge for FV structure prediction methods [9].

Machine learning methods have become increasing popular for protein

structure prediction and design problems [10]. Specific to antibodies [11],

machine learning has been applied to predict developability [12], improve

humanization [13], generate sequence libraries [14], and predict antigen in-

teractions [15, 16]. In this work, we build on advances in general protein

structure prediction [17, 18, 19] to predict antibody FV structures. Our method

consists of a deep neural network for predicting inter-residue distances and

orientations and a Rosetta-based protocol for generating structures from net-

work predictions. We show that deep learning approaches can predict more
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Figure 3.1: Diagram of DeepAb method for antibody structure prediction

Starting from heavy and light chain sequences, the network predicts a set of inter-
residue geometries describing the FV structure. Predictions are used for guided
structure realization with Rosetta. Two interpretable components of the network are
highlighted: a pretrained antibody sequence model and output attention mechanisms.

accurate structures than grafting-based alternatives, particularly for the chal-

lenging CDR H3 loop. The network used in this work is designed to be directly

interpretable, providing insights that could assist in structural understanding

and antibody engineering efforts. We conclude by demonstrating that our

network can distinguish mutational variants with improved binding using a

prediction confidence metric. To facilitate further studies, all the code for this

work, as well as pretrained models, is provided.

3.3 Results

3.3.1 Overview of the method

Our method for antibody structure prediction, DeepAb, consists of two main

stages (Figure 3.1). The first stage is a deep residual convolutional network
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that predicts FV structure, represented as relative distances and orientations

between pairs of residues. The network requires only heavy and light chain

sequences as input and is designed with interpretable components to provide

insight into model predictions. The second stage is a fast Rosetta-based

protocol for structure realization using the predictions from the network.

Predicting inter-residue geometries from sequence

Due to the limited number of FV crystal structures available for supervised

learning, we sought to make use of the abundant immunoglobin sequences

from repertoire sequencing studies [20]. We leveraged the power of unsuper-

vised representation learning to embed general patterns from immunoglobin

sequences that are not evident in the small subset with known structures into

a latent representation. Although transformer models have become increas-

ingly popular for unsupervised learning on protein sequences [21, 22, 23], we

chose a recurrent neural network (RNN) model for ease of training on the

limited data available. The fixed-size hidden state of RNNs forms an explicit

information bottleneck ideal for representation learning. In the recent UniRep

method, RNNs were demonstrated to learn rich feature representations from

protein sequences when trained on next-amino-acid prediction [24]. For our

purposes, we developed an RNN encoder-decoder model [25]; the encoder is

a bidirectional long short-term memory (biLSTM) and the decoder is a long

short-term memory (LSTM) [26]. Briefly, the encoder learns to summarize an

input sequence residue-by-residue into a fixed-size hidden state. This hidden

state is transformed into a summary vector and passed to the decoder, which

learns to reconstruct the original sequence one residue at a time. The model
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is trained using cross-entropy loss on a set of 118,386 paired heavy and light

chain sequences from the Observed Antibody Space (OAS) database [27]. Af-

ter training the network, we generated embeddings for antibody sequences by

concatenating the encoder hidden states for each residue. These embeddings

are used as features for the structure prediction model described below.

The choice of protein structure representation is critical for structure pre-

diction methods [10]. We represent the FV structure as a set of inter-residue

distances and orientations, similar to previous methods for general protein

structure prediction [18, 19]. Specifically, we predict inter-residue distances be-

tween three pairs of atoms (Cα—Cα, Cβ-Cβ, N—O) and the set of inter-residue

dihedrals (ω: Cα—Cβ—Cβ—Cα, θ: N—Cα—Cβ-Cβ) and planar angles (ϕ: Cα-

Cβ-Cβ) first described by Yang et al. and shown in their Figure 1 [18]. Each

output geometry is discretized into 36 bins, with an additional bin indicating

distant residue pairs dCα
> 18 Å. All distances are predicted in the range of

0-18 Å, with a bin width of 0.5 Å. Dihedral and planar angles are discretized

uniformly into bins of 10 and 5 degrees, respectively.

The general architecture of the structure prediction network is similar to

our previous method for CDR H3 loop structure prediction [28], with two

notable additions: embeddings from the pretrained language model and

interpretable attention layers (Figure 3.1). The network takes as input the

concatenated heavy and light chain sequences. The concatenated sequence is

one-hot encoded and passed through two parallel branches: a 1D ResNet and

the pretrained language model. The outputs of the branches are combined

and transformed into pairwise data. The pairwise data pass through a deep
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2D ResNet that constitutes the main component of the predictive network.

Following the 2D ResNet, the network separates into six output branches,

corresponding to each type of geometric measurement. Each output branch

includes a recurrent criss-cross attention module, allowing each residue pair in

the output to aggregate information from all other residue pairs. The attention

layers provide interpretability that is often missing from protein structure

prediction models.

We opted to train with focal loss [29] rather than cross-entropy loss to

improve the calibration of model predictions, as models trained with cross-

entropy loss have been demonstrated to overestimate the likelihood of their

predicted labels [30]. We pay special attention to model calibration as later

in this work we attempt to distinguish between potential antibody variants

on the basis of prediction confidence, which requires greater calibration. The

model is trained on a nonredundant (at 99% sequence identity) set of 1,692

FV structures from the Structural Antibody Database (SAbDab) [3]. The

pretrained language model, used as a feature extractor, is not updated while

training the predictor network.

Structure realization

Similar to previous methods for general protein structure prediction [17, 18,

19], we used constrained minimization to generate full 3D structures from net-

work predictions. Unlike previous methods, which typically begin with some

form of ϕ-ψ torsion sampling, we created initial models via multi-dimensional

scaling (MDS). We opted to build initial structures through MDS, rather than
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torsion sampling, due to the high conservation of the framework structural

regions. Through MDS, we can obtain accurate 3D coordinates for the con-

served framework residues, thus bypassing costly sampling for much of the

antibody structure [31]. As a reminder, the relative positions of all backbone

atoms are fully specified by the predicted L × L inter-residue Cα
, ω, θ, and ϕ

geometries. Using the modal-predicted output bins for these four geometries,

we construct a distance matrix between backbone atoms. From this distance

matrix, MDS produces an initial set of 3D coordinates that are subsequently

refined through constrained minimization.

Network predictions for each output geometry were converted to energetic

potentials by negating the raw model logits (i.e., without softmax activation).

These discrete potentials were converted to continuous constraints using a

cubic spline function. Starting from the MDS model, the constraints are used

to guide quasi-Newton minimization (L-BFGS) within Rosetta [32, 33]. First,

the constraints are jointly optimized with a simplified Rosetta centroid en-

ergy function to produce a coarse-grained FV structure with the sidechains

represented as a single atom. Next, constrained full-atom relaxation was used

to introduce sidechains and remove clashes. After relaxation, the structure

was minimized again with constraints and the Rosetta full-atom energy func-

tion (ref2015) [34]. This optimization procedure was repeated to produce 50

structures, and the lowest energy structure was selected as the final model.

Although we opted to produce 50 candidate structures, five should be suf-

ficient in practice due to the high convergence of the protocol (Figure 3.17).

Five candidate structures can typically be predicted in 10 min on a standard
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CPU, making our method slower than grafting-only approaches (seconds to

minutes per sequence), but significantly faster than extensive loop sampling

(hours per sequence).

3.3.2 Benchmarking methods for Fv structure prediction

To evaluate the performance of our method, we chose two independent test

sets. The first is the RosettaAntibody benchmark set (47 targets), which has

previously been used to evaluate antibody structure prediction methods [8,

28, 35]. The second is a set of clinical-stage therapeutic antibodies (45 targets),

which was previously assembled to study antibody developability [36]. Taken

together, these sets represent a structurally diverse, therapeutically relevant

benchmark for comparing antibody FV structure prediction methods.

Deep learning outperforms grafting methods

Although our method bears resemblance to deep learning methods for gen-

eral protein structure prediction, we opted to compare to antibody-specific

methods as we have previously found general methods to not yet be capable

of producing high-quality structures of the challenging CDR loops [28]. In-

stead, we compared the performance of our method on the RosettaAntibody

benchmark and therapeutic benchmark to three antibody-specific alternative

methods: RosettaAntibody-G [4, 6], RepertoireBuilder [5], and ABodyBuilder

[3]. Each of these methods is based on a grafting approach, by which complete

FV structures are assembled from sequence-similar fragments of previously

solved structures. To produce the fairest comparison, we excluded structures
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Table 3.1: Performance of Fv structure prediction methods on benchmarks

Method OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å)

RosettaAntibody Benchmark

RosettaAntibody-G 5.19 0.57 1.22 1.14 3.48 0.67 0.80 0.87 1.06
RepertoireBuilder 5.26 0.58 0.86 1.00 2.94 0.51 0.63 0.52 1.03
ABodyBuilder 4.69 0.50 0.99 0.88 2.94 0.49 0.72 0.52 1.09
DeepAb 3.67 0.43 0.72 0.85 2.33 0.42 0.55 0.45 0.86

RosettaAntibody Benchmark

RosettaAntibody-G 5.43 0.63 1.42 1.05 3.77 0.55 0.89 0.83 1.48
RepertoireBuilder 4.37 0.62 0.91 0.96 3.13 0.47 0.71 0.52 1.08
ABodyBuilder 4.37 0.49 1.05 1.02 3.00 0.45 1.04 0.50 1.35
DeepAb 3.52 0.40 0.77 0.68 2.52 0.37 0.60 0.42 1.02

Orientational coordinate distance (OCD) is a unitless quantity calculated by measur-
ing the deviation from native of four heavy-light chain coordinates.8 Heavy chain
framework (H Fr) and light chain framework (L Fr) RMSDs are measured after super-
imposing the heavy and light chains, respectively. CDR loop RMSDs are measured
using the Chothia loop definitions after superimposing the framework region of the
corresponding chain. All RMSDs are measured over backbone heavy atoms.

with greater than 99% sequence identity for the whole FV from use for grafting

(similar to our training data set). We evaluated each method according to the

backbone heavy-atom RMSD of the CDR loops and the framework regions of

both chains. We also measured the orientational coordinate distance (OCD)

[8], a metric for heavy-light chain orientation accuracy. OCD is calculated as

the sum of the deviations from native of four orientation coordinates (pack-

ing angle, interdomain distance, heavy-opening angle, light-opening angle)

divided by the standard deviation of each coordinate [8]. The results of the

benchmark are summarized in Table 3.1.

Our deep learning method showed improvement over all grafting-based

methods on every metric considered. On both benchmarks, the structures

predicted by our method achieved an average OCD less than 4, indicating

that predicted structures were typically within one standard deviation of the
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Figure 3.2: Comparison of CDR H3 loop structure prediction accuracy

Average RMSD of H3 loops predicted by RosettaAntibody-G (RAb), RepertoireBuilder
(RB), ABodyBuilder (ABB), and DeepAb on the two benchmarks. Error bars show
standard deviations for each method on each benchmark.

native structure for each of the orientational coordinates. All of the methods

predicted with sub-angstrom accuracy on the heavy and light chain framework

regions, which are highly conserved. Still, our method achieved average

RMSD improvements of 14%-18% for the heavy chain framework and 16%-

17% for light chain framework over the next best methods on the benchmarks.

We also observed consistent improvement over grafting methods for CDR

loop structure prediction.

Comparison of CDR H3 loop modeling accuracy

The most significant improvements by our method were observed for the

CDR H3 loop (Figure 3.2). On the RosettaAntibody benchmark, our method

predicted H3 loop structures with an average RMSD of 2.33 Å(± 1.32 Å), a
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Figure 3.3: Length dependency of CDR H3 loop structure prediction accuracy

Average RMSD of H3 loops by length for all benchmark targets. Error bars show
standard deviations for loop lengths corresponding to more than one target.

22% improvement over the next best method. On the therapeutic benchmark,

our method had an average H3 loop RMSD of 2.52 Å(± 1.50 Å), a 16% im-

provement over the next best method. The difficulty of predicting CDR H3

loop structures is due in part to the wide range of observed loop lengths. To

understand the impact of H3 loop length on our method’s performance, we

compared the average RMSD for each loop length across both benchmarks

(Figure 3.3). In general, all of the methods displayed degraded performance

with increasing H3 loop length. However, DeepAb typically produced the

most accurate models for each loop length.

We also examined the performance of each method on individual bench-

mark targets. In Figure 3.4, we plot the CDR H3 loop RMSD of our method
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Figure 3.4: Head-to-head CDR H3 loop structure prediction comparison

Direct comparison of DeepAb and alternative methods H3 loop RMSDs, with diagonal
band indicating predictions that were within ± 0.25 Å.

versus that of the alternative methods. Predictions with an RMSD difference

less than 0.25 Å(indicated by diagonal bands) were considered equivalent

in quality. When compared to RosettaAntibody-G, RepertoireBuilder, and

ABodyBuilder, our method predicted more/less accurate H3 loop structures

for 64/17, 59/16, and 53/22 out of 92 targets, respectively. Remarkably, our

method was able to predict nearly half of the H3 loop structures (42 of 92) to

within 2 Å RMSD. RosettaAntibody-G, RepertoireBuilder, and ABodyBuilder

achieved RMSDs of 2 Å or better on 26, 23, and 26 targets, respectively.

Accurate prediction of challenging, therapeutically relevant targets

To underscore and illustrate the improvements achieved by our method, we

highlight two examples from the benchmark sets. The first is rituximab, an

anti-CD20 antibody from the therapeutic benchmark (PDB: 3PP3) [37]. In

Figure 3.5, the native structure of the 12-residue rituximab H3 loop (white)

is compared to our method’s prediction (green, 2.1 Å RMSD) and the pre-

dictions from the grafting methods (blue, 3.3-4.1 Å RMSD). The prediction
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Figure 3.5: Rituximab CDR H3 loop structure prediction comparison

Comparison of native rituximab H3 loop structure (white, PDB: 3PP3) to predictions
from DeepAb (green, 2.1 Å RMSD) and alternative methods (blue, 3.3-4.1 Å RMSD).

from our method captures the general topology of the loop well, even placing

many of the side chains near the native structure. The second example is

sonepcizumab, an anti-sphingosine-1-phosphate antibody from the Roset-

taAntibody benchmark (PDB: 3I9G) [38]. In Figure 3.6, the native structure

of the 12-residue H3 loop (white) is compared to our method’s prediction

(green, 1.8 Å) and the predictions from the grafting methods (blue, 2.9-3.9

Å RMSD). Again, our method captures the overall shape of the loop well,

enabling accurate placement of several side chains. Interestingly, the primary

source of error by our method in both cases is a tryptophan residue (around

position H100) facing in the incorrect direction.

62



DeepAb Native

H3

Figure 3.6: Sonepcizumab CDR H3 loop structure prediction comparison

Comparison of native sonepcizumab H3 loop structure (white, PDB: 3I9G) to pre-
dictions from DeepAb (green, 1.8 Å RMSD) and alternative methods (blue, 2.9-3.9 Å
RMSD).

Impact of network architecture on H3 loop modeling accuracy

The model presented in this work includes two primary additions over previ-

ous work for predicting H3 loop structures [28]: pretrained LSTM sequence

embeddings and criss-cross attention over output branches. To better under-

stand the impact of each of these enhancements, we trained two additional

model ensembles following the same procedure as described for the full model.

The first model acts as a baseline, without LSTM features or criss-cross atten-

tion, and the second introduces the LSTM features. We made predictions for

each of the 92 benchmark targets and compared the H3 loop modeling perfor-

mance of these models to the full model (Figure 3.18A). The baseline model

achieved an average H3 loop RMSD of 2.71 Å, outperforming grafting-based

methods. Addition of the LSTM features yielded a moderate improvement in
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H3 accuracy (0.1 Å RMSD), while addition of criss-cross attention provided

a slightly larger improvement (0.2 Å RMSD). We also analyzed the H3 loop

lengths of each target while comparing the ablation models (Figure 3.18B) and

found that improvements were relatively consistent across lengths.

3.3.3 Interpretability of model predictions

Despite the popularity of deep learning approaches for protein structure

prediction, little attention has been paid to model interpretability. Interpretable

models offer utility beyond their primary predictive task [39, 40]. The network

used in this work was designed to be directly interpretable and should be

useful for structural understanding and antibody engineering.

Output attention tracks model focus

Each output branch in the network includes a criss-cross attention module

[41], similar to the axial attention used in other protein applications [23, 42,

43]. We have selected the criss-cross attention in order to efficiently aggregate

information over a 2D grid (e.g., pairwise distance and orientation matrices).

The criss-cross attention operation allows the network to attend across output

rows and columns when predicting for each residue pair (as illustrated in

Figure 3.7). Through the attention layer, we create a matrix A ∈ RL×L (where

L is the total number of residues in the heavy and light chain FV domains)

containing the total attention between each pair of residues (see experimental

procedures). To illustrate the interpretative power of network attention, we

considered an anti-peptide antibody (PDB: 4H0H) from the RosettaAntibody
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Figure 3.7: Criss-cross attention mechanism

Diagram of attention mechanism (with attention matrix A and value matrix V) and
example H3 loop attention matrix, with attention on other loops indicated. Attention
values increase from blue to red.

benchmark set. Our method performed well on this example (H3 RMSD =

1.2 Å), so we expected it would provide insights into the types of interactions

that the network captures well. We collected the attention matrix for dCα

predictions and averaged over the residues belonging to each CDR loop to

determine which residues the network focuses on while predicting each loop’s

structure (Figure 3.8A). As expected, the network primarily attends to residues

surrounding each loop of interest. For the CDR1-2 loops, the network attends

to the residues in the neighborhood of the loop, with little attention paid to

the opposite chain. For the CDR3 loops, the network attends more broadly

across the heavy-light chain interface, reflecting the interdependence between

the loop conformations and the overall orientation of the chains.
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Figure 3.8: Attention interpretation for CDR loops

Model attention over Fv structure while predicting each CDR loop for an anti-peptide
antibody (PDB: 4H0H). Key interactions identified by attention are shown for pre-
dicted CDR H3 loop structure. The top five non-H3 attended residues (H32-Y, L32-Y,
L49-Y, L55-F, and L91-S) are labeled, as well as an H3 residue participating in a hy-
drogen bond (H100-S).

To better understand what types of interactions the network considers, we

examined the residues assigned high attention while predicting the H3 loop

structure (Figure 3.8B). Within the H3 loop, we found that the highest atten-

tion was on the residues forming the C-terminal kink. This structural feature

has previously been hypothesized to contribute to H3 loop conformational

diversity [44], and it is likely critical for correctly predicting the overall loop

structure. Of the five non-H3 residues with the highest attention, we found

that one was a phenylalanine and three were tyrosines. The coordination of

these bulky side chains appears to play a significant role in the predicted H3

loop conformation. The fifth residue was a serine from the L3 loop (residue
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Figure 3.9: Sequence embeddings organize by species

Two-dimensional t-SNE projection of sequence-averaged LSTM embeddings labeled
by source species.

L91) that forms a hydrogen bond with a serine of the H3 loop (residue H100),

suggesting some consideration by the model of biophysical interactions be-

tween neighboring residues. To understand how the model attention varies

across different H3 loops and neighboring residues, we performed a similar

analysis for the 47 targets of the RosettaAntibody benchmark (Figure 3.19).

Although some neighboring residues were consistently attended to, we ob-

served noticeable changes in attention patterns across the targets (Figure 3.20),

demonstrating the sensitivity of the attention mechanism for identifying key

interactions for a broad range of structures.
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Figure 3.10: CDR loop embeddings organize by canonical clusters

Two-dimensional t-SNE projects of LSTM embeddings averaged over CDR1 loop
residues labeled by loop structural clusters.

Repertoire sequence model learns evolutionary and structural representa-
tions

To better understand what properties of antibodies are accessible through un-

supervised learning, we interrogated the representation learned by the LSTM

encoder, which was trained only on sequences. First, we passed the entire set

of paired heavy and light chain sequences from the OAS database through the

network to generate embeddings like those used for the structure prediction

model. The variable-length embedding for each sequence was averaged over

its length to generate a fixed-size vector describing the entire sequence. We

projected the vector embedding for each sequence into two dimensions via

t-distributed stochastic neighbor embedding (t-SNE)[45] and found that the
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sequences were naturally clustered by species (Figure 3.9). Because the struc-

tural data set is predominately composed of human and murine antibodies,

the unsupervised features are likely providing evolutionary context that is

otherwise unavailable.

The five non-H3 CDR loops typically adopt one of several canonical confor-

mations [25, 46]. Previous studies have identified distinct structural clusters

for these loops and described each cluster by a characteristic sequence sig-

nature [47]. We hypothesized that our unsupervised learning model should

detect these sequence signatures and thus encode information about the cor-

responding structural clusters. Similar to before, we created fixed-size em-

bedding vectors for the five non-H3 loops by averaging the whole-sequence

embedding over the residues of each loop (according to Chothia definitions

[48]). In Figure 3.10, we show t-SNE embeddings for the CDR1 loops labeled

by their structural clusters from PyIgClassify [47]. These loops are highlighted

because they have the most uniform class balance among structural clusters;

similar plots for the remaining loops are provided in Figure 3.21. We observed

clustering of labels for both CDR1 loops, indicating that the unsupervised

model has captured some structural features of antibodies through sequence

alone.

3.3.4 Applicability to antibody design

Moving toward the goal of antibody design, we sought to test our method’s

ability to distinguish between beneficial and disruptive mutations. First, we

gathered a previously published deep mutational scanning (DMS) data set for
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Figure 3.11: Visualization of changes in inter-residue potentials upon mutation

Diagram of ∆CCE calculation for model output predictions for an arbitrary residue
pair. Plots show the change in probability density of the predicted geometries for the
residue pair after making a mutation.

an anti-lysozyme antibody [49]. Anti-lysozyme was an ideal subject for evalu-

ating our network’s design capabilities, as it was part of the benchmark set and

thus already excluded from training. In the DMS data set, anti-lysozyme was

subjected to mutational scanning at 135 positions across the FV , including the

CDR loops and the heavy-light chain interface. Each variant was transformed

into yeast and measured for binding enrichment over the wild type.

Prediction confidence is indicative of mutational tolerability

We explored two strategies for evaluating mutations with our network. First,

we measured the change in the network’s structure prediction confidence for
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Figure 3.12: Comparison of network variant scoring with experimental data

Plot of the combined network metric against experimental binding enrichment over
wild type, with negative values corresponding to beneficial mutations for both axes.
True positive predictions (red) and mutations to wild type cysteines (yellow) are
highlighted.

a variant sequence relative to the wild type (visualized in Figure 3.11) as a

change in categorical cross-entropy:

∆CCE(seqwt, seqvar) = ∑
ij∈neighbors

∑
g∈outputs

log
maxgij P(gij|seqwt)

maxgij P(gij|seqvar)

where seqwt and seqvar are the wild type and variant sequences, respectively,

and the conditional probability term describes the probability of a particular

geometric output gij ∈ {dCα,ij, dCβ,ij, dN−O,ij, ωij, θij, ϕij} given seqwt or seqvar .

Only residue pairs ij with predicted dCα
< 10 Å were used in the calculation.

Second, we used the LSTM decoder described previously to calculate the
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Figure 3.13: Classification performance of network variant scoring

Receiver operating characteristic for predicting experimental binding enrichment
over wild type with the combined network metric and each component metric. Area
under the curve (AUC) values are provided for each metric.

negative log likelihood of a particular point mutation given the wild type

sequence, termed dLSTM:

dLSTM(seqvar|zwt) = − log P(seqvar, i = aa|zwt, seqvar, i-1)

where seqvar is a variant sequence with a point mutation to aa at position i,

and zwt is the biLSTM encoder summary vector for the wild type sequence.

To evaluate the discriminative power of the two metrics, we calculated ∆CCE

and dLSTM for each variant in the anti-lysozyme data set. We additionally

calculated a combined metric as ∆CCE + 0.01× dLSTM, roughly equating the

magnitudes of both terms, and compared to the experimental binding data

72



Figure 3.14: Position of true positive predictions on anti-lysozyme Fv structure.

(Figure 3.12). Despite having no explicit knowledge of the antigen, the network

was moderately predictive of experimental binding enrichment (Figure 3.13).

The most successful predictions (true positives in Figure 3.12) were primarily

for mutations in CDR loop residues (Figure 3.14). This is not surprising, given

that our network has observed the most diversity in these hypervariable

regions and is likely less calibrated to variance among framework residues.

Nevertheless, if the ∆CCE + 0.01× dLSTM were for ranking, all the top-8 and

22 of the top-100 single-point mutants identified would have experimental

binding enrichments above the wild type (Figure 3.15).
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Figure 3.15: Positivie predictive value of network variant scoring

Positive predictive value for mutants ranked by the combined metric.

Network distinguishes stability-enhanced designs

The anti-lysozyme DMS data set was originally assembled to identify residues

for design of multi-point variants [49]. The authors designed an anti-lysozyme

variant with eight mutations, called D44.1des, that displayed improved thermal

stability and nearly 10-fold increase in affinity. To determine whether our

network could recognize the cumulative benefits of multiple mutations, we

created a set of variants with random mutations at the same positions. We

calculated ∆CCE for D44.1des and the random variants and found that the

model successfully distinguished the design (Figure 3.16). We found similar

success at distinguishing enhanced multi-point variants for other targets from
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Figure 3.16: Identification of previously designed anti-HEL variant

Comparison of ∆CCE for a designed eight-point variant (D44.1des, red) to sequences
with random mutations at the same positions.

the same publication (Figure 3.22), suggesting that our approach will be a

useful screening step for a broad range of antibody design tasks. Despite being

trained only for structure prediction, these results suggest that our model

may be a useful tool for screening or ranking candidates in antibody design

pipelines.

3.4 Discussion

The results presented in this work build on advances in general protein struc-

ture prediction to effectively predict antibody FV structures. We found that

our deep learning method consistently produced more accurate structures

than grafting-based alternatives on benchmarks of challenging, therapeuti-

cally relevant targets. Although we focused on prediction of FV structures, our

method is also capable of modeling single-chain nanobodies (Figure 3.23). In

these limited cases, the framework RMSD and several of the CDR1 and CDR2
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loops are predicted with subAngstrom accuracy. However, we observe that

the CDR3 predictions tend to resemble antibody FV CDR H3 loops, indicating

that there may be value in training models specifically for nanobody structure

prediction.

As deep learning methods continue to improve, model interpretability

will become increasingly important to ensure practitioners can gain insights

beyond the primary predictive results. In addition to producing accurate

structures, our method also provides interpretable insights into its predictions.

Through the attention mechanism, we can track the network’s focus while

predicting FV structures. We demonstrated interpretation of predictions for a

CDR H3 loop and identified several interactions with neighboring residues

that the model deemed important for structure. In the future, similar insights

could be used within antibody engineering workflows to prevent disruption

of key interactions, reducing the need for time-consuming human analysis

and focusing antibody library design.

As part of this work, we developed an unsupervised representation model

for antibody sequences. We found that critical features of antibody struc-

ture, including non-H3 loop clusters, were accessible through a simple LSTM

encoder-decoder model. While we limited training to known pairs of heavy

and light chains, several orders of magnitude more unpaired immunoglobins

have been identified through next-generation repertoire sequencing experi-

ments [27]. We anticipate that a more advanced language model trained on

this larger sequence space will enable further advances across all areas of

antibody bioinformatics research.
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While this work was under review, improved deep learning methods for

general protein structure prediction were published [42, 43]. These methods

make extensive use of attention for the end-to-end prediction of protein struc-

tures. Both methods additionally separate pairwise residue information from

evolutionary information in the form of multiple sequence alignments, with

RoseTTAFold going further and learning a nascent structural representation in

a third track. While these methods were designed for single-chain predictions,

we anticipate that similar methods may yield advances in protein complex

prediction (including antibody FV structures). Further improvements still

may come from directly incorporating the antigen into predictions, as antigen

binding can lead to significant conformational changes [50]. DMPfold [51],

a similar method for general proteins, has been shown to contain flexibil-

ity information within inter-residue distance distributions [52]. In principle,

DeepAb might provide similar insights into CDR loop flexibility, but further

investigation is necessary.

Deep learning models for antibody structure prediction present several

promising avenues toward antibody design. In this work, we demonstrated

how our network could be used to suggest or screen point mutations. Even

with no explicit knowledge of the antigen, this approach was already moder-

ately predictive of mutational tolerability. Further, because our approach relies

only on the model outputs for a given sequence, it is capable of screening

designs for any antibody. Inclusion of antigen structural context through

extended deep learning models or traditional approaches like Rosetta should

only improve these results. Other quantities of interest such as stability or
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developability metrics could be predicted by using the DeepAb network for

transfer learning or feature engineering [12]. Furthermore, comparable net-

works for general protein structure prediction have recently been re-purposed

for design through direct sequence optimization [53, 54, 55]. With minimal

modification, our network should enable similar methods for antibody design.

3.5 Methods

3.5.1 Independent test sets

To evaluate the performance of our method, we considered two independent

test sets. The first is the RosettaAntibody benchmark set of 49 structures,

which was previously assembled to evaluate methods over a broad range of

CDR H3 loop lengths (ranging 7-17 residues) [8, 35]. Each structure in this set

has greater than 2.5 Å resolution, a maximum R value of 0.2, and a maximum

B factor of 80 Å2. The second comes from a set of 56 clinical-stage antibody

therapeutics with solved crystal structures, which was previously assembled

to study antibody developability [36]. We removed five of the therapeutic

antibodies that were missing one or more CDR loops (PDB: 3B2U, 3C08,

3HMW, 3S34, and 4EDW) to create a therapeutic benchmark set. The two sets

shared two common antibodies (PDB: 3EO9 and 3GIZ) that we removed from

the therapeutic benchmark set.

While benchmarking alternative methods, we found that some methods

were unable to produce structures for every target. Specifically, RosettaAnti-

body failed to produce predictions for four targets (PDB: 1X9Q, 3IFL, 4D9Q,

and 4K3J) and both RepertoireBuilder and ABodyBuilder failed to produce
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predictions for two targets (PDB: 4O02 and 5VVK). To compare consistently

across all methods, we report values for only the targets that all methods

succeeded in modeling. However, we note that DeepAb was capable of pro-

ducing structures for all of the targets attempted. From the RosettaAntibody

benchmark set, we omit PDB: 1X9Q and 3IFL. From the therapeutic bench-

mark set, we omit PDB: 4D9Q, 4K3J, 4O02, and 5VKK. We additionally omit

the long L3 loop of target 3MLR, which not all alternative methods were able

to model. In total, metrics are reported for 92 targets: 47 from the RosettaAnti-

body benchmark and 45 from the therapeutic benchmark. We use the Chothia

CDR loop definitions to measure RMSD throughout this work [48].

3.5.2 Representation learning on repertoire sequences

Training data set

To train the sequence model, paired FV heavy and light chain sequences

were collected from the OAS database [27], a set of immunoglobin sequences

from next-generation sequencing experiments of immune repertoires. Each

sequence in the database had previously been parsed with ANARCI [56] to

annotate sequences and detect potentially erroneous entries. For this work,

we extract only the FV region of the sequences, as identified by ANARCI.

Sequences indicated to have failed ANARCI parsing were discarded from the

training data set. We additionally remove any redundant sequences. These

steps resulted in a set of 118,386 sequences from five studies [57, 58, 59, 60, 61]

for model training.
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Model and training details

To learn representations of immunoglobin sequences, we adopted an RNN

encoder-decoder model [25] consisting of two LSTMs [26]. In an encoder-

decoder model, the encoder learns to summarize the input sequence into a

fixed-dimension summary vector, from which the decoder learns to recon-

struct the original sequence. For the encoder model, we used a bidirectional

twolayer stacked LSTM with a hidden state size of 64. The model input was

created by concatenation of paired heavy and light chain sequences to form a

single sequence. Three additional tokens were added to the sequence to mark

the beginning of the heavy chain, the end of the heavy chain, and the end of

the light chain. The concatenated sequence was one-hot encoded, resulting

in an input of dimension (L + 3)× 23, where L is the combined heavy and

light chain length. The summary vector is generated by stacking the final

hidden states from the forward and backward encoder LSTMs, followed by

a linear transformation from 128 to 64 dimensions and tanh activation. For

the decoder model, we used a two-layer stacked LSTM with a hidden state

size of 64. The decoder takes as input the summary vector and the previously

decoded amino acid to sequentially predict the original amino acid sequence.

The model was trained using cross-entropy loss and the Adam optimizer

[62] with a learning rate of 0.01, with learning rate reduced upon plateauing of

validation loss. A teacher forcing rate of 0.5 was used to stabilize training. The

model was trained on one NVIDIA K80 GPU, requiring 4 hours for 5 epochs

over the entire data set. We used a batch size of 128, maximized to fit into

GPU memory.
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3.5.3 Predicting inter-residue geometries from antibody se-
quence

Training data set

To train the structure prediction model, we collected a set of FV structures

from the SAbDab [63], a curated set of antibody structures from the PDB [64].

We removed structures with less than 4 Å resolution and applied a 99% se-

quence identity threshold to remove redundant sequences. We chose this high

sequence similarity due to the high conservation characteristic of antibody

sequences, as well as the over-representation of many identical therapeutic

antibodies in structural databases. Additionally, we hoped to expose the

model to examples of small sequence variations that lead to differences in

structures. This is particularly important for the challenging CDR H3 loop,

which has been observed to occupy an immense diversity of conformations

even at the level of four-level fragments [65]. Finally, any targets from the

benchmark sets, or structures with 99% sequence similarity to a target, were

removed from the training data set. These steps resulted in a set of 1,692 FV

structures, a mixture of antigen bound and unbound, for model training.

Model and training details

The structure prediction model takes as input concatenated heavy and light

chain sequences. The sequences are one-hot encoded and passed through two

parallel branches: a 1D ResNet and the biLSTM encoder described above. For

the 1D ResNet, we add an additional delimiter channel to mark the end of

the heavy chain, resulting in a dimension of L × 21, where L is the combined
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heavy and light chain length. The 1D ResNet begins with a 1D convolution

that projects the input features up to dimension L × 64, followed by three

1D ResNet blocks (two 1D convolutions with kernel size 17) that maintain

dimensionality. The second branch consists of the pretrained biLSTM encoder.

Before passing the one-hot encoded sequence to the biLSTM, we add the three

delimiters described previously, resulting in dimension (L + 3)× 23. From the

biLSTM, we concatenate the hidden states from the forward and backward

LSTMs after encoding each residue, resulting in dimension L × 128. The

outputs of the 1D ResNet and the biLSTM are stacked to form a final sequential

tensor of dimension L × 160. We transform the sequential tensor to pairwise

data by concatenating row- and column-wise expansions. The pairwise data,

dimension L × L × 320, is passed to the 2D ResNet. The 2D ResNet begins

with a 2D convolution that reduces dimensionality to L × L × 64, followed

by 25 2D ResNet blocks (two 2D convolutions with kernel size 5 × 5) that

maintain dimensionality. The 2D ResNet blocks cycle through convolution

dilation values of 1, 2, 4, 8, and 16 (five cycles in total). After the 2D ResNet,

the network branches into six separate paths. Each output branch consists of

a 2D convolution that projects down to dimension L × L × 37, followed by a

recurrent criss-cross attention (RCCA) module [41]. The RCCA modules use

two criss-cross attention operations that share weights, allowing each residue

pair to gather information across the entire spatial dimension. Attention

queries and keys are projected to dimension L × L × 1 (one attention head).

Symmetry is enforced for dCα
, dCβ

, and ω predictions by averaging the final

outputs with their transposes. All convolutions in the network are followed

by ReLU activation. In total, the model contains about 6.4 million trainable
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parameters.

We trained five models on random 90/10% training/validation splits and

averaged over model logits to make predictions, following previous methods

[19]. Models were trained using focal loss [29] and the Adam optimizer [62]

with a learning rate of 0.01, with learning rate reduced upon plateauing of

validation loss. Learning rate was reduced upon plateauing of the validation

loss. Each model was trained on one NVIDIA K80 GPU, requiring 60 hours

for 60 epochs over the entire data set.

3.5.4 Structure realization

Multi-dimensional scaling

From the network predictions, we create real-value matrices for the dCβ
, ω, θ,

and ϕ outputs by taking the midpoint value of the modal probability bin for

each residue pair. From these real-valued distances and orientations, we create

an initial backbone atom (N, Cα, and C) distance matrix. For residue pairs

predicted to have dCβ
> 18 Å, we approximate the distances between atoms

using the Floyd-Warshall shortest path algorithm [66]. From this distance

matrix, we use MDS [67] to produce an initial set of 3D coordinates. The

initial structures from MDS typically contained atom clashes and non-ideal

geometries that required further refinement.

Energy minimization refinement

Initial structures from MDS were refined by constrained energy minimization

in Rosetta. For each pair of residues, the predicted distributions for each
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output were converted to energy potentials by negating the raw model logits

(i.e., without softmax activation) and dividing by the squared dCα
prediction.

The discrete potentials were converted to continuous functions using the

built-in Rosetta spline function. We disregarded potentials for residue pairs

with predicted dCα
> 18 Å, as well as those with a modal bin probability

below 10%. For dN−O potentials, we also discarded with predicted dN−O > 5

Å or modal bin probability below 30% to create a local backbone hydrogen-

bonding potential. The remaining potentials are applied to the MDS structure

as inter-residue constraints in Rosetta.

Modeling in Rosetta begins with a coarse-grained representation, in which

the side-chain atoms are represented as a single artificial atom (centroid). The

centroid model is optimized by gradient-based energy minimization (Min-

Mover) using the L-BFGS algorithm [32, 33]. The centroid energy function

includes the following score terms in addition to learned constraints: vdw

(clashes), cen_hb (hydrogen bonds), and rama and omega (backbone torsion

angles). After centroid optimization, we add side-chain atoms and relax the

structure to reduce steric clashes (FastRelax). Finally, we repeat the gradient-

based energy minimization step in the full-atom representation to produce a

final model. We repeat this procedure to produce 50 decoy models and select

the structure with the lowest energy as the final prediction. Only the relax-

ation step in the protocol is non-deterministic, leading to high convergence

among decoys. In practice, we expect 5-10 decoys will be sufficient for most

applications.

84



3.5.5 Predicting structures with other recent methods

To contextualize the performance of our method, we benchmarked three re-

cent methods for antibody FV structure prediction: RosettaAntibody-G [6],

RepertoireBuilder [5], and ABodyBuilder [3]. RosettaAntibody-G predictions

were generated using the command-line arguments recommended by Jeli-

azkov et al. (Appendix S1). We note that we only used the RosettaAntibody

grafting protocol (antibody), omitting the extensive but time-consuming H3

loop sampling (antibodyH3) [4, 6]. RepertoireBuilder and ABodyBuilder pre-

dictions were generated using their respective web servers. For each target

in the benchmarks, we excluded structures with sequence similarity greater

than 99% from use for predictions, to mirror the conditions of our training

set. We note that this sequence cutoff does not prevent methods from grafting

identical loops from slightly different sequences.

3.5.6 Attention matrix calculation

During the criss-cross attention operation [41], we create an attention matrix

A ∈ RL×L×(2L−1), where for each residue pair in the L × L spatial dimen-

sion, we have 2L − 1 entries corresponding to the attention values over other

residue pairs in the same row and column (including the residue pair itself).

To interpret the total attention between pairs of residues, we simplify the

attention matrix to A′ ∈ RL×(2L−1), where for each residue i in the sequence,

we only consider the attention values in the i-th row and column. In A′, for

each residue i there are two attention values for each other residue j, corre-

sponding to the rowand column-wise attention between i and j. We further
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simplify by summing these rowand column-wise attention values, resulting

in an attention matrix A′′ ∈ RL×L, containing the total attention between pairs

of residues. In the main text, we refer to A′′ as A for simplicity.
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3.6 Appendix

A B

C D

Figure 3.17: Convergence of predicted structures for two benchmark examples

(A) Funnel plots showing accuracy (OCD, RMSD) versus score for 50 DeepAb decoys
for target 3PP3 (therapeutic benchmark), with low-scoring structure in red. (B)
Superimposed decoy structures for target 3PP3. (C) Funnel plots showing accuracy
(OCD, RMSD) versus score for 50 DeepAb decoys for target 3I9G (RosettaAntibody
benchmark), with low-scoring structure in red. (D) Superimposed decoy structures
for target 3I9G.
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Figure 3.18: Impact of architecture additions on H3 loop accuracy

(A) Average RMSD of H3 loops predicted by baseline model (without LSTM features
or CCA), baseline model with LSTM features, and full model. Error bars show
standard deviations for each model on each benchmark. (B) Direct comparison of H3
RMSD for each target as architecture is expanded, with diagonal bands indicating
predictions that were within ± 0.25 Å. Point color indicates H3 loop length for each
target.
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Figure 3.19: H3 loop attention for RosettaAntibody benchmark targets

Model Cα attention while predicting H3 loop structures for each of the 47 targets in
the RosettaAntibody benchmark. Attention values increase from blue to red. For each
target, the side chains of the five most attended non-H3 residues are represented as
sticks.
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CBA

Figure 3.20: Variability of key residues identified by attention mechanism

Model Cα attention while predicting H3 loop structures for three targets in the Roset-
taAntibody benchmark. Attention values increase from blue to red. For each target,
the side chains of the five most attended non-H3 residues are represented as sticks.
(A) H3 attention for 1OAQ prediction. (B) H3 attention for 3MLJ prediction. (C) H3
attention for 3M8O prediction.

Figure 3.21: Non-H3 CDR loop t-SNE embeddings labeled by structural clusters

CDR-specific embeddings are created by averaging the bi-LSTM encoder hidden
states of residues for each CDR loop.
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Figure 3.22: Identification of stable multi-point variants for two AbLIFT designs

Both wild type structures were present in the training dataset, resulting in a slight
bias for the native sequence. (A) Mutation positions for two anti-VEGF multi-point
variants presented by Warszawski et al. (B) Comparison of ∆CCE values for G6des1

(nine-point variant) and random nine-point variants at the same positions. (C) Com-
parison of ∆CCE values for G6des13 (six-point variant) and random six-point variants
at the same positions. (D) Mutation positions for two anti-QSOX1 multi-point vari-
ants. (E) Comparison of ∆CCE values for h492.1des3 (seven-point variant) and random
seven-point variants at the same positions. (F) Comparison of ∆CCE values for
h492.1des18 (four-point variant) and random four-point variants at the same positions.
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Figure 3.23: Nanobody structures predicted by DeepAb

Four nanobody structures predicted by DeepAb (green) aligned to native structures
(gray). Prediction accuracy is reported as RMSDs over the framework region and the
three CDR loops. (A) Predicted structure for nanobody 3TPK (framework: 0.58 Å,
CDR1: 3.29 Å, CDR2: 1.07 Å, CDR3: 4.73 Å). (B) Predicted structure for nanobody
4KRP (framework: 0.82 Å, CDR1: 2.36 Å, CDR2: 2.07 Å, CDR3: 5.56 Å). (C) Predicted
structure for nanobody 5IMM (framework: 0.46 Å, CDR1: 1.89 Å, CDR2: 0.58 Å,
CDR3: 7.60 Å). (D) Predicted structure for nanobody 5M2J (framework: 1.01 Å, CDR1:
1.12 Å, CDR2: 0.86 Å, CDR3: 8.34 Å)
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Chapter 4

Fast, accurate antibody structure
prediction from deep learning on
massive set of natural antibodies

Adapted from Jeffrey A Ruffolo, Lee-Shin Chu, Sai Pooja Mahajan,

and Jeffrey J Gray. “Fast, accurate antibody structure prediction

from deep learning on massive set of natural antibodies”. bioRxiv

(2022). Reproduced with permission.

4.1 Abstract

Antibodies have the capacity to bind a diverse set of antigens, and they have

become critical therapeutics and diagnostic molecules. The binding of anti-

bodies is facilitated by a set of six hypervariable loops that are diversified

through genetic recombination and mutation. Even with recent advances,

accurate structural prediction of these loops remains a challenge. Here, we

present IgFold, a fast deep learning method for antibody structure prediction.
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IgFold consists of a pretrained language model trained on 558M natural anti-

body sequences followed by graph networks that directly predict backbone

atom coordinates. IgFold predicts structures of similar or better quality than

alternative methods (including AlphaFold) in significantly less time (under

25 seconds). Accurate structure prediction on this timescale makes possible

avenues of investigation that were previously unfeasible. As a demonstration

of IgFold’s capabilities, we predicted structures for 1.4 million paired antibody

sequences, providing structural insights to 500-fold more antibodies than have

experimentally determined structures.

4.2 Introduction

Antibodies play a critical role in the immune response against foreign pathogens.

Through genetic recombination and hyper-mutation, the adaptive immune

system is capable of generating a vast number of potential antibodies. Im-

mune repertoire sequencing provides a glimpse into an individual’s antibody

population [1]. Analysis of these repertoires can further our understanding of

the adaptive immune response [2] and even suggest potential therapeutics [3].

However, sequence data alone provides only a partial view into the immune

repertoire. The interactions that facilitate antigen binding are determined by

the structure of a set of six loops that make up a complementarity determining

region (CDR). Accurate modeling of these CDR loops provides insights into

these binding mechanisms and promises to enable rational design of specific

antibodies [4]. Five of the CDR loops tend to adopt canonical folds that can

be predicted effectively by sequence similarity [5]. However, the third CDR
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loop of the heavy chain (CDR H3) has proven a challenge to model due to its

increased diversity, both in sequence and length [6, 7]. Further, the position

of the H3 loop at the interface between the heavy and light chains makes its

conformation dependent on the inter-chain orientation [8, 9]. Given its central

role in binding, advances in prediction of H3 loop structures are critical for

understanding antibody-antigen interactions and enabling rational design of

antibodies.

Deep learning methods have brought about a revolution in protein struc-

ture prediction [10, 11]. With the development of AlphaFold, accurate pro-

tein structure prediction has largely become accessible to all [12]. Beyond

monomeric proteins, AlphaFold-Multimer has demonstrated an impressive

ability to model protein complexes [13]. However, performance on antibody

structures remains to be extensively validated. Meanwhile, antibody-specific

deep learning methods such as DeepAb [14] and ABlooper [15] have signif-

icantly improved CDR loop modeling accuracy, including for the challeng-

ing CDR H3 loop [7, 16]. DeepAb predicts a set of inter-residue geometric

constraints that are fed to Rosetta to produce a complete FV structure [14].

ABlooper predicts CDR loop structures in an end-to-end fashion, with some

post-prediction refinement required, while also providing an estimate of loop

quality [15]. Another tool, NanoNet [17], has been trained specifically for

prediction of single-chain antibodies (nanobodies) and provides fast predic-

tions. While effective, certain design decisions limit the utility of both models.

DeepAb predictions are relatively slow (ten minutes per sequence), cannot

effectively incorporate template data, and offer little insight into expected
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quality. ABlooper, while faster and more informative, relies on external tools

for framework modeling, cannot incorporate CDR loop templates, and does

not support nanobody modeling.

Concurrent with advances in structure prediction, self-supervised learning

on massive sets of unlabeled protein sequences has shown remarkable utility

across protein modeling tasks [18, 19]. Embeddings from transformer encoder

models trained for masked language modeling have been used for variant

prediction [20], evolutionary analysis [21, 22], and as features for protein

structure prediction [23, 24]. Auto-regressive transformer models have been

used to generate functional proteins entirely from sequence learning [25]. The

wealth of immune repertoire data provided by sequencing experiments has

enabled development of antibody-specific language models. Models trained

for masked language modeling have been shown to learn meaningful repre-

sentations of immune repertoire sequences [22, 26, 27], and even repurposed

to humanize antibodies [28]. Generative models trained on sequence infilling

have been shown to generate high-quality antibody libraries [29, 30].

In this work, we present IgFold: a fast, accurate model for end-to-end

prediction of antibody structures from sequence. IgFold leverages embeddings

from AntiBERTy [22], a language model pretrained on 558M natural antibody

sequences, to directly predict the atomic coordinates that define the antibody

structure. Our model was the first to combine a single-sequence pretrained

language model with an equivariant structure module for protein structure

prediction, an approach which has since seen success for general protein

structure prediction [31, 32]. Predictions from IgFold match the accuracy of the
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recent AlphaFold models [10, 13] while being much faster (under 25 seconds).

IgFold also provides flexibility beyond the capabilities of alternative antibody-

specific models, including robust incorporation of template structures and

support for nanobody modeling.

4.3 Results

4.3.1 End-to-end prediction of antibody structure

Our method for antibody structure prediction, IgFold, utilizes learned repre-

sentations from the pretrained AntiBERTy language model to directly predict

3D atomic coordinates (Figure 4.1). Structures from IgFold are accompanied

by a per-residue accuracy estimate, which provides insights into the quality

of the prediction.

Embeddings from pretrained model encode structural features

The limited number of experimentally determined antibody structures (thou-

sands [33]) presents a difficultly in training an effective antibody structure

predictor. In the absence of structural data, self-supervised language models

provide a powerful framework for extracting patterns from the significantly

greater number (billions [34]) of natural antibody sequences identified by

immune repertoire sequencing studies. For this work, we used AntiBERTy

[22], a transformer language model pretrained on 558M natural antibody

sequences, to generate embeddings for structure prediction. Similar to the role

played by alignments of evolutionarily related sequences for general protein

structure prediction [35], embeddings from AntiBERTy act as a contextual
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Figure 4.1: Diagram of method for end-to-end prediction of antibody structures

Antibody sequences are converted into contextual embeddings using AntiBERTy,
a pretrained language model. From these representations, IgFold uses a series of
transformer layers to directly predict atomic coordinates for the protein backbone
atoms. For each residue, IgFold also provides an estimation of prediction quality.
Refinement of predictions and addition of side chains is performed by Rosetta.

representation that places individual sequences within the broader antibody

space.

Prior work has demonstrated that protein language models can learn struc-

tural features from sequence pretraining alone [18, 36]. To investigate whether

sequence embeddings from AntiBERTy contained nascent structural features,

we generated embeddings for the set of 3,467 paired antibody sequences with

experimentally determined structures in the PDB. For each sequence, we ex-

tracted the portions of the embedding corresponding to the six CDR loops

and averaged to obtain fixed-sized CDR loop representations (one per loop).

We then collected the embeddings for each CDR loop across all sequences and

visualized using two-dimensional t-SNE (Figure 4.15). To determine whether
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the CDR loop representations encoded structural features, we labeled each

point according to its canonical structural cluster. For CDR H3, which lacks

canonical clusters, we instead labeled by loop length. For the five CDR loops

that adopt canonical folds, we observed some organization within the embed-

ded space, particularly for CDR1 loops. For the CDR H3 loop, we found that

the embedding space did not separate into natural clusters, but was rather

organized roughly in accordance with loop length. These results suggest that

AntiBERTy has learned some distinguishing structural features of CDR loops

through sequence pretraining alone.

Coordinate prediction from sequence embeddings

To predict 3D atomic coordinates from sequence embeddings, we adopt a

graphical representation of antibody structure, with each residue as a node

and information passing between all pairs of residues (Figure 4.1). The nodes

are initialized using the final hidden layer embeddings from AntiBERTy. To

initialize the edges, we collect the full set of inter-residue attention matrices

from each layer of AntiBERTy. These attention matrices are a useful source of

edge information as they encode the residue-residue information pathways

learned by the pretrained model. For paired antibodies, we concatenate the

sequence embeddings from each chain and initialize inter-chain edges to

zero. We do not explicitly provide a chain break delimiter, as the pretrained

language model already includes a positional embedding for each sequence.

The structure prediction model begins with a series of four graph transformer

[37] layers interleaved with edge updates via the triangle multiplicative layer

proposed for AlphaFold [10].
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Following the initial graph transformer layers, we incorporate structural

template information into the nascent representation using invariant point

attention (IPA) [10]. In contrast to the application of IPA for the AlphaFold

structure module, we fix the template coordinates and use IPA as a form

of structure-aware self-attention. This enables the model to incorporate the

local structural environment into the sequence representation directly from

the 3D coordinates, rather than switching to an inter-residue representation

(e.g., distance or contact matrices). We use two IPA layers to incorporate

template information. Rather than search for structural templates for training,

we generate template-like structures by corruption of the true label structures.

Specifically, for 50% of training examples, we randomly select one to six

consecutive segments of twenty residues and move the atomic coordinates to

the origin. The remaining residues are provided to the model as a template.

The deleted segments of residues are hidden from the IPA attention, so that the

model only incorporates structural information from residues with meaningful

coordinates.

Finally, we use another set of IPA layers to predict the final 3D antibody

structure. Here, we employ a strategy similar to the AlphaFold structure

module [10] and train a series of three IPA layers to translate and rotate each

residue from an initialized position at the origin to the final predicted position.

We depart slightly from the AlphaFold implementation and learn separate

weights for each IPA layer, as well as allow gradient propagation through

the rotations. To train the model for structure prediction, we minimize the

mean-squared error between the predicted coordinates and the experimental
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structure after Kabsch alignment. In practice, we observe that the first IPA

layer is sufficient to learn the global arrangement of residues (albeit in a

compact form), while the second and third layers function to produce the

properly scaled structure with correct bond lengths and angles (Figure 4.17).

Per-residue error prediction

Simultaneously with structure prediction training, we additionally train the

model to estimate the error in its own predictions. For error estimation, we use

two IPA layers that operate similarly to the template incorporation layers (i.e.,

without coordinate updates). The error estimation layers take as input the final

predicted structure, as well as a separate set of node and edge features derived

from the initial AntiBERTy features. We stop gradient propagation through

the error estimation layers into the predicted structure to prevent the model

from optimizing for accurately estimated, but highly erroneous structures. For

each residue, the error estimation layers are trained to predict the deviation

of the N, Cα, C, and Cβ atoms from the experimental structure after a Kabsch

alignment of the beta barrel residues. We use a different alignment for error

estimation than structure prediction to more closely mirror the conventional

antibody modeling evaluation metrics. The model is trained to minimize the

L1 norm of the predicted Cα deviation minus the true deviation.

Structure dataset augmentation with AlphaFold

We sought to train the model on as many immunoglobulin structures as possi-

ble. From the Structural Antibody Databae (SAbDab) [33], we obtained 4,275

structures consisting of paired antibodies and single-chain nanobodies. Given
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the remarkable success of AlphaFold for modeling both protein monomers

and complexes, we additionally explored the use of data augmentation to

produce structures for training. To produce a diverse set of structures for

data augmentation, we clustered [38] the paired and unpaired partitions of

the Observed Antibody Space [34] at 40% and 70% sequence identity, respec-

tively. This clustering resulted in 16,141 paired sequences and 26,971 unpaired

sequences. Because AlphaFold-Multimer [13] was not yet released, all predic-

tions were performed with the original AlphaFold model [10]. For the paired

sequences, we modified the model inputs to enable complex modeling by

inserting a gap in the positional embeddings (i.e., AlphaFold-Gap [12, 13]).

For the unpaired sequences, we discarded the predicted structures with aver-

age pLDDT (AlphaFold error estimate) less than 85, leaving 22,132 structures.

These low-confidence structures typically correponded to sequences with

missing residues at the N-terminus. During training, we sample randomly

from the three datasets with examples weighted inversely to the size of their

respective datasets, such that roughly one third of total training examples

come from each dataset.

4.3.2 Antibody structure prediction benchmark

To evaluate the performance of IgFold against recent methods for antibody

structure prediction, we assembled a non-redundant set of antibody struc-

tures deposited after compiling our training dataset. We chose to compare

performance on a temporally separated benchmark to ensure that none of the

methods evaluated had access to any of the structures during training. In
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total, our benchmark contains 197 paired antibodies and 71 nanobodies.

Predicted structures are high quality before refinement

As an end-to-end model, IgFold directly predicts structural coordinates as its

output. However, these immediate structure predictions are not guaranteed

to satisfy realistic molecular geometries. In addition to incorporating missing

atomic details (e.g., side chains), refinement with Rosetta [39] corrects any

such abnormalities. To better understand the impact of this refinement step,

we compared the directly predicted structures for each target in the benhmark

to their refined counterparts. In general, we observed very little change in

the structures (Figure 4.18), with an average RMSD less than 0.5 Å before and

after refinement. The exception to this trend is abnormally long CDR loops,

particularly CDR H3. We compared the pre- and post-refinement structures

for benchmark targets with three of the longest CDR H3 loops to those with

shorter loops and found that the longer loops frequently contained unrealistic

bond lengths and backbone torsion angles (Figure 4.19). Similar issues have

been observed in recent previous work [15], indicating that directly predicting

atomically correct long CDR loops remains a challenge.

Accurate antibody structures in a fraction of the time

We compared the performance of IgFold against a mixture of grafting and

deep learning methods for antibody structure prediction. Although previ-

ous work has demonstrated significant improvements by deep learning over

grafting-based methods, we continue to benchmark against grafting to track

its performance as increasingly many antibody structures become available.
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Figure 4.2: Comparison of methods for antibody structure prediction

Benchmark performance of RepertoireBuilder, DeepAb, ABlooper, AlphaFold-
Multimer, and IgFold for paired antibody structure prediction. All root-mean-squared-
deviation (RMSD) values calculated over backbone heavy atoms after alignment of
the respective framework residues.

For each benchmark target, we predicted structures using RepertoireBuilder

[40], DeepAb [14], ABlooper [15], and AlphaFold-Multimer [13]. We opted

to benchmark the ColabFold [12] implementation of AlphaFold, rather than

the original pipeline from DeepMind, due to its significant runtime accel-

eration and similar accuracy. Of these methods, RepertoireBuilder utilizes

a grafting-based algorithm for structure prediction and the remaining use

some form of deep learning. DeepAb and ABlooper are both trained specifi-

cally for paired antibody structure prediction, and have previously reported

comparable performance. AlphaFold-Multimer has demonstrated state-of-

the-art performance for protein complex prediction – however, performance

on antibody structures specifically remains to be evaluated.

The performance of each method was assessed by measuring the backbone

heavy-atom (N, Cα, C, O) RMSD between the predicted and experimentally

determined structures for the framework residues and each CDR loop. All

RMSD values are measured after alignment of the framework residues. In
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Figure 4.3: Comparison between IgFold and AlphaFold-Multimer for CDR H3 loop
structure prediction

(A) Per-target comparison of CDR H3 loop structure prediction for IgFold and
AlphaFold-Multimer, with each point representing the RMSDH3 for both methods
on a single benchmark target. (B) Comparison of predicted CDR H3 loop structures
for target 7N3G (LH3 = 10 residues) for IgFold (RMSDH3 = 4.69 Å) and AlphaFold-
Multimer (RMSDH3 = 0.98 Å). (C) Comparison of predicted CDR H3 loop structures
for target 7RNJ (LH3 = 9 residues) for IgFold (RMSDH3 = 1.18 Å) and AlphaFold-
Multimer (RMSDH3 = 3.46 Å).

general, we observed state-of-the-art performance for all of the deep learning

methods while grafting performance continued to lag behind (Figure 4.2,

Table 4.1). On average, all of the antibody-specific methods predicted both

the heavy and light chain framework structures with high accuracy (0.43-0.53

Å and 0.41 - 0.51 Å, respectively). AlphaFold-Multimer typically performed

well on framework residues, except for a set of fourteen predictions where the

model predicted C-terminal strand swaps between the heavy and light chains

4.20. For the CDR1 and CDR2 loops, all methods produced sub-angstrom

predictions on average. The largest improvement in prediction accuracy by

deep learning methods is observed for the CDR3 loops.

We also considered the predicted orientation between the heavy and light

chains, which is an important determinant of the overall binding surface [8,

9]. Accuracy of the inter-chain orientation was evaluated by measuring the
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Figure 4.4: Comparison of methods for nanobody structure prediction

Benchmark performance of RepertoireBuilder, DeepAb, NanoNet AlphaFold2, and
IgFold for nanobody structure prediction. All root-mean-squared-deviation (RMSD)
values calculated over backbone heavy atoms after alignment of the framework
residues.

deviation from native of the inter-chain packing angle, inter-domain distance,

heavy-opening angle, and light-opening angle. Each of these orienational

coordinates are rescaled by dividing by their respective standard deviations

(calculated over the set of experimentally determined antibody structures)

and summed to obtain an orientational coordinate distance (OCD) [9]. We

found that in general deep learning methods produced FV structures with

OCD values near four, indicating that the predicted structures are typically

within about one standard deviation of the native structures for each of the

components of OCD.
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Figure 4.5: Comparison between IgFold and AlphaFold2 for nanobody CDR3 loop
structure prediction

(A) Comparison of predicted CDR H3 loop structures for target 7AQZ (LCDR3 = 15
residues) for IgFold (RMSDCDR3 = 2.87 Å) and AlphaFold (RMSDCDR3 = 7.08 Å).
(B) Comparison of predicted CDR H3 loop structures for target 7AR0 (LCDR3 = 17
residues) for IgFold (RMSDCDR3 = 2.34 Å) and AlphaFold (RMSDCDR3 = 0.84 Å).

Given the comparable aggregate performance of the deep learning meth-

ods, we further investigated the similarity between the structures predicted by

each method. For each pair of methods, we measured the RMSD of framework

and CDR loop residues, as well as the OCD, between the predicted structures

for each benchmark target (Figure 4.24). We additionally plotted the distri-

bution of structural similarities between IgFold and the alternative methods

(Figure 4.25). We found that the framework structures (and their relative

orientations) predicted by IgFold resembled those of DeepAb and ABlooper,

but were less similar to those of RepertoireBuilder and AlphaFold-Multimer.

The similarity between IgFold and ABlooper is expected, given that ABlooper

predictions were based on IgFold-predicted framework structures. We also

observed that the heavy chain CDR loops from IgFold, DeepAb, and ABlooper
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Table 4.1: Accuracy of predicted antibody Fv structures

Method OCD H Fr (Å) H1 (Å) H2(Å) H3 (Å) L Fr (Å) L1 (Å) L2(Å) L3 (Å)

RepertoireBuilder 5.09 0.59 1.00 0.90 4.15 0.49 0.81 0.57 1.32
DeepAb 3.60 0.43 0.86 0.72 3.57 0.41 0.75 0.48 1.16
ABlooper 4.42 0.53 0.98 0.83 3.54 0.51 0.92 0.67 1.32
AlphaFold-Multimer 4.18 0.69 0.95 0.74 3.56 0.66 0.84 0.51 1.59
IgFold 3.82 0.48 0.85 0.76 3.27 0.46 0.76 0.46 1.30

were quite similar on average. We observe further similarity on light chain

CDRs between IgFold and DeepAb. These agreements likely extend from

training on similar, antibody-focused datasets.

Deep learning methods converge on CDR H3 accuracy

The average prediction accuracy for the highly variable, conformationally

diverse CDR H3 loop was relatively consistent among the four deep learning

methods evaluated (Table 4.1), though IgFold performed the best on average.

Given this convergence in performance, we again considered the similarity

between the CDR H3 loop structures predicted by each method. IgFold,

DeepAb, and ABlooper produced the most similar CDR H3 loops, with an

average RMSD of 2.01 - 2.34 Å between predicted structures for the three

methods . This may reflect the similar training datasets used for the methods,

which were limited to antibody structures. AlphaFold-Multimer, by contrast,

predicted the most distinct CDR H3 loops, with an average RMSD 3.10 - 3.57

Å from the other deep learning methods.

The dissimilarity of predictions between IgFold and AlphaFold-Multimer

is surprising, given the extensive use of AlphaFold-predicted structures for

training IgFold. When we compared the per-target accuracy of IgFold and
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AlphaFold-Multimer, we found many cases where one method predicted

the CDR H3 loop accurately while the other failed (Figure 4.3A). Indeed,

approximately 20% of CDR H3 loops predicted by the two methods were

greater than 4 Å RMSD apart, meaning the methods often predict distinct

conformations. To illustrate the structural implications of these differences

in predictions, we highlight two targets from the benchmark where IgFold

and AlphaFold-Multimer diverge. In one such target (target 7N3G [41], Fig-

ure 4.3B), AlphaFold-Multimer effectively predicts the CDR H3 loop structure

(RMSDH3 = 0.98 Å) while IgFold predicts a distinct, and incorrect, confor-

mation (RMSDH3 = 4.69 Å). However, for another example (target 7RNJ [42],

Figure 4.3C), IgFold more accurately predicts the CDR H3 loop structure

(RMSDH3 = 1.18 Å) while AlphaFold-Multimer predicts an alternative confor-

mation (RMSDH3 = 3.46 Å).

Fast nanobody structure prediction remains a challenge

Single domain antibodies, or nanobodies, are an increasingly popular for-

mat for therapeutic development [43]. Structurally, nanobodies share many

similarities with paired antibodies, but with the notable lack of a second im-

munoglobulin chain. This, along with increased nanobody CDR3 loop length,

makes accessible a wide range of CDR3 loop conformations not observed for

paired antibodies [44]. We compared the performance of IgFold for nanobody

structure prediction to RepertoireBuilder [40], DeepAb [14], NanoNet [17],

and AlphaFold [10] (Figure 4.4, Table 4.2). We omitted ABlooper from the

comparison as it predicts only paired antibody structures.
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As with paired antibodies, all methods evaluated produced highly accurate

predictions for the framework residues, with the average RMSD ranging from

0.57 Å to 0.80 Å. No method achieves sub-angstrom accuracy on average for

CDR1 loops, though AlphaFold and IgFold achieve the best performance. For

CDR2 loops, we observe a substantial improvement by IgFold and the other

deep learning methods over RepertoireBuilder, with AlphaFold achieving the

highest accuracy on average. For the CDR3 loop, RepertoireBuilder prediction

quality is highly variable (average RMSDCDR3 of 7.54 Å), reflective of the

increased difficultly of identifying suitable template structures for the long,

conformationally diverse loops. DeepAb achieves the worst performance

for CDR3 loops, with an average RMSDCDR3 of 8.52 Å, probably because its

training dataset was limited to paired antibodies [14], and thus the model

has never observed the full range of conformations accessible to nanobody

CDR3 loops. NanoNet, trained specifically for nanobody structure prediction,

outperforms DeepAb (average RMSDCDR3 of 5.43 Å). AlphaFold displays

the best performance for CDR3 loops, with an average RMSDCDR3 of 4.00

Å, consistent with its high accuracy on general protein sequences. IgFold

CDR3 predictions tend to be slightly less accurate than those of AlphaFold

(average RMSDCDR3 of 4.25 Å), but are significantly faster to produce (fifteen

seconds for IgFold, versus six minutes for the ColabFold implementation of

AlphaFold).

To better understand the distinctions between IgFold- and AlphaFold-

predicted nanobody structures, we highlight two examples from the bench-

mark. First, we compared the structures predicted by both methods for the
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benchmark target 7AQZ (unpublished, Figure 4.5A). This nanobody features

a 15-residue CDR3 loop that adopts the "stretched-twist" conformation [44],

in which the CDR3 loop bends to contact the framework residues that would

otherwise be obstructed by a light chain in a paired antibody. IgFold cor-

rectly predicts this nanobody-specific loop conformation (RMSDCDR3 = 2.87

Å), while AlphaFold predicts an extended CDR3 conformation (RMSDCDR3

= 7.08 Å). Indeed, there are other cases where either IgFold or AlphaFold

correctly predicts the CDR3 loop conformation while the other fails (see off-

diagonal points in Figure 4.23G). In the majority of such cases, AlphaFold

predicts the correct conformation, yielding the lower average CDR3 RMSD.

In a second example, we compared the structures predicted by both methods

for the benchmark target 7AR0 (unpublished, Figure 4.5B). This nanobody

has a long 17-residue CDR3 loop with a short helical region. Although both

methods correctly predict the loop conformation, IgFold fails to predict the

helical secondary structure, resulting in a less accurate prediction (RMSDCDR3

= 2.34 Å) than that of AlphaFold (RMSDCDR3 = 0.84 Å). Such structured loops

highlight a key strength of AlphaFold, which was trained on a large dataset

of general proteins and has thus encountered a broad variety of structral

arrangements, over IgFold, which has observed relatively few such structures

within its training dataset.

4.3.3 Error predictions identify inaccurate CDR loops

Although antibody structure prediction methods continue to improve, ac-

curate prediction of abnormal CDR loops (particularly long CDR H3 loops)
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Table 4.2: Accuracy of predicted nanobody structures

Method Fr (Å) CDR1 (Å) CDR2(Å) CDR3 (Å)

RepertoireBuilder 0.80 2.12 1.37 7.54
DeepAb 0.72 2.14 1.14 8.52
NanoNet 0.66 1.94 1.05 5.43
AlphaFold 0.57 1.61 0.88 4.00
IgFold 0.58 1.73 0.98 4.25

remains inconsistent [6, 14, 15]. Determining whether a given structural pre-

diction is reliable is critical for effective incorporation of antibody structure

prediction into workflows. During training, we task IgFold with predicting

the deviation of each residue’s Cα atom from the native (under alignment of

the beta barrel residues). We then use this predicted deviation as a per-residue

error estimate to assess expected accuracy of different structural regions.

To assess the utility of IgFold’s error predictions for identifying inaccurate

CDR loops, we compared the average predicted error for each CDR loop to

the RMSD between the predicted loop and the native structure for the paired

FV and nanobody benchmarks. We observed significant correlations between

the predicted error and the loop RMSDs from native for all the paired FV

CDR loops (Figure 4.26). For CDR H2 and CDR L2 loops, the correlations

between predicted and measured RMSD were notably weaker. However,

given the relatively high accuracy of predictions for these loops, there was

little error to detect. For nanobodies, we observed significant correlations

between the predicted error and RMSD for all the CDR loops (Figure 4.27).

Interestingly, for all loops the model tended to predict lower RMSD than was

measured. This may be a result of the imbalance between the smaller number

of residues with higher RMSD (CDR loops) and the greater number with lower
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RMSD (framework residues). In the future, this miscalibration may be solved

by using a weighted loss function that penalizes larger errors more heavily.

However, the model’s ability to effectively rank the accuracy of different CDR

loops is still useful for identifying potentially inaccurate predictions.

For the challenging-to-predict, conformationally diverse CDR3 loops, we

observed significant correlations for both paired antibody H3 loops (Fig-

ure 4.6A, ρ = 0.76) and nanobody CDR3 loops (Figure 4.6B, ρ = 0.47). To

illustrate the utility of error estimation for judging CDR H3 loop predictions,

we highlight three examples from the benchmark. The first is the benchmark

target 7O4Y [45], a human anti-CD22 antibody with a 12-residue CDR H3

loop. For 7O4Y, IgFold accurately predicts the extended beta sheet structure

of the CDR H3 loop (RMSDH3 = 1.64 Å), and estimates a correspondingly

lower RMSD (Figure 4.8A). The second target is 7RKS [46], a human anti-

SARS-CoV-2-receptor-binding-domain antibody with a 18-residue CDR H3

loop. IgFold struggles to predict the structured beta sheet within this long

H3 loop, instead predicting a broad ununstructured conformation (RMSDH3

= 6.33 Å). Appropriately, the error estimation for the CDR H3 loop of 7RKS

is much higher (Figure 4.8B). The third example is 7O33 [47], a mouse anti-

PAS (proine/alanine-rich sequence) antibody with a 3-residue CDR H3 loop.

Again, IgFold accurately predicts the structure of this short loop (RMSDH3 =

1.49 Å) and provides a correspondingly low error estimate (Figure 4.8C).

Antibody engineering campaigns often deviate significantly from the space

of natural antibody sequences [48]. Predicting structures for such heavily

engineered sequences is challenging, particularly for models trained primarily
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Figure 4.6: Error estimation for predicted antibody structures

(A) Comparison of CDR H3 loop RMSD to predicted error for paired antibody struc-
ture benchmark. Gray space represents cumulative average RMSD of predicted CDR
H3 loops from native structure. (B) Comparison of CDR3 loop RMSD to predicted
error for nanobody structure benchmark. Gray space represents cumulative average
RMSD of predicted CDR3 loops from native structure.

on natural antibody structural data (such as IgFold). To investigate whether

IgFold’s error estimations can identify likely mistakes in such sequences, we

predicted the structure of an anti-HLA (human leukocyte antigen) antibody

with a sequence randomized CDR H1 loop [49] (Figure 4.7). As expected,

there is significant error in the predicted CDR H1 loop structure. However,

the erroneous structure is accompanied by a high error estimate, revealing

that the predicted conformation is likely to be incorrect. This suggests that the

RMSD predictions from IgFold are sensitive to unnatural antibody sequences

and should be informative for a broad range of antibody structure predictions.
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Figure 4.7: Predicted structure and error estimation for anti-HLA antibody with a
randomized CDR H1 loop.

4.3.4 Template data is successfully incorporated into predic-
tions

For many antibody engineering workflows, partial structural information is

available for the antibody of interest. For example, crystal structures may

be available for the parent antibody upon which new CDR loops were de-

signed. Incorporating such information into structure predictions is useful for

improving the quality of structure models. We simulated IgFold’s behavior in

this scenario by predicting structures for the paired antibody and nanobody

benchmark targets while providing the coordinates of all non-H3 residues

as templates. In general, we found that IgFold was able to incorporate the
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Figure 4.8: Examples of error estimation for CDR H3 loops

(A) Predicted structure and error estimation for benchmark target 7O4Y (LH3 = 12
residues). (B) Predicted structure and error estimation for benchmark target 7RKS
(LH3 = 18 residues). (C) Predicted structure and error estimation for benchmark target
7O33 (LH3 = 3 residues).

template data into its predictions, with the average RMSD for all templated

CDR loops being significantly reduced (IgFold[Fv-H3]: Figure 4.9, IgFold[Fv-

CDR3]: Figure 4.11). Although these results are not surprising, they showcase

a key functionality lacking in prior antibody-specific methods [14, 15, 17].

Having demonstrated successful incorporation of structural data into pre-

dictions using templates, we next investigated the impact on accuracy of the

untemplated CDR H3 loop predictions. For the majority of targets, we found

little change in the accuracy of CDR H3 loop structures with the addition of

non-H3 template information (Figure 4.10). For nanobodies, we observe more

cases with substantial improvement to CDR3 loop predictions given template

data (Figure 4.12).

We additionally experimented with providing the entire crystal structure

to IgFold as template information. In this scenario, IgFold sucessfully incor-

porates the structural information of all CDR loops (including H3) into its

predictions (IgFold[Fv]: Figure 4.9, Figure 4.11). Interestingly, the model’s
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Figure 4.9: Incorporation of templates into antibody structure prediction

Paired antibody structure prediction benchmark results for IgFold without templates,
IgFold given the FV structure without the CDR H3 loop (IgFold[Fv-H3]), and IgFold
given the complete Fv structure (IgFold[Fv]).

incorporation of non-CDR3 templated regions also improves when the full

structural context is provided, indicating that the model is not simply recapit-

ulating template structures, but combining their content with its predictions.

Although this approach is of little practical value for structure prediction (as

the correct structure is already known) it may be a useful approach for instill-

ing structural information into pretrained embeddings, which are valuable

for other antibody learning tasks.

4.3.5 Minimal refinement yields faster predictions

Although the performance of the deep learning methods for antibody structure

prediction is largely comparable, the speed of prediction is not. Grafting-

based methods, such as RepertoireBuilder, tend to be much faster than deep

learning methods (if a suitable template can be found). However, as reported

above, this speed is obtained at the expense of accuracy. Recent deep learning

methods for antibody structure prediction, including DeepAb, ABlooper, and
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Figure 4.10: Effects of templates on CDR H3 loop structure prediction

Per-target comparison of CDR H3 loop structure prediction for IgFold and IgFold[Fv-
H3], with each point representing the RMSDH3 for both methods on a single bench-
mark target.

NanoNet, have claimed faster prediction of antibody structures as compared

to general methods like AlphaFold. For our benchmark, all deep learning

methods were run on identical hardware (12-core CPU with one A100 GPU),

allowing us to directly compare their runtimes. All computed runtimes are

measured from sequence to full-atom structure, using the recommended

full-atom refinement protocols for each method. We could not evaluate the

runtimes of RepertoireBuilder as no code has been published. The results of

this comparison are summarized in Figure 4.13.

For paired antibodies, we find that IgFold is significantly faster any other

method tested. On average, IgFold takes 23 seconds to predict a full-atom
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Figure 4.11: Incorporation of templates into nanobody structure prediction

Nanobody structure prediction benchmark results for IgFold without templates,
IgFold given the FV structure without the CDR3 loop (IgFold[Fv-CDR3]), and IgFold
given the complete Fv structure (IgFold[Fv]).

structure from sequence. The next fastest method, ABlooper, averages nearly

three minutes (174 seconds) for full-atom structure prediction. Although

ABlooper rapidly predicts coordinates in an end-to-end fashion, the outputs

require expensive refinement in OpenMM to correct for geometric abnormali-

ties and add side chains. The ColabFold [12] implementation of AlphaFold-

Multimer evaluated here averages just over seven minutes (435 seconds) on

average for full-atom structure prediction. This is considerably faster than the

original implementation of AlphaFold-Multimer, which required an expensive

MSA search and repeated model compilation for every prediction. Finally, the

slowest method for paired antibody structure prediction was DeepAb, which

averaged over twelve minutes (750 seconds). DeepAb is considerably slower
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Figure 4.12: Effects of templates on CDR3 loop structure prediction

Per-target comparison of CDR3 loop structure prediction for IgFold and IgFold[Fv-
CDR], with each point representing the RMSDCDR3 for both methods on a single
benchmark target.

by design, as it requires minimization of predicted inter-residue potentials

in Rosetta. We also investigated the impact of sequence length on prediction

times. In general, the runtimes of all methods increased with sequence length

(Figure 4.28A). DeepAb and ABlooper were the most sensitive to sequence

length, with AlphaFold-Multimer and IgFold scaling more favorably.

For nanobodies, we again find that IgFold outpaces alternative methods for

full-atom structure prediction, requiring an average of 15 seconds. NanoNet

was similarly fast, averaging 15 seconds for full-atom structure prediction.

Similar to ABlooper for paired antibodies, NanoNet outputs require expensive

refinement to correct for unrealistic backbone geometries and add side chains.
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Figure 4.13: Runtime benchmark for antibody structure prediction methods

(A) Runtime comparison of evaluated methods on the paired antibody structure
prediction benchmark. ABlooper runtimes are calculated given an IgFold-predicted
framework, and thus represent an underestimation of actual runtime. (B) Runtime
comparison of evaluated methods on the nanobody structure prediction benchmark.

DeepAb was able to predict nanobody structures in just under four minutes

(224 seconds) on average. Finally, the slowest method for nanobody structure

prediction was AlphaFold, which averaged nearly six minutes (345 seconds).

As with paired antibodies, we also investigated the impact of sequence length

on prediction times. In general, the runtimes of all methods increased with

sequence length (Figure 4.28B). Although NanoNet had several outlier cases

that required significant refinement, the prediction times for a majority of

targets increased with sequence length. We also note that for methods capable

of predicting both nanobody and paired antibody structures, runtimes tend

to roughly double in the paired setting (scaling linearly with total length), as

expected.
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Figure 4.14: Estimated error for large-scale human antibody structure predictions

Distribution of predicted RMSD and CDR H3 loop lengths for 1.3M predicted human
paired antibody structures.

4.3.6 Large-scale prediction of paired antibody structures

The primary advantage of IgFold over other highly accurate methods like

AlphaFold is its speed at predicting antibody structures. This speed enables

large-scale prediction of antibody structures on modest compute resources.

Prior work exploring large-scale predictions of antibody structures have pro-

vided insight into the structural commonalities across individuals, and pro-

vide evidence of a public structural repertoire [50]. Further, comparison on

the basis of structure (rather than sequence alone) has enabled discovery of

convergent binders that diverge significantly in sequence [51]. To demonstrate

the utility of IgFold’s speed for such analyses, we predicted structures for
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two non-redundant sets of paired antibodies. The first set consists of 104,994

paired antibody sequences (clustered at 95% sequence identity) from the OAS

database [34]. These sequences are made up of 35,731 human, 16,356 mouse,

and 52,907 rat antibodies. The second set contains 1,340,180 unique paired

human antibody sequences from the immune repertoires of four unrelated

individuals [52]. These sequences span the affinity maturation spectrum,

consisting of both naive and memory B-cell sequences. The structures are pre-

dicted with low estimated RMSD by IgFold, indicating that they are accurate

(Figure 4.29 and 4.30). We highlight the predicted accuracy of the CDR H3

loops for the 1.3M human antibody sequences in Figure 4.14. The median

length and predicted RMSD for this set are 13 residues and 1.95 Å, respectively.

We note that the predicted RMSD values tend to be underestimations, and

in practice the actual H3 loop RMSDs, were structures to be experimentally

determined, would likely be higher. As of October 2022, only 2,448 unique

paired antibody structures have been determined experimentally [33], and

thus our predicted dataset represents an over 500-fold expansion of antibody

structural space. These structures are made available for use in future studies.

4.4 Discussion

Protein structure prediction methods have advanced significantly in recent

years, and they are now approaching the accuracy of the experimental struc-

tures upon which they are trained [10]. These advances have been enabled

in large part by effective exploitation of the structural information present
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in alignments of evolutionarily related sequences (MSAs). However, con-

structing a meaningful MSA is time-consuming, contributing significantly

to the runtime of general protein structure prediction models, and making

high-throughput prediction of many protein structures computationally pro-

hibitive for many users. In this work, we presented IgFold: a fast, accurate

model that specializes in prediction of antibody structures. We demonstrated

that IgFold matches the accuracy of the highly accurate AlphaFold-Multimer

model [13] for paired antibody structure prediction, and approaches the accu-

racy of AlphaFold for nanobodies. Though prediction accuracy is comparable,

IgFold is significantly faster than AlphaFold, and is able to predict structures

in seconds. Further, for many targets IgFold and AlphaFold predict distinct

conformations, which should be useful in assembling structural ensembles for

applications where flexibility is important. Predicted structures are accompa-

nied by informative error estimates, which provide critical information on the

reliability of structures.

Analyses of immune repertoires have traditionally been limited to se-

quence data alone [1], as high-throughput antibody structure determination

was experimentally prohibitive and prediction methods were too slow or

inaccurate. However, incorporation of structural context has proven valuable,

particularly for identification of sequence-dissimilar binders to common epi-

topes [53]. For example, grafting-based methods have been used to identify

sequence-diverse but structurally similar antibodies against SARS-CoV-2 [51].

The increased accuracy of IgFold, coupled with its speed, will make such

methods more effective. Additionally, consideration of structural uncertainty
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via IgFold’s error estimation should reduce the rate of false positives when

operating on large volumes of sequences. As a demonstration of IgFold’s

capabilities, we predicted structures for over 1.4 million paired antibody se-

quences spanning three species. These structures expand on the number of

experimentally determined antibody structures by a factor of 500. The major-

ity of these structures are predicted with high confidence, suggesting that they

are reliable. Although our analysis of these structures was limited, we are

optimistic that this large dataset will be useful for future studies and model

development.

Despite considerable improvements by deep learning methods for general

protein complex prediction, prediction of antibody-antigen binding remains a

challenge. Even the recent AlphaFold-Multimer model, which can accurately

predict the interactions of many proteins, is still unable to predict how or

whether an antibody will bind to a given antigen [13]. One of the key barriers

to training specialized deep learning models for antibody-antigen complex

prediction is the limited availability of experimentally determined structures.

The large database of predicted antibody structures presented in this work

may help reduce this barrier if it can be employed effectively. In the meantime,

IgFold will provide immediate benefits to existing antibody-antigen docking

methods. For traditional docking methods, the improvements to speed and

accuracy by IgFold should be sufficient to make them more effective [54, 55].

For newer docking methods that incorporate structural flexibility, the error

estimates from IgFold may be useful for directing enhanced sampling [56].

Deep learning methods trained on antibody sequences and structures hold
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great promise for design of novel therapeutic and diagnostic molecules. Gen-

erative models trained on large numbers of natural antibody sequences can

produce effective libraries for antibody discovery [29, 30]. Self-supervised

models have also proven effective for humanization of antibodies [28]. Mean-

while, methods like AlphaFold and RoseTTAFold have been adapted for

gradient-based design of novel protein structures and even scaffolding bind-

ing loops [57, 58]. IgFold will enable similar applications, and will additionally

be useful as an oracle to test or score novel antibody designs. Finally, em-

beddings from IgFold (particularly when injected with structural information

from templates) will be useful features for future antibody design tasks.

4.5 Methods

4.5.1 Predicting antibody structure from sequence

The architecture and training procedure for IgFold are described below. Full

details of the model architecture hyperparameters are detailed in Table 4.3. In

total, IgFold contains 1.6M trainable parameters.

Generating AntiBERTy embeddings

To generate input features for structure prediction, we use the pretrained

AntiBERTy language model [22]. AntiBERTy is a bidirectional transformer

trained by masked language modeling on a set of 558M antibody sequences

from the Observed Antibody Space. For a given sequence, we collect from

AntiBERTy the final hidden layer state and the attention matrices for all layers.

The hidden state of dimension L × 512 is reduced to dimension L × dnode by a
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fully connected layer. The attention matrices from all 8 layers of AntiBERTy

(with 8 attention heads per layer) are stacked to form an L × L × 64 tensor.

The stacked attention tensor is transformed to dimension L × L × dedge by a

fully connected layer.

IgFold model implementation

The IgFold model takes as input per-residue embeddings (nodes) and inter-

residue attention features (edges). These initial features are processed by a

series node updates via graph transformer layers [37] and edge updates via

triangular multiplicative operations [10]. Next, template data is incorporated

via fixed-coordinate invariant point attention. Finally, the processed nodes

and edges are used to predict the antibody backbone structure via invariant

point attention. We detail each of these steps in the following subsections.

Where possible, we use the same notation as in the original papers.

Node updates via graph transformer layers. Residue node embeddings are

updated by graph transformer (GT) layers, which extend the powerful trans-

former architecture to include edge information [37]. Each GT layer takes as

input a series of node embeddings H(l) = {h1, h2, ..., hL}, with hi ∈ Rdnode , and

edges eij ∈ Rdedge . We calculate the multi-head attention for each node i to all

other nodes j as follows:

qc,i = Wc,qhi

kc,j = Wc,khj

ec,ij = Wc,eeij
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αc,ij =
⟨qc,i, kc,j + ec,ij⟩

∑u∈L⟨qc,i, kc,u + ec,iu⟩

where Wc,q, Wc,k, Wc,e ∈ Rdnode×dgt-head are learnable parameters for the key,

query, and edge tranformations for the c-th attention head with hidden size

dgt-head. In the above, ⟨q, k⟩ = exp qTk√
d

is the exponential of the standard scaled

dot product attention operation. Using the calculated attention, we aggregate

updates from all nodes j to node i as follows:

vc,j = Wc,vhj

ĥi = ∥C
c

[︄
∑
j∈L

αc,ij(vc,j + ec,ij)

]︄

where Wc,v ∈ Rdnode×dgt-head is a learnable parameter for the value transforma-

tion for the c-th attention head. In the above, ∥ is the concatenation operation

over the outputs of the C attention heads. Following the original GT, we use a

gated residual connection to combine the updated node embedding with the

previous node embedding:

βi = sigm(Wg[ĥi; hi; ĥi − hi])

hnew
i = (1 − βi)hi + βiĥi

where Wg ∈ R3∗dnode×1 is a learnable parameter that controls the strength of

the gating function.

Edge updates via triangular multiplicative operations. Inter-residue edge em-

beddings are updated using the efficient triangular multiplicative operation

proposed for AlphaFold [10]. Following AlphaFold, we first calculate updates

using the "outgoing" triangle edges, then the "incoming" triangle edges. We
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calculate the outgoing edge transformations as follows:

aij = sigm(Wa,geij)Wa,veij

bij = sigm(Wb,geij)Wb,veij

where Wa,v, Wb,v ∈ Rdedge×2∗dedge are learnable parameters for the transfor-

mations of the "left" and "right" edges of each triangle, and Wa,g, Wb,g ∈

Rdedge×2∗dedge are learnable parameters for their respective gating functions.

We calculate the outgoing triangle update for edge ij as follows:

gout
ij = sigm(Wout

c,g eij)

êout
ij = gout

ij ⊙ Wout
c,v ∑

k∈L
(aik ⊙ bjk)

enew
ij = eij + êout

ij

where Wout
c,v ∈ R2∗dedge×dedge and Wout

c,g ∈ Rdedge×dedge are learnable parameters

for the value and gating transformations, respectively, for the outgoing triangle

update to edge eij. After applying the outgoing triangle update, we calculate

the incoming triangle update similarly as follows:

gin
ij = sigm(Win

c,geij)

êin
ij = gin

ij ⊙ Win
c,v ∑

k∈L
(aki ⊙ bkj)

enew
ij = eij + êin

ij

where Win
c,v ∈ R2∗dedge×dedge and Win

c,g ∈ Rdedge×dedge are learnable parameters

for the value and gating transformations, respectively, for the incoming trian-

gle update to edge eij. Note that aij and bij are calulated using separate sets of
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learnable parameters for the outgoing and incoming triangle updates.

Template incorporation via invariant point attention. To incorporate structural

template information into the node embeddings, we adopt the invariant point

attention (IPA) algorithm proposed for AlphaFold [10]. The updated node

and edge embeddings correspond to the single and paired representations,

respectively, as described in the original implementation. The IPA layer

is followed by a three-layer feedforward transition block as in the original

implementation. Because our objective is to incorporate known structural data

into the embedding, we omit the translational and rotational updates used in

the AlphaFold structure module. We incorporate partial structure information

by masking the attention between residue pairs that do not both have known

coordinates. As a result, when no template information is provided, the node

embeddings are updated only using the transition layers.

Structure realization via invariant point attention. The processed node and

edge embeddings are passed to a block of three IPA layers to predict the

residue atomic coordinates. Following the structure module of AlphaFold,

we adopt a "residue gas" representation, in which each residue is represented

by an independent coordinate frame. The coordinate frame for each residue

is defined by four atoms (N, Cα, C, and Cβ) placed with ideal bond lengths

and angles. We initialize the structure with all residue frames having Cα at

the origin and task the model with predicting a series of translations and

rotations that assemble the complete structure. Contrary to the AlphaFold

implementation, we do not share parameters across the IPA layers, but instead

learn separate parameters for each layer.
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Table 4.3: IgFold hyperparameters

Parameter Value Description

dnode 64 Node dimension
dedge 64 Edge dimension

dgt-head 32 Graph transformer attention head dimension
ngt-head 8 Graph transformer attention head number
dgt-ff-dim 256 Graph transformer feedforward transition dimension
ngt-layers 4 Graph transformer layers

dipa-temp-head-scalar 16 Template IPA scalar attention head dimension
dipa-temp-head-point 4 Template IPA point attention head dimension
nipa-temp-head 8 Template IPA attention head number
dipa-temp-ff-dim 64 Template IPA feedforward transition dimension
dipa-temp-ff-layers 3 Template IPA feedforward transition layers
nipa-temp-layers 2 Template IPA layers

dipa-str-head-scalar 16 Structure IPA scalar attention head dimension
dipa-str-head-point 4 Structure IPA point attention head dimension
nipa-str-head 8 Structure IPA attention head number
dipa-str-ff-dim 64 Structure IPA feedforward transition dimension
dipa-str-ff-layers 3 Structure IPA feedforward transition layers
nipa-str-layers 3 Structure IPA layers

dipa-err-head-scalar 16 Error prediction IPA scalar attention head dimension
dipa-err-head-point 4 Error prediction IPA point attention head dimension
nipa-err-head 4 Error prediction IPA attention head number
dipa-err-ff-dim 64 Error prediction IPA feedforward transition dimension
dipa-err-ff-layers 3 Error prediction IPA feedforward transition layers
nipa-err-layers 2 Error prediction IPA layers

Training procedure

The model is trained using a combination of structure prediction and error

estimation loss terms (Figure 4.16). The primary structure prediction loss is the

mean-squared-error between the predicted residue frame atom coordinates

(N, Cα, C, and Cβ) and the label coordinates after Kabsch alignment of all

atoms. We additionally apply an L1 loss to the inter-atomic distances of the

(i, i + 1) and (i, i + 2) backbone atoms to encourage proper bond lengths and
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secondary structures. Finally, we use an L1 loss for error prediction, where

the label error is calculated as the Cα deviation of each residue after Kabsch

alignment of all atoms belonging to beta sheet residues. The total loss is the

sum of the structure prediction loss, the inter-atomic distance loss, and the

error prediction loss:

Loss(xpred, xlabel) = Lcoords(xpred, xlabel)

+ clamp(10 × Lbonds(xpred), 1)

+ Lerror(xpred, xlabel)

(4.1)

where xpred and xlabel are the predicted and experimentally determined struc-

tures, respectively. We scale the bond length loss by a factor of 10 (effectively

applying the loss on the nanometer scale) and clamp losses greater than 1.

Clamping the bond length loss allows the model to learn global arrangement

of residues early in training then improve smaller details (e.g., bond lengths)

later in training.

During training we sampled structures evenly between the SAbDab dataset

[33] and the paired and unpaired synthetic structure datasets. We held out

10% of the SAbDab structures for validation during training. We used the

RAdam optimizer [59] with an initial learning rate of 5 × 10−4, with learning

rate decayed on a cosine annealing schedule. We trained an ensemble of four

models with different random seeds. Each model trained for 2 × 106 steps,

with a batch size of one structure. Training took approximately 110 hours per

model on a single A100 GPU.
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Ensemble structure prediction

To generate a structure prediction for a given sequence, we first make pre-

dictions with each of the four ensemble models. We then use the predicted

error to select a single structure from the set of four. Rather than use the

average predicted error over all residues, we instead rank the structures by

the 90th percentile residue error. Typically, the 90th percentile residue error

corresponds to the challenging CDR3 loop. Thus, we effectively select the

structure with the lowest risk of significant error in the CDR3 loop.

Refinement procedure

Predicted structures from the IgFold model undergo two stages of refinement

to resolve non-realistic features and add side-chain atoms. First, the back-

bone structure is optimized in PyTorch using a loss function consisting of

idealization terms and an RMSD constraint:

Loss(xref, xpred) = Lbond-length(xref)

+ Lbond-angle(xref)

+ Lpeptide-dihedral(xref)

+ Lcoords(xref, xpred)

(4.2)

where xref and xpred are the updated and originally predicted structures, re-

spectively. We optimize bond lengths and planar angles according to the

standard values reported by Engh and Huber [60]. The peptide bond dihedral

angle is optimized to be in the trans conformation. The coordinate loss term

141



is the same as used in model training, but instead of measuring deviation

from an experimentally determined structure, it is constraining the updated

structure to stay close to the original model prediction. The refinement is

performed using the Adam optimizer [61] with a learning rate of 0.02 for

80 steps. Next, the structure is refined in Rosetta using the standard ref2015

energy function [39]. Rosetta refinement progresses through three stages:

(1) full-atom energy minimization, (2) side chain repacking, (3) full-atom en-

ergy minimization. Each minimization stage is performed for 100 steps with

constraints to the starting coordinates.

4.5.2 Benchmarking antibody structure prediction methods

Benchmark datasets

To evaluate the performance of IgFold and other antibody structure prediction

methods, we collected a set of high-quality paired and single-chain antibody

structures from SAbDab. To ensure none of the deep learning models were

trained using structures in the benchmark, we only used structures deposited

between July 1, 2021, and September 1, 2022, (after DeepAb, ABlooper, Al-

phaFold, and IgFold were trained). Structures were filtered at 99% sequence

identity. From these structures, we selected those with resolution greater

than 3.0 Å. Finally, we removed structures with CDR H3 loops longer than 20

residues (according to Chothia numbering). These steps resulted in 197 paired

and 71 single-chain antibody structures for benchmarking methods.
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Alternative methods

We compared the performance of IgFold to five alternative methods for anti-

body structure prediction: RepertoireBuilder, DeepAb, ABlooper, NanoNet,

and AlphaFold. RepertoireBuilder structures were predicted using the web

server, omitting structures released after July 1, 2021 (benchmark collection

date). All of the following methods were run on identical computational

hardware, with a 12-core CPU and one A100 GPU. DeepAb structures are

generated using the public code repository, with five decoys per sequence as

recommended in the publication [14]. ABlooper structures are predicted using

the public code repository, with CDR loops built onto frameworks predicted by

IgFold. We diverge from the original publication’s usage of ABodyBuilder [62]

for predicting framework structures because the ABodyBuilder web server

does not permit omission of enough template structures to perform proper

benchmarking (and no code is available). Instead, we used IgFold framework

structures because the model did not produce any outliers or failures on these

residues. ABlooper predictions were refined using the provided OpenMM

[63] pipeline. NanoNet structures were predicted using the public code reposi-

tory [17], with full-atom refinement processing performed using the provided

MODELLER [64] pipeline. AlphaFold (and AlphaFold-Multimer) structures

were predicted using the optimized ColabFold repository [12]. The Colab-

Fold pipeline utilizes the model weights trained by DeepMind, but replaces

the time-consuming MSA generation step with a faster search via MMseqs2

[65]. For both AlphaFold and AlphaFold-Multimer, we made predictions

with all five pretrained models and selected the highest-ranking structure for
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benchmarking.

144



4.6 Appendix

CDR H1

CDR L1

CDR H2

CDR L2

CDR H3

CDR L3

Figure 4.15: Visualization of AntiBERTy sequence embeddings for CDR loops

Each point corresponds to one sequence with an experimentally determined paired
antibody structure. For each sequence, segments corresponding to CDR loops are
extracted from the embedding and averaged to form a fixed-size representation. For
each CDR loop, all representations are collected and visualized via two-dimensional
t-SNE. For CDR H1-H2 and CDR L1-L3, points are colored by the canonical cluster
from their respective structures. For CDR H3, points are colored according to loop
length, as canonical structures are not defined.
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Structure

Sequence

H: EVQLVE...
L: DIVLTQ...

1/3

SAbDab
(4k)

OAS Paired
(16k)

1/3

OAS Unpaired
(23k)

1/3
IgFold

Template? 50%Sequence

Corrupt structure

Per-residue error
prediction

Predicted structure

Model Outputs

+Bond length
L1 lossLoss = Atom deviation

L1 loss+Coordinate
MSE loss

Figure 4.16: Diagram of IgFold training procedure

IgFold is trained using a combination of experimentaly determined structures and
synthetic data from AlphaFold2. From amino-acid sequence inputs, IgFold predicts
the antibody backbone structure. To enable incorporation of template structures,
IgFold is provided with a partial structural solution for 50% of training examples. The
model is trained using a combination of objectives for coordinate accuracy (RMSD),
backbone geometry (bond/psuedo-bond lengths), and error estimation (aligned
RMSD).

Step 0 Step 1 Step 2 Step 3

Coordinate frame
at origin Final structure

Figure 4.17: Stepwise prediction of paired antibody structure by invariant point
attention

Predicted 3D coordinates for paired antibody structure after each invariant point
attention layer, beginning from initialization of all residues at the origin. After the first
layer, an initial compact structure resembling the final prediction is visible. After the
second layer, the compact structure is expanded to proper scale, but with numerous
chain breaks, as well as abnormal bond lengths and angles. After the third and final
layer, most abnormal backbone geometries are resolved.
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Figure 4.18: Impact of refinement on antibody structure prediction accuracy

Comparison of paired antibody structure prediction accuracy before and after refine-
ment in Rosetta. (A) Summary of framework and CDR loop structure prediction
RMSD for direct model predictions (IgFold[e2e]) and their refined counterparts (Ig-
Fold). (B) Direct comparison of unrefined and refined IgFold predictions for inter-
chain orientation (OCD), framework RMSD, and CDR loop RMSD. Points within
diagonal bands have differences within 0.25 units for OCD and 0.25 Å for RMSDs.
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Figure 4.19: Effect of refinement on predicted paired antibody structures

(A-F) Comparison of predicted paired FV structures before (e2e, orange) and after
(Refined, blue) refinement in Rosetta. (A) Comparison for benchmark target 7ARN,
with LH3 = 10. (B) Comparison for benchmark target 7RAH, with LH3 = 12. (C)
Comparison for benchmark target 7KEO, with LH3 = 15. (D) Comparison for bench-
mark target 7MF7, with LH3 = 20. (E) Comparison for benchmark target 7RDK, with
LH3 = 20. (F) Comparison for benchmark target 7RDM, with LH3 = 20.
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7S4G 6XP6 7BBG 7KF0

7N0U 7N6P 7QNX 7S0B

7SHU 7SI0 7SO5 7ST8

7T0K 7U0B

Figure 4.20: Strand swapping in AlphaFold predictions

AlphaFold-Multimer predicts strand swaps for fourteen of the paired antibody bench-
mark targets. In all cases, the C-terminal strands of the heavy and light chains are
swapped.
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Figure 4.21: Comparison of methods for paired antibody heavy chain structure
prediction

Scatter plots show heavy-chain RMSD metrics for benchmark structures predicted by
IgFold compared to four alternative methods: RepertoireBuilder, DeepAb, ABlooper,
and AlphaFold-Multimer. Each point corresponds to one benchmark target, with
points between the diagonal bands having differences within 0.25 Å RMSD.
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Figure 4.22: Comparison of methods for paired antibody light chain structure predic-
tion

Scatter plots show light-chain RMSD metrics for benchmark structures predicted by
IgFold compared to four alternative methods: RepertoireBuilder, DeepAb, ABlooper,
and AlphaFold-Multimer. Each point corresponds to one benchmark target, with
points between the diagonal bands having differences within 0.25 Å RMSD.
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Figure 4.23: Comparison of methods for nanobody structure prediction

Scatter plots show nanobody RMSD metrics for benchmark structures predicted
by IgFold compared to three alternative methods: RepertoireBuilder, DeepAb, and
AlphaFold. Each point corresponds to one benchmark target, with points between
the diagonal bands having differences within 0.25 Å RMSD.
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Figure 4.24: Similarity of predicted paired antibody structures

Pairwise analysis of similarities between predicted paired antibody structures for
RepertoireBuilder, DeepAb, ABlooper, AlphaFold-Multimer, and IgFold. Each grid
point corresponds to the average similarity metric (OCD or RMSD (Å)) over the full
paired antibody benchmark for a given pair of methods.
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Figure 4.25: Similarity of IgFold-predicted paired antibody structures to alternative
methods

Distribution of similarity metrics (OCD or RMSD (Å)) between IgFold and alternative
methods (RepertoireBuilder, DeepAb, ABlooper, AlphaFold-Multimer). Each curve
shows the cumulative density of the similarity metric for the paired benchmark
targets.
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Figure 4.26: Estimation of paired antibody CDR loop accuracy

Average predicted error from IgFold for paired antibody CDR loops compared with
the true CDR loop RMSD. Spearman values (ρ) linear fits are given for plots with
significant correlations.
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Figure 4.27: Estimation of nanobody CDR loop accuracy

Average predicted error from IgFold for nanobody CDR loops compared with the true
CDR loop RMSD. Spearman values (ρ) linear fits are given for plots with significant
correlations.
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Figure 4.28: Relationship between sequence length and prediction runtime

(A) Per-target runtime on paired antibody structure prediction benchmark for evalu-
ated methods. ABlooper runtimes are calculated given an IgFold-predicted frame-
work structure, and thus represent a slight underestimation. (B) Per-target runtime
on nanobody structure prediction benchmark for evaluated methods.
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Figure 4.29: Analysis of large-scale OAS antibody structure predictions

Distribution of average predicted RMSD for 104,994 predicted paired antibody struc-
tures from the Observed Antibody Space.
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Figure 4.30: Analysis of large-scale human antibody structure predictions

Distribution of average predicted RMSD for 1,340,180 predicted paired antibody
structures from the four unrelated human donors.
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Chapter 5

Exploring the boundaries of protein
language models

Adapted from Erik Nijkamp*, Jeffrey Ruffolo*, Eli N Weinstein,

Nikhil Naik, and Ali Madani. “Progen2: exploring the boundaries

of protein language models”. arXiv (2022). Reproduced with

permission. *Joint first authors.

5.1 Abstract

Attention-based models trained on protein sequences have demonstrated

incredible success at classification and generation tasks relevant for artificial

intelligence-driven protein design. However, we lack a sufficient under-

standing of how very large-scale models and data play a role in effective

protein model development. We introduce a suite of protein language mod-

els, named ProGen2, that are scaled up to 6.4B parameters and trained on

different sequence datasets drawn from over a billion proteins from genomic,
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metagenomic, and immune repertoire databases. ProGen2 models show state-

of-the-art performance in capturing the distribution of observed evolutionary

sequences, generating novel viable sequences, and predicting protein fitness

without additional finetuning. As large model sizes and raw numbers of

protein sequences continue to become more widely accessible, our results

suggest that a growing emphasis needs to be placed on the data distribution

provided to a protein sequence model. Our models and code are open-sourced

for widespread adoption in protein engineering.

5.2 Introduction

Proteins are the workhorse of life – performing essential and versatile func-

tions critical to sustain human health and the environment. Engineering

proteins for our desired purposes enables use-cases in industries across phar-

maceuticals, agriculture, specialty chemicals, and fuel. Current tools for

protein engineering are limited and, as a consequence, mainly rely on directed

evolution [1], a process of stochastically mutating a starting/wild-type se-

quence, measuring each variant, and iterating until sufficiently optimized

for improved function, also referred to as fitness. Nature as an underlying

generative process has yielded a rich, complex distribution of proteins. Due

to exponentially-broken barriers in DNA sequencing, we now collect natu-

ral sequences at a previously-unimaginable pace. In parallel, we have seen

machine learning models perform exceedingly well at capturing data distri-

butions of images and natural language [2, 3]. In particular, the transformer

[4] has proven to be a powerful language model and can serve as a universal
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computation engine [5] across data modalities.

Language modeling tries to capture the notion that some sequences are

more likely than others by density estimation. For large language models

(LLMs), transformer models equipped with self-attention mechanisms [6] have

shown to be particularly well suited to capture dependency among sequence

elements while being capable to scale vast amounts of model parameters [7, 8].

In this work, we adopt causal LLMs in the form of auto-regressive decoders

for the modeling of proteins. The raw amino acid sequences which constitute

a protein are considered as observed sequences for the maximum likelihood-

based learning. The problem of conditional protein generation is naturally

cast as a next-token prediction task. Specifically, few-shot learning [3] models

tasks as auto-regressive sampling conditional on a small set of examples (or

shots). Notably, LLMs possess the capacity to solve the intended task by

increasing the number of parameters without task-specific finetuning of the

model. These few-shot abilities appear to emerge under certain parameter

thresholds [9], which motivates the exploration of such capabilities for protein

engineering.

Methods for generating protein sequences that are functional and have de-

sired properties have recently seen tremendous progress. Simple, traditional

methods that leverage multiple sequence alignments of similar proteins, such

as ancestral sequence reconstruction [10], have demonstrated the ability to gen-

erate useful proteins but are limited in scope. A host of statistical and machine

learning techniques exist to access a larger sequence space. Most still train on

a fixed protein family to capture co-evolutionary signals present within a set
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of homologous sequences – ranging from direct coupling analysis techniques

[11] to generative adversarial networks [12]. More versatile models trained on

unaligned and unrelated sequences have emerged [13] for functional sequence

design. Language models, in particular, provide a powerful architecture to

learn from large sets of amino acid sequences across families for the purpose

of generating diverse, realistic proteins [14, 15]. Sequences generated by pro-

tein language models (PLMs) are typically predicted to adopt well-folded

structures, despite diverging significantly in sequence space. PLMs can be

further focused on specific families of interest by finetuning on a subset of

relevant proteins. In prior work, finetuning the ProGen model on a set of

lysozyme families yielded proteins retaining functional behavior, and even

rivaling that of a natural hen egg white lysozyme [16]. Similar strategies have

been employed for domain-specific PLMs, such as the antibody-specific IgLM

model [17]. By conditioning on chain type and species-of-origin, IgLM is

capable of generating diverse sets of antibodies resembling those of natural

immune repertoires.

Understanding the functional effects of sequence mutations is critical for

the rational design of proteins. Methods for predicting such effects typically

fit into one of two categories: family-specific models trained on aligned se-

quences or universal models trained on unaligned sequences. Models based on

alignments of sequences [18, 19, 20] face several key challenges limiting their

application to protein engineering tasks. First, for proteins with few evolution-

ary neighbors, the MSA is likely to be shallow and contain little information

about functional constraints. Second, for some families of proteins (such as
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antibodies), there are many sequences available, but they are non-trivial to

align. Finally, evaluation of novel variants requires that new sequences be

aligned to the MSA used for training; this can be challenging in cases with

significant insertions or deletions (indels). These limitations prompted the

development of fitness predictors based unaligned sets of sequences, partic-

ularly transformer models trained on large databases of protein sequences.

ESM-1v [21] tasks a transformer encoder model trained via masked-language

modeling with estimating heuristic likelihood of mutations relative to the

wild type sequences. Autoregressive PLMs have also been applied to fitness

prediction [13]. These models are intrinsically capable of modeling indels, as

well as epistatic mutations. The RITA family of models [22] demonstrated

that not only do autoregressive PLMs effectively estimate protein fitness, but

performance can be further improved by scaling model capacity. Trancep-

tion [23] demonstrated that combining autoregressive language models with

retrieval [24] capabilities provides a means of enhancing a generalist model

with family-specific information from MSAs at inference.

In this work, we perform a study on the effect of very large-scale models

and data. We train a suite of models ranging from 151M to 6.4B parameters

(one of the largest published for a single protein transformer) on different

datasets collectively totaling 1B protein sequences from genomic, metage-

nomic, and immune repertoire databases. We analyze the generations from

universal and family-specific models through predicted structural and bio-

physical properties. Finally, we examine fitness prediction on existing experi-

mental datasets which motivate hypotheses on the role of data distribution
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Table 5.1: Model performance on held-out test sets

Model Name Parameters Test-max90 (ppl) Test-max50 (ppl)

ProGen2-small 151M 12.9 15.0
ProGen2-medium 764M 11.2 14.3
ProGen2-large 2.7B 11.1 14.4
ProGen2-xlarge 6.4B 9.9 13.9

Increasing number of parameters allows the model to better capture the distribution
of observed evolutionary sequences. Performance is measured as the perplexity of
held-out test sequences at various maximum sequence identity thresholds, i.e. test-
max50 is more difficult and out-of-distribution.

and alignment in protein language modeling.

5.3 Results

5.3.1 Capturing the distribution of observed proteins

We first evaluate the capacity of ProGen2 to capture the distribution of natural

sequences. In particular, we focused on its ability to predict unobserved natu-

ral sequences, quantifying performance in terms of perplexity on a heldout

test set. Perplexity can be intuitively interpreted as the average number of

residues considered by the model at each position. As such, a model that has

better captured the protein sequence data distribution should produce lower

perplexity values. Indeed, we find that larger models yield substantially lower

perplexities, consistent with the idea that, despite massive model size, we are

far from the overfitting regime (Table 5.1).

For a sequence x = (x1, x2, . . . , xn) of n tokens and a language model p,

the perplexity is calculated as

ppl(x) = exp− 1
n

n

∑
i=1

ln p(xi)

172



We report the average perplexity over the held-out partitions of the datasets.

We caution, however, that these results only reflect the capacity of the model

to capture the training distribution from which the data were drawn, not

necessarily relevant measures of molecular fitness.

5.3.2 Protein sequence generation

Given the capacity of the ProGen2 family of models for capturing the distribu-

tion of observed evolutionary sequences, we next assessed the ability of the

models to generate novel sequences. We evaluated sequence generation in

three settings: 1) universal protein generation from pretraining, 2) fold-specific

generation after finetuning, and 3) antibody generation after domain-specific

pretraining.

Pretrained models generate diverse protein sequences

Prior work has demonstrated that sequences generated by PLMs can adopt

a wide variety of folds, often with significant deviation in sequence from

observed proteins [14, 15]. To assess the generative capacity of ProGen2

models, we generated 5,000 sequences with the ProGen2-xlarge model. The

three-dimensional structure of each sequence was predicted using AlphaFold2

[25]. For each structure, we identified the most structurally similar natural

protein the in the PDB [26] using Foldseek [27]. In Figure 5.1, we show the

relationship between structural similarity to natural proteins (TMscore) and

AlphaFold2 prediction confidence (pLDDT). The majority of structures were

confidently predicted (median pLDDT of 90.0) and had structural homologs
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Figure 5.1: Generating from a pretrained language model trained on a universal
protein dataset

(A) Relationship between AlphaFold2 prediction confidence (pLDDT) and similarity
to natural protein structures in the PDB (TMscore). (B-D) Comparison of predicted
structures for generated sequences (left, colored by pLDDT) and their closest struc-
tural counterparts in the PDB (right, gray). Sequence identities and TMscores are
calculated against the closest structural matches in the PDB. (B) Solenoid-fold pro-
tein generated by the model, with very low sequence identity and high structural
similarity to a toll-like receptor protein. The generated protein replaces several alpha
helices on the outer edge of the fold with beta sheets, resulting in a smaller curvature
compared to that of its most similar natural counterpart. (C) Multi-domain α+β-fold
generated protein with very low sequential or structural similarity to natural proteins.
(D) Generated protein resembling prokaryotic surface protein. The generated protein
contains more ordered secondary structure (uniform-length beta sheets, shorter loops)
than other beta-roll folds found in the PDB.

in the PDB (median TMscore of 0.89). However, closer inspection of predicted

structures revealed several unique characteristics of the generated sequences.

In Figure 5.1B, we show a generated sequence adopting a solenoid fold. The
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closest structural homolog in the PDB is the mouse toll-like receptor 9 (PDB

ID 3WPF-A), a similarly folding solenoid protein. Interestingly, although the

inner face of the generated solenoid fold is composed entirely of beta sheets

(as in the natural protein), the outer face combines both alpha helices and

beta strands, resulting in a larger central angle (smaller curvature). Further,

despite adopting similar folds, the sequence identity between the generated

and natural proteins is only 10.0%. For another generated sequence, adopting

a multi-domain α+β-fold (Figure 5.1C), the most similar natural protein was

an uncharacterized protein (PDB ID 6OAW-A) with a low TMscore of 0.204

and little sequence overlap (4.3% identity). In a final case study, we highlight

a generated sequence with a predicted structure resembling a prokaryotic

RsaA surface protein (PDB ID 5N8P-A). Both structures adopt a similar β-

roll fold (TMscore 0.629) yet have a low level of sequence identity (13.5%).

Interestingly, we observe that the generated protein resembles an idealized

version of the natural protein, with uniform beta sheets and connecting loops.

Taken together, these examples illustrate some of the unique properties of

sequences generated by ProGen2. While the generated sequences often fold

into structures resembling those produced by nature, they frequently do so

with significant sequence deviations, and may adopt novel folds in some

cases.

Finetuning enables family-specific sequence generation

Next, we considered generation from a model finetuned on protein sequences

adopting a common structural architecture. The ProGen2-large model was

finetuned for two epochs on 1M sequences, from Gene3D [28] and CATH
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Figure 5.2: Effect of finetuning on the sequence similarity of generated proteins to
natural proteins

(A) Higher sampling temperature generates more diverse protein sequences. (B)
Higher nucleus-sampling probability produces greater sequence diversity.

[29], adopting a two-layer sandwich architecture (CATH 3.30). To understand

the effects of extended finetuning, we generated 10,000 sequences using the

model parameters after the first and second epoch of finetuning. For all gen-

erated sequences, we calculated the sequence identity against the training

dataset using MMseqs2 [30]. As expected, we observed higher similarity

to observed evolutionary sequences with extended finetuning (Figure 5.2).

Among sequences generated with the same model checkpoints, sampling

parameters are strongly correlated with sequence novelty (i.e., higher sam-

pling temperature or nucleus probability yields lower sequence identity). To

assess the effect of sampling parameters on structure diversity within the

common architecture, we predicted structures for all 20,000 sequences with Al-

phaFold2 and calculated TMscores against the PDB using Foldseek. A similar

trend emerged, with more restrictive sampling parameters typically yielding
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Figure 5.3: Effect of finetuning on the structural similarity of generated proteins to
natural proteins

(A) In general, lower sampling temperature results in sequences adopting structures
more similar (higher TMscore) to those found in the PDB. (B) Lower nucleus sampling
probability yields generations with reduced structural diversity.

structures more closely resembling natural proteins (Figure 5.3). Among the

more novel structures, the primary source of diversity is in the ligand-binding

regions, while the non-binding regions resemble natural proteins (Figure 5.4A-

B). In two such cases, the ligand-binding region is less confidently predicted

by AlphaFold2 and features rearrangements as compared to the closest natural

homologs (Figure 5.4A-B). Interestingly, in both cases the predicted structures

present a clear cavity suitable for a ligand, and even mimic the proximal

secondary structures of natural proteins. The lower prediction confidence for

these regions could be due to the truncated AlphaFold2 prediction process

(one recycle) or the ligand-agnostic nature of the model itself. In another case,

the predicted structure of the generated sequence confidently recapitulates

the ligand-binding region (Figure 5.4C). These results demonstrate that the
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Figure 5.4: Examples of proteins generated by a finetuned model

Comparison of predicted structures for sequences generated by the finetuned lan-
guage model (colored by pLDDT) and the most structurally similar proteins in
the PDB (transparent). Ligands bound by the natural proteins are shown in pink.
(A) Generated protein adopting a similar fold to a natural protein binding a flavin
mononucleotide ligand. The helical secondary structure of the generated protein
matches that of the natural protein near the ligand-binding site, but a shorter loop
restricts the space available for binding. (B) Generated protein closely resembling
a natural protoporhyrin-binding protein. The structure of the generated protein
appears to properly accommodate the ligand, but is predicted with low confidence in
the unstructured loop regions near the binding site. (C) Generated protein similar to
a natural flavin-mononucleotide-binding protein. The binding site of the generated
protein is confidently predicted and reserves appropriate space for the ligand.

sequences generated by a finetuned model sample diversity at functional

regions, while maintaining the common architecture of the training dataset.
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Immune repertoire pretraining for antibody sequence generation

Generation of antibody sequences is of particular interest for construction of

libraries for therapeutic discovery [13, 17]. However, only relatively small

generative models have been trained for this task to date. We investigated

the properties of antibody sequences generated by a 764M parameter model

pretrained on 554 million natural antibodies, named ProGen2-OAS. First, we

generated 52K non-redundant antibody sequences with the pretrained model.

However, experimental limitations of sequencing studies result in over half of

antibody sequences in the OAS being truncated at the N-termini by 15 or more

residues [31]. As such, direct generation from the model yields sequences mir-

roring the training distribution, rather than fully formed antibody sequences.

To overcome this bias in the data and produce full-length antibody sequences,

we initiated generation with a three-residue motif commonly found at the

beginning of human heavy chain sequences (EVQ) [17]. Using this prompting

strategy, we generated an additional 470K full-length antibody sequences

(Figure 5.5). In Figure 5.6, we compare the sequence similarity of unprompted

and prompted generations to the training distribution. Notably, the prompted

sequences share significantly greater sequence identity with the training dis-

tribution, likely due to the inclusion of the highly conserved FW1 region that

is frequently absent in the N-terminally-truncated unprompted sequences.

Intriguingly, we also observe an inverse relationship between more restrictive

sampling parameters (lower temperature, higher nucleus probability) and

sequence identity to the training dataset. We observe a similar trend for the

predicted structures of generated antibody sequences, as measured by TM
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Figure 5.5: Comparison of sequence lengths for unprompted and prompted genera-
tion strategies

score against the PDB (Figure 5.7).

Potential antibody therapeutics often require extensive optimization to

improve their physical properties. Collectively referred to as developability,

these properties include thermal stability, expression, aggregation propen-

sity, and solubility [32]. Here, we focused on quantifying the aggregation

propensity and solubility of generated sequences according to their SAP scores

[33] and CamSol-intrinsic profiles [34]. We found that for both aggregation

propensity and solubility, sequences generated with less restrictive parameters

display improved developability (Figure 5.8 and Figure 5.9). Given the effec-

tive zero-shot predictive capabilities of PLMs [22, 23], we also investigated

whether a univerally pretrained model could be used to filter generated anti-

body libraries and improve their developability profiles. In Figure 5.10, we

compare the aggregation propensity and solubility of the full set of generated

sequences with the top-50% as scored by the ProGen2-base model. Among

the top-ranked sequences, aggregation propensity improves only marginally,

while the solubility of the sequences shows a favorable shift. These results

provide meaningful guidance for generation of antibody sequence libraries
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Figure 5.6: Comparison of sequence identity to the training dataset for unprompted
and prompted generations

Full-length antibody sequences from prompting exhibit generally higher sequence
identity. Interestingly, higher sampling temperature tends to produce sequences
more similar to the training dataset, while lower nucleus sampling probability yields
sequences more closely matching the training dataset.

with PLMs. In practice, generating with less restrictive sampling parameters

and filtering with a universal PLM should provide the most developable set

of sequences.

5.3.3 Zero-shot fitness prediction

Generative models for protein sequence design should ideally learn a rep-

resentation that aligns with our desired functional attributes. Experimental

techniques in the wet laboratory have allowed for the collection of protein li-

braries that associate a given sequence to one or many functional scalar values,
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Figure 5.7: Structural similarity of generated antibody sequence to natural proteins

which describes a fitness landscape. We examine how experimentally-measured

fitness landscapes correlate with a generative model’s likelihood in a zero-shot

manner, meaning there is no additional finetuning in a supervised setting

with assay-labeled examples or an unsupervised setting with a focused set of

homologous sequences.

Scale does not improve fitness prediction on narrow landscapes

For a proper comparison to the models of Hesslow et al. [22] – with a simi-

lar architecture to ProGen2 but trained on a different data distribution – we

first characterize zero-shot performance on narrow fitness landscapes from

Riesselman, Ingraham, and Marks [19] which is comprised mainly of single

substitution deep mutational scan experiments. We observe in Figure 5.11

(Table 5.2) that our smallest model (ProGen2-small), with an order of magni-

tude less parameters to RITA-XL, exhibits higher average performance across

zero-shot tasks, indicating the importance of pretraining data distributions.

In contrast to RITA, the ProGen2 training data is a mixture comprised of an
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Figure 5.8: Impact of sampling parameters on aggregation propensity of generated
antibody sequences

Higher sampling temperature results in lower aggregation propensity for generated
sequences, while changing nucleus probability has limited effect.

identity-reduced set of sequences from Uniref along with sequences from

metagenomic sources. Our best ProGen2 model outperforms or matches all

other baselines spanning a variety of differing modeling strategies– amplify-

ing the importance of understanding what set of sequences are provided to

the model for training.

Intriguingly, we find that as model capacity increases, performance at zero-

shot fitness prediction (averaged across all datasets in the narrow landscape)

peaks at 764M parameters (ProGen2-base) before decreasing with larger and
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Figure 5.9: Impact of sampling parameters on solubility of antibody sequences

Higher sampling temperature results in higher solubility for generated sequences,
while changing nucleus probability has limited effect.

larger models (Figure 5.11). This stands in contrast to model perplexity, which

improves systematically with model scale (Table 5.1). Our results are in

line with Weinstein et al. [35], which suggests that fitness estimates from

misspecified models can systematically outperform fitness estimates from

well-specified models (even in the limit of infinite data). Intuitively, this

result says that phylogenetic biases and other distortions in the dataset can be

partially corrected for by using a relatively small but well-chosen model, which

is capable of describing the key features present in real fitness landscapes but

is not capable of exactly matching the data distribution. Our results provide
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Figure 5.10: Ranking generated antibody sequences with universal model

Likelihood ranking of generated antibody sequences with the ProGen2-base language
model. Aggregation propensity is not significantly reduced among the top-50%
ranked antibody generations. Solubility is improved by selecting the top 50% of
ranked antibody generations.

the first evidence that this effect can hold not only in the context of single

protein family datasets but also in the context of large-scale datasets containing

evolutionarily diverse proteins, and using large-scale transformer models.

Scale improves fitness prediction on wide mutational landscapes

Although bigger models may not translate into better zero-shot fitness per-

formance in general, they may still have advantages in certain cases. Most
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Figure 5.11: Zero-shot fitness prediction performance of ProGen2 models and alterna-
tive methods on narrow fitness landscapes

Model scale provides limited performance benefits, and even degrades zero-shot
capabilities for the largest models.

of the available fitness assays to which we compare focus on well-studied

proteins with large numbers of evolutionarily similar sequences, and measure

the fitness/functionality of mutants only one or two mutations away from

a wild-type sequence. Intuitively, regions of sequence space with very low

probability under p0 are likely to be especially poorly described with smaller

models, and so in these regions both fitness estimation and generation may

suffer. Empirically, we find some suggestive evidence that larger models

outperform smaller models at fitness estimation in wider landscapes where

sequences are farther from any natural sequence (Figure 5.12, Table 5.3). In
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Figure 5.12: Zero-shot fitness prediction performance of ProGen2 models on wide
fitness landscapes

Performance typically improves with model scale, and may lead to emergent zero-
shot capabilities for low-homology, highly epistatic landscapes like GB1 (structure
with mutation sites shown).

particular for the GB1 library, a challenging low-homology protein mutated at

positions with non-linear epistasis, our largest models may exhibit emergent

behavior [9] in zero-shot identification of the highest fitness variants.

Antibody-specific training does not improve fitness prediction

On antibody-specific landscapes, our results again indicate more attention

needs to be placed on the distribution of sequences provided to a model dur-

ing training. We examine the zero-shot fitness prediction of binding (KD) and

general properties (expression and melting temperature TM) of antibodies in
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Figure 5.13: Zero-shot fitness prediction performance on antibody-specific fitness
landscapes

Zero-shot performance of universal ProGen2 models and the antibody-specific
ProGen2-OAS for binding datasets and general antibody fitness prediction tasks
(e.g., stability and expression). Models trained on broad evolutionary sequence
datasets outperform antibody-specific models on both tasks.

Table 5.4. Samples from immune repertoire sequencing studies seem like an in-

tuitive choice for learning powerful representations useful for antibody fitness

prediction tasks [36, 37]. However, our ProGen2-OAS model performs poorly

as compared to pretrained models trained on universal protein databases (Fig-

ure 5.13). Curiously, the binding prediction performance is non-negligible and

may be useful in practical antibody engineering campaigns, even though the

corresponding antigen is not provided to the model for likelihood calculation.
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Figure 5.14: Zero-shot fitness prediction performance of ProGen2 models trained on
alternative data compositions

Comparison of zero-shot fitness prediction performance for 2.7B parameter models
trained on Uniref90+BFD30 and Uniref90+BFD90.

5.4 Discussion

Protein language models will enable advances in protein engineering and

design to solve critical problems for human health and the environment.

However, there are many open questions that remain as we begin to realize

these advances. In this work, we introduce the ProGen2 suite of models and

demonstrate the effectiveness of generative language models for a variety

of protein design tasks. Throughout the study, we investigate the impact

of increasing model scale for modeling protein sequence landscapes. As

model capacity increases, we continue to see improvements in capturing

the distribution of natural protein sequences (lower test perplexity). This
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Table 5.2: Zero-shot fitness prediction on narrow experimentally-measured fitness
landscapes

Model Average Spearman

RITA-XL 0.443
EVE 0.511
Tranception (no retrieval) 0.447
Tranception (retrieval) 0.503
MSA Transformer 0.476
ESM-1v (single) 0.475

ProGen2-small 0.456
ProGen2-base 0.505
ProGen2-large 0.485
ProGen2-xlarge 0.476
ProGen2-ensemble 0.518

ProGen2-small outperforms an order of magnitude larger RITA-XL and ProGen2-
base is the best performing ProGen2 size, indicating larger model capacity does not
always translate to improved predictive performance. ProGen2 models outperform or
match other baseline methods across a variety of modeling strategies, suggesting the
distribution of observed evolutionary sequences provided to the model, along with
its inherent biases, likely plays a significant role. The average spearman is reported
with data and baselines provided by Hesslow et al. [22].

suggests that current models still underfit the sequence datasets available,

and we should expect larger models to deliver further improvements along

this axis. Next, we demonstrate the utility of generative language models for

creating novel sequences. As shown in prior works [15], pretrained generative

models produce diverse sequences spanning the functional and structural

space of natural proteins. Sequences from ProGen2 typically adopt natural

folds (as predicted by AlphaFold2 [25]) while diverging in sequence space.

Further, we show that finetuning ProGen2 models enables a narrowing of

the sequence landscape for targeted generation of particular families. Similar

approaches have been used to create functional enzymes [16], and are a

promising approach for protein design. Finally, we show that the likelihoods
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Table 5.3: Zero-shot fitness prediction on wider experimental landscapes

dataset [metric] ProGen2-small ProGen2-base ProGen2-large ProGen2-xlarge

AAV [AUC] 0.59 0.62 0.65 0.68
GFP [AUC] 0.51 0.64 0.84 0.84
CM [AUC] 0.68 0.72 0.66 0.64
GB1 [top100avg] 0.01 0.01 0.24 0.85

Larger model capacity may translate to benefits for landscapes involving higher edit
distances or low-homology settings. Particularly for GB1 (a low-homology, epistatic
landscape), the largest model may demonstrate emergent behavior in finding top
ranked sequences.

learned by large language models like ProGen2 are a useful proxy for protein

fitness and are competitive with state-of-the-art methods across a variety of

sequence landscapes.

Scaling transformer language models has yielded impressive performance

and even emergent capabilities for natural language processing [3, 7]. Sev-

eral studies have investigated whether these scaling trends apply to protein

sequence modeling, and have typically concluded that larger models indeed

provide improvements across a variety of tasks [39, 22, 40]. The RITA study

found consistent improvements for protein fitness prediction with increas-

ing model capacity up to 1.2B parameters [22]. Similarly, the ESM-2 models

(trained for masked language modeling) were better able to predict protein

structure in both unsupervised and supervised settings as model sizes were

increased up to 15B parameters. In contrast to these results, we show that

scaling model capacity is not a panacea for all protein design tasks. While

larger ProGen2 models improved zero-shot fitness prediction on broader mu-

tational landscapes, for narrower landscapes composed primarly of amino

acid substitutions, we observed a degradation of performance for our largest
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Table 5.4: Zero-shot fitness prediction on antibody-specific landscapes

Average Spearman
Model Binding General

ProGen2-small 0.44 0.61
ProGen2-base 0.41 0.73
ProGen2-large 0.42 0.73
ProGen2-xlarge 0.40 0.74
ProGen2-OAS 0.37 0.66

Using redundancy-reduced proteins from immune repertoire sequencing studies,
OAS [38], does not lead to better fitness prediction for antibodies. In particular,
we examine antibody fitness predictive performance for binding KD values and
general protein properties including expression quality and TM melting temperatures.
The models trained on universal protein databases are better at predicting general
properties as compared to binding affinity. Surprisingly, the binding prediction
performance is considerably high considering the associated antigen is not provided
to the model.

models. The test-max50 and wide fitness landscape results suggest that scale

may particularly show advantages for out-of-distribution problems. This is

exemplified by the significant advances in zero-shot prediction at larger model

scales on the challenging GB1 landscape. Finally, it is worth consideration that

fitness as defined as an average spearman correlation coefficient across the

multiple experimental datasets in this and other studies comes with its own

set of biases and may not be the most reliable criteria for evaluation of models

for protein engineering. We refer the reader to prior work from Dallago et al.

[41] and Yang et al. [42] for further discussion.

Although pretraining on larger sets of sequences would seem to be an

intuitive means of creating broadly useful models, our results suggest that the

composition of the pretraining dataset is of critical importance. For zero-shot

predictions on narrow fitness landscapes, larger ProGen2 models perform
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relatively poorly despite capturing the pretraining sequence distribution bet-

ter. This indicates a divergence between the two, and could potentially be

remedied by identifying a more suitable pretraining corpus. Conversely, for

broader mutational landscapes, larger models that better capture the pretrain-

ing dataset typically improve zero-shot performance. For the GB1 landscape

in particular, pretraining on BFD90 rather than BFD30 yielded significant

improvements at the same model scale. Perhaps the most distinctive illustra-

tion of the importance of dataset-task alignment is the lackluster zero-shot

performance of models pretrained on immune repertoire sequences from the

OAS. For both binding and general properties of antibody sequences, ProGen2

models pretrained on universal sets of proteins sequences (rather than just

antibodies) significantly outperformed the model pretrained on antibodies

alone (even when having fewer parameters). In the case of antibodies, this

may be because the selective pressures on natural antibodies diverge from the

properties evaluated experimentally (such as thermal stability and binding

affinity). More broadly, these results suggest that to improve model perfor-

mance we must carefully consider the alignment of the pretraining dataset

and the downstream task.

5.5 Methods

5.5.1 Model

The family of ProGen2 models are autoregressive transformers with next-

token prediction language modeling as the learning objective trained in vari-

ous sizes with 151M, 764M, 2.7B, and 6.4B parameters. Table 5.5 summarizes
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the model specifications and choice of hyper-parameters for the optimization

such models.

5.5.2 Data

The standard ProGen2 models are pretrained on a mixture of Uniref90 [43]

and BFD30 [44] databases. Uniref90 are cluster representative sequences from

UniprotKB at 90% sequence identity. The BFD30 dataset is approximately

1/3 the size of Uniref90, majority from metagenomic sources, commonly not

full-length proteins, and clustered at 30% sequence identity. For the ProGen2-

BFD90 model, Uniref90 is mixed with representative sequences with at least 3

cluster members after clustering UniprotKB, Metaclust, SRC, and MERC at

90% sequence identity. This BFD90 dataset is approximately twice the size as

Uniref90. To train the antibody-specific ProGen2-OAS, we collected unpaired

antibody sequences from the Observed Antibody Space (OAS) database [38].

We refer to the supplement for details.

5.5.3 Evaluation

Two test sets at differing levels of difficulty were constructed to examine

language modeling performance. Test-max90 and Test-max50 correspond to

representative sequences from held-out clusters from the Uniref90+BFD30 set

of sequences at 90% and 50% sequence identity respectively.

To investigate the properties of sequences generated by the ProGen2 family

of models, we sampled complete protein sequences in three settings: universal
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generation after pretraining, fold-specific generation after finetuning, and an-

tibody generation after pretraining on only antibody sequences. For universal

protein generation, we sampled 5K sequences from the ProGen2-xlarge model.

To understand the effects of architecture-specific finetuning on sequence gen-

eration, we compared 10K sequences produced by the ProGen2-large model

after one and two epochs of finetuning. Antibody sequences were generated

using the ProGen2-OAS model after pretraining on a set of variable-fragment

sequences from the OAS [38]. Sequences were generated using two prompting

strategies: unprompted (52K sequences) and initial-residue prompted (470K

sequences).

To assess zero-shot fitness prediction ability, we evaluate on three sets of

experimentally-measured protein landscapes: narrow, wide, and antibody-

specific. The narrow landscape set is comprised of the Riesselman, Ingraham,

and Marks [19] datasets as provided by the authors of Hesslow et al. [22]

and generally includes variants that are one or two substitutions away from

a given wild-type/natural sequence. The wide landscape set involves larger

edit distances and are comprised of the Dallago et al. [41] proteins, chorismate

mutase proteins from Russ et al. [11], and the GFP test set proteins from Rao

et al. [45]. Lastly, for the antibody-specific landscape, we compiled a dataset

consisting of binding, expression, and thermal stability measurements for

variants derived from eight distinct antibodies. We refer to the supplement

for details.
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5.6 Appendix

5.6.1 Model Parameters

Our models are autoregressive transformers with next-token prediction lan-

guage modeling as the learning objective. The family of ProGen2 models is

trained in various sizes with 151M, 764M, 2.7B, and 6.4B parameters.

The architecture follows a standard transformer decoder with left-to-right

causal masking. For the positional encoding, we adopt rotary positional

encodings [46]. For the forward pass, we execute the self-attention and feed-

forward circuits in parallel for improved communication overhead following

[47], that is, xt+1 = xt + mlp(ln(xt + attn(ln(xt)))) is altered to xt+1 = xt +

attn(ln(xt)) + mlp(ln(xt)) for which the computation of self-attention, attn(),

and feed-forward, mlp(), with layer-norm, ln(), is simultaneous.

Table 5.5 summarizes the model specifications and choice of hyper-parameters

for the optimization such models. The choice of the hyper-parameters was in-

formed by [3], however, the number of layers is reduced with a small number

of self-attention heads of relatively high dimensionality to improve overall

utilization of the TPU-v3 compute. As explored in [3, 47, 48], these variations

introduce insignificant degradation of perplexity for sufficiently large models,

while significantly improving computational efficiency.

For the pretraining of the ProGen2 models, Table 5.5 summarizes the

hyper-parameters. We adopt the Adam [49] optimizer with (β1, β2, ϵ) =

(0.9, 0.999, 1e−08) and global gradient norm clipping [50] of 0.8 and 1.0. The

learning rate function over time follows GPT-3 [3] with warm-up steps and
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Table 5.5: Model specifications and hyper-parameters

Model

Hyper-parameter ProGen2-small ProGen2-medium ProGen2-base ProGen2-large ProGen2-xlarge

Number of params 151M 764M 764M 2.7B 6.4B
Number of layers 12 27 27 32 32
Number of heads 16 16 16 32 16
Head dimensions 64 96 96 80 256
Context length 1,024 1,024 2,048 1,024 1,024

Batch size 500k 500k 500k 500k 1M
Learning rate 6.0e-4 2.5e-4 2.0e-4 0.8e-4 0.1e-4
Weight decay 0.1 0.1 0.1 0.1 0.1
Grad norm clip 1.0 1.0 0.8 0.8 0.8
Warm-up steps 3,000 3,000 10,000 10,000 10,000
Total steps 350,000 350,000 400,000 400,000 350,000

Choice of hyper-parameters for model specification and optimization for the family
of ProGen2 causal language models for protein engineering.

cosine annealing.

Notably, the cross-entropy appeared to diverge from the projected power-

law relation over time when following standard configurations detailed in [3].

In particular, an increasing the global norm of the gradient as an indicator for

a divergence from the expected log-log linear behavior of cross-entropy over

time was observed. Decreasing the learning rate, increasing weight-decay (or

equivalently ℓ2-regularization under re-parameteriztation) and decreasing the

gradient norm clipping factor resulted in a near-constant global norm of the

gradient which stabilized training.

For the finetuning of the ProGen2 models, the training is continued from

a converged model. The state of the optimizer is re-initialized such Adam’s

moving averages for the first and second moment estimators are set to zero.

The learning rate decay function is adjusted such that initial learning-rate is

decreased by a factor of 5. The finetuning covers at most two epochs over the

finetuning dataset to avoid over-fitting.

197



5.6.2 Training Data

The standard ProGen2 models are pretrained on a mixture of Uniref90 [43]

and BFD30 [44] databases. Uniref90 are cluster representative sequences from

UniprotKB at 90% sequence identity. The BFD30 dataset is approximately

1/3 the size of Uniref90, majority from metagenomic sources, commonly not

full-length proteins, and clustered at 30% sequence identity. For the ProGen2-

BFD90 model, Uniref90 is mixed with representative sequences with at least 3

cluster members after clustering UniprotKB, Metaclust, SRC, and MERC at

90% sequence identity. This BFD90 dataset is approximately twice the size as

Uniref90.

To train the antibody-specific ProGen2-OAS, we collected unpaired an-

tibody sequences from the Observed Antibody Space (OAS) database [38].

OAS is a curated collection of 1.5B antibody sequences from eighty immune

repertoire sequencing studies, which contains heavy and light chain sequences

from six species (humans, mice, rats, camel, rabbit, and rhesus). The sequences

in OAS possess a significant degree of redundancy, due both to discrepancies

in the sizes of its constituent studies, as well as the innate biological redun-

dancy of antibody sequences within organisms. To reduce this redundancy,

we clustered the OAS sequences at 85% sequence identity using Linclust [44],

yielding a set of 554M sequences for model training. Alignment coverage in

Linclust was calculated with respect to the target sequence ("cov-mode 1"),

with all other parameters set to their default values.

All samples are provided to the model with a 1 or 2 character token concate-

nated at the N-terminal and C-terminal side of the sequence. Each sequence is
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then provided as-is and flipped. For a given batch, proteins are concatenated

with others to fill the maximum token length during training.

5.6.3 Evaluation Methods

Two test sets at differing levels of difficulty were constructed to examine

language modeling performance. Test-max90 and Test-max50 correspond to

representative sequences from held-out clusters from the Uniref90+BFD30 set

of sequences at 90% and 50% sequence identity respectively.

To investigate the properties of sequences generated by the ProGen2 family

of models, we sampled complete protein sequences in three settings: uni-

versal generation after pretraining, fold-specific generation after finetuning,

and antibody generation after pretraining on only antibody sequences. For

universal protein generation, we sampled 5,000 sequences from the ProGen2-

xlarge model. To understand the effects of architecture-specific finetuning

on sequence generation, we compared 10,000 sequences produced by the

ProGen2-large model after one and two epochs of finetuning. In both gen-

eration settings, we varied the sampling temperature and nucleus sampling

probability to produce a diverse set of sequences. Structures were predicted

for a subset of generated sequences using AlphaFold2 [25], and the similarity

to known structures in the PDB was measured with Foldseek [27].

Antibody sequences were generated using the ProGen2-OAS model after

pretraining on a set of variable-fragment sequences from the OAS [38]. Se-

quences were generated using two prompting strategies: unprompted (52K

sequences) and initial-residue prompted (470K sequences). For initial-residue
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prompting, we began generation with a three-residue sequence motif com-

monly observed in human heavy chain sequences (EVQ). For both prompting

strategies, we generate a diverse set of sequences by varying the sampling

temperature and nucleus sampling probability. Structures for all generated

antibody sequences were predicted using IgFold [51]. To investigate the

therapeutic developability of generated antibody sequences, aggregagation

propensity [33] and solubility [34] were calculated for all sequences.

To assess zero-shot fitness prediction ability, we evaluate on three sets of

experimentally-measured protein landscapes: narrow, wide, and antibody-

specific. The narrow landscape set is comprised of the Riesselman, Ingraham,

and Marks [19] datasets as provided by the authors of Hesslow et al. [22]

and generally includes variants that are one or two substitutions away from

a given wild-type/natural sequence. The wide landscape set involves larger

edit distances and are comprised of the Dallago et al. [41] proteins, chorismate

mutase proteins from Russ et al. [11], and the GFP test set proteins from Rao

et al. [45].

Lastly, for the antibody-specific landscape, we compiled a dataset consist-

ing of binding, expression, and thermal stability measurements for variants

derived from eight distinct antibodies. We collected expression and antigen-

binding enrichment measurements for variants of the anti-VEGF g6 antibody

from a DMS study [52]. From a second DMS study, we collected binding

enrichment measurements for variants of the d44 anti-lysozyme antibody [53].

Binding affinity (KD) and thermal stability measurements (TM) for the remain-

ing six antibodies (C143, MEDI8852UCA, MEDI8852, REGN10987, S309, and

200



mAb114) were drawn from a recent study on antibody affinity maturation

using pretrained language models [54]. We combined measurements for the

mAb114 and mAb114UCA antibodies from the original study into a single

fitness dataset because the parent sequences shared significant overlap.

5.6.4 Sequence Generation

To investigate the properties of sequences generated by the ProGen2 fam-

ily of models, we sampled complete protein sequences in three settings:

universal generation after pretraining, fold-specific generation after finetun-

ing, and antibody generation after pretraining on only antibody sequences.

For universal protein generation, we sampled 5,000 sequences from the

ProGen2-xlarge model. A diverse set of sequences was sampled using a

Cartesian product of temperature (T ∈ {0.2, 0.4, 0.6, 0.8, 1.0}) and nucleus

sampling (P ∈ {0.5, 0.7, 0.9, 1.0}) parameters. To understand the effects of

architecture-specific finetuning on sequence generation, we compared the

sequences produced by the ProGen2-large model after one and two epochs

of finetuning. Using a similar strategy as for universal protein generation,

10,000 sequences were generated using a Cartesian product of temperature

(T ∈ {0.2, 0.4, 0.6, 0.8, 1.0}) and nucleus sampling (P ∈ {0.7, 0.9, 1.0}) param-

eters for both model checkpoints. The structures of all generated sequences

were predicted with AlphaFold2 [25]. For universal generations from the

pretrained model, structures were predicted using ColabFold [55] with twelve

recycles (other parameters set to their default values). For generations after

finetuning, structures were predicted using DeepMind’s implementation of
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AlphaFold2 with single-sequence inputs (no MSAs), structural templates from

the PDB [26], and only one recycle. All structures were predicted with the

full five-model ensemble (using the pTM models) and the top-ranked struc-

tures for each sequence were considered for structural analysis. Similarity

of predicted structures to observed proteins in the PDB was measured by

calculating the TMscore [56] using Foldseek [27]. For universal generations,

we report the sequence identity against the most structurally similar protein

reported by Foldseek. For finetuned generations, we calculated the sequence

identity against the finetuning dataset using MMseqs2 [30].

Antibody sequences were generated using the ProGen2-OAS model af-

ter pretraining on a set of variable-fragment sequences from the OAS. We

evalauted sequences generated by the model with and without initial-residue

prompting. A set of 52K unprompted sequences was generated using sam-

pling parameters from a Cartesian product of temperature (T ∈ {0.2, 0.4, 0.6})

and nucleus sampling probability (P ∈ {0.5, 0.7, 0.9, 1.0}). An additional

470K full-length sequences were generated by initializing the sequence with

a three-residue motif commonly observed in human heavy chain antibody

sequences (EVQ). Prompted sequences were similarly generated using a Carte-

sian product of temperature (T ∈ {0.2, 0.4, 0.6, 0.8, 1.0}) and nucleus sampling

(P ∈ {0.5, 0.7, 0.9, 1.0}) parameters. The sequence identity of generated se-

quences against the training dataset was calculated with MMseqs2 [30]. IgFold

[51] was used to predict structures for all generated antibody sequences. The

full four-model ensemble of IgFold models was used for predictions, with

PyRosetta [57] refinement applied to model outputs. Aggregation propensities
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of generated sequences were measured by calculating the SAP score [33] of

the predicted structures. Solubility profiles were calculated based on sequence

using the public CamSol-intrinsic [34] web server.
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Chapter 6

Generative language modeling for
antibody design

Adapted from Richard W Shuai*, Jeffrey A Ruffolo*, and Jeffrey

J Gray. “Generative Language Modeling for Antibody Design”.

bioRxiv (2021). Reproduced with permission. *Joint first authors.

6.1 Abstract

Discovery and optimization of monoclonal antibodies for therapeutic appli-

cations relies on large sequence libraries, but is hindered by developability

issues such as low solubility, low thermal stability, high aggregation, and high

immunogenicity. Generative language models, trained on millions of protein

sequences, are a powerful tool for on-demand generation of realistic, diverse

sequences. We present Immunoglobulin Language Model (IgLM), a deep

generative language model for creating synthetic libraries by re-designing

variable-length spans of antibody sequences. IgLM formulates antibody de-

sign as an autoregressive sequence generation task based on text-infilling in
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natural language. We trained IgLM on 558M antibody heavy- and light-chain

variable sequences, conditioning on each sequence’s chain type and species-

of-origin. We demonstrate that IgLM can generate full-length heavy and light

chain sequences from a variety of species, as well as infilled CDR loop libraries

with improved developability profiles. IgLM is a powerful tool for antibody

design and should be useful in a variety of applications.

6.2 Introduction

Antibodies have become popular for therapeutics because of their diversity

and ability to bind antigens with high specificity [1]. Traditionally, mono-

clonal antibodies (mAbs) have been obtained using hybridoma technology,

which requires the immunization of animals [2]. In 1985, the development

of phage display technology allowed for in vitro selection of specific, high-

affinity mAbs from large antibody libraries [3, 4, 5]. Despite such advances,

therapeutic mAbs derived from display technologies face issues with devel-

opability, such as poor expression, low solubility, low thermal stability, and

high aggregation [6, 7]. Display technologies rely on a high-quality and di-

verse antibody library as a starting point to isolate high-affinity antibodies

that are more developable [8]. Synthetic antibody libraries are prepared by

introducing synthetic DNA into regions of the antibody sequences that define

the complementarity-determining regions (CDRs), allowing for human-made

antigen-binding sites. However, the space of possible synthetic antibody se-

quences is very large (diversifying 10 positions of a CDR yields 2010 ≈ 1013
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possible variants). To discover antibodies with high affinity, massive syn-

thetic libraries on the order of 1010–1011 variants must be constructed, often

containing substantial fractions of non-functional antibodies [8, 2].

Recent work has leveraged natural language processing methods for unsu-

pervised pretraining on massive databases of raw protein sequences for which

structural data are unavailable [9, 10, 11]. These works have explored a variety

of pretraining tasks and downstream model applications. For example, the

ESM family of models (trained for masked language modeling) have been ap-

plied to representation learning [9], variant effect prediction [12], and protein

structure prediction [13]. Autoregressive language modeling, an alternative

paradigm for pretraining, has also been applied to protein sequence modeling.

Such models have been shown to generate diverse protein sequences, which

often adopt natural folds despite diverging significantly in residue makeup

[14, 15]. In some cases, these generated sequences even retain enzymatic

activity comparable to natural proteins [16]. Autoregressive language models

have also been shown to be powerful zero-shot predictors of protein fitness,

with performance in some cases continuing to improve with model scale [17,

15].

Another set of language models have been developed specifically for

antibody-related tasks. The majority of prior work in this area has focused

on masked language modeling of sequences in the Observed Antibody Space

(OAS) database [18]. Prihoda et al. developed Sapiens, a pair of distinct mod-

els (each with 569K parameters) for heavy and light chain masked language

modeling [19]. The Sapiens models were trained on 20M and 19M heavy
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and light chains respectively, and shown to be effective tools for antibody

humanization. Ruffolo et al. developed AntiBERTy, a single masked language

model (26M parameters) trained on a corpus of 558M sequences, including

both heavy and light chains [20]. AntiBERTy has been applied to represen-

tation learning for protein structure prediction [21]. Leem et al. developed

AntiBERTa, a single masked language model (86M parameters) trained on a

corpus of 67M antibody sequences (both heavy and light). Representations for

AntiBERTa were used for paratope prediction. Olsen et al. developed AbLang,

a pair of masked language models trained on 14M heavy chains and 187K light

chains, for sequence restoration [22]. For sequence generation, autoregressive

generative models have been trained on antibody sequences and used for

library design [23, 24]. Akbar et al. [23] trained an LSTM for autoregressive

generation of CDR H3 loops and conducted an in silico investigation of their

potential for binding antigens. Shin et al. [24] experimentally validated a set

of nanobody sequences with generated CDR3 loops and showed promising

improvements to viability and binding discovery when compared to tradi-

tional approaches, despite the library being over 1000-fold smaller. However,

because this generative model was unidirectional, it could not be used to

directly re-design the CDR3 loop within the sequence, and instead had to be

oversampled to produce sequences matching the residues following the loop.

Here, we present Immunoglobulin Language Model (IgLM), a generative

language model that leverages bidirectional context for designing antibody

sequence spans of varying lengths while training on a large-scale natural

antibody dataset. We show that IgLM can generate full-length antibody

214



[HEAVY] [HUMAN] E V Q [MASK] I Q P [SEP] L V E S [ANS]

E V Q L V E S I Q POriginal:

Model input:

IgLM

E
A C D E F G H I K L M N P Q R S T V W Y

Figure 6.1: Overview of IgLM model for antibody sequence generation

sequences conditioned on chain type and species-of-origin. Furthermore,

IgLM can diversify loops on an antibody to generate high-quality libraries that

display favorable biophysical properties while resembling human antibodies.

IgLM should be a powerful tool for antibody discovery and optimization.

6.3 Results

6.3.1 Immunoglobulin language model

Our method for antibody sequence generation, IgLM, is trained on 558 million

natural antibody sequences for both targeted infilling of residue spans, as well

as full-length sequence generation. IgLM generates sequences conditioned on

the species-of-interest and chain type (heavy or light), enabling controllable

generation of antibody sequences.
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Figure 6.2: Distribution of sequences in clustered OAS dataset for various species
and chain types

Infilling language model

Design of antibody libraries typically focuses on diversification of the CDR

loop sequences in order to facilitate binding to a diverse set of antigens.

Existing approaches to protein sequence generation (including antibodies)

typically adopt left-to-right decoding strategies. While these models have

proven effective for generation of diverse and functional sequences, they are

ill-equipped to re-design specific segments of interest within proteins. To

address this limitation, we developed IgLM, an infilling language model for

immunoglobulin sequences. IgLM utilizes a standard left-to-right decoder-

only transformer architecture (GPT-2), but it is trained for infilling through

rearrangement of sequences. Specifically, we adopt the infilling language

model formulation from natural language processing [25], wherein arbitrary-

length sequence segments (spans) are masked during training and appended

to the end of the sequence. By training on these rearranged sequences, models
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Figure 6.3: Effect of increased sampling temperature for full-length generation

Structures at each temperature are predicted by AlphaFold-Multimer and colored by
prediction confidence (pLDDT), with blue being the most confident and red being the
least.

learn to predict the masked spans conditioned on the surrounding sequence

context.

To train IgLM, we collected antibody sequences from the Observed An-

tibody Space (OAS) [18]. The OAS database contains natural antibody se-

quences from six species: human, mouse, rat, rabbit, rhesus, and camel. To

investigate the impacts of model capacity, we trained two versions of the

model: IgLM and IgLM-S, with 13M and 1.4M trainable parameters, respec-

tively. Both IgLM models were trained on a set of 558M non-redundant

sequences, clustered at 95% sequence identity. During training, we randomly

masked spans of ten to twenty residues within the antibody sequence to

enable diversification of arbitrary spans during inference. Additionally, we

conditioned sequences on the chain type (heavy or light) and species-of-origin.
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Figure 6.4: Infilling perplexity for IgLM heldout test dataset

Infilling capabilities of IgLM and IgLM-S are evaluated on a heldout test dataset.
Infilling perplexity is measured for for CDR loops and random spans of 10-20 residues
within sequences.

Providing this context enables controllable generation of species-specific an-

tibody sequences. An example of training data construction is illustrated in

Figure 6.1. Unless otherwise specified, we use the larger IgLM model for all

experiments.

IgLM generates foldable antibody sequences

As an initial validation of the antibody sequence generation capabilities of

IgLM, we conducted a small scale investigation of full-length generation.

Specifically, we investigated the impacts of sampling temperature for tuning

the diversity of generated sequences. Sampling temperature values above

one effectively flatten the amino acid distribution at each step of generation,

resulting in more diverse sequences, while temperature below one sharpens
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the distribution at each position, resembling a greedy decoding strategy. We

generated a set of full-length sequences at temperatures ranging from 0.7 to 1.7,

providing the model with human heavy and human light conditioning tags.

Because IgLM was trained for sequence infilling, generated sequences contain

discontinuous segments of sequence segments, which we simply reordered to

produce full-length antibodies. Generated heavy and light chain sequences

were paired according to sampling temperature and their structures were pre-

dicted using AlphaFold-Multimer [26]. In general, IgLM generates sequences

with correspondingly confident predicted structures at lower temperatures

(up to 1.3), before beginning to degrade in quality at higher temperatures

(Figure 6.3).

Language modeling evaluation

We evaluated IgLM as a language model by computing the per-token perplex-

ity for infilled spans within an antibody, which we term the infilling perplexity.

Because the infilled segment is located at the end of the sequences, computing

the infilling perplexity is equivalent to taking the per-token perplexity after

the [SEP] token. We compared the infilling perplexity of IgLM and IgLM-S

on a heldout test dataset of 30M sequences (Figure 6.4). Results are tabulated

by CDR loop, as well as for spans selected randomly within the antibody

sequence. As expected, we observe greater perplexity for the CDR loops than

the randomly chosen spans, which include the highly conserved framework

regions. The CDR3 loop, which is the longest and most diverse, has the high-

est infilling perplexity. When we compare IgLM and IgLM-S, we observe that

IgLM has a lower infilling perplexity for all CDR loops, indicating that the
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larger IgLM model (with ten times more parameters) is better at modeling the

diversity of antibody sequences.

The diversity of antibody sequences varies by species and chain type. For

example, heavy chains introduce additional diversity into their CDR3 loops

via D-genes, while some species (e.g., camels) tend to have longer loops. To

investigate how these differences impact the performance of IgLM in different

settings, we also tabulated the heldout set infilling perplexity by species and

chain type. In general, both IgLM models achieve low infilling perplexity for

random spans across all species (Figure 6.21). For CDR1 and CDR2 loop infill-

ing, perplexity values are typically lower for human and mouse antibodies,

which are disproportionately represented in the OAS database. In general,

both models still perform better on these loops than the more challenging

CDR3 loops, regardless of species. One exception is for rhesus CDR2 loops,

on which IgLM-S performs considerably worse than the larger IgLM model.

This appears to be due to poor fitting of rhesus CDR L2 loops, as reflected in

the similarity high infilling average perplexity observed when tabulated by

chain type (Figure 6.22). The highest infilling perplexity is observed for camel

CDR3 loops, which tend to be longer than other species. Across all species

and chain types, the larger IgLM model achieves lower infilling perplexity

than IgLM-S, suggesting that further increasing model capacity would yield

additional improvements.
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Figure 6.5: Diagram of procedure for generating full-length antibody sequences given
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Figure 6.6: Effect of residue prompting on full-length sequence generation

ength of generated heeavy and light with and without initial three residues provided
(prompting).

6.3.2 Controllable generation of antibody sequences

Having demonstrated that IgLM can generate well-formed full-length se-

quences, we next considered the controllability of IgLM for generating anti-

body sequences with specific traits. Controllable generation utilizes condi-

tioning tags to provide the model with additional context about the expected

sequence.
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Figure 6.7: Adherence of generated sequences to species conditioning tags

Each plot shows the species classifications of antibody sequences generated with
a particular species conditioning tag (indicated above plots). Solid and dashed
lines correspond to sequences generated with heavy- and light-chain conditioning,
respectively.

Generating species- and chain-controlled sequences

To evaluate the controllability of IgLM, we generated a set of 220K full-length

sequences utilizing all viable combinations of conditioning tags, as well as

a range of sampling temperatures (Figure 6.5). For every species (except

camel), we sampled with both heavy and light conditioning tags. For camel

sequence generation, we only sampled heavy chains, as they do not produce

light chains. To produce a diverse set of sequences for analysis, we sampled

using a range of temperatures (T ∈ {0.6, 0.8, 1.0, 1.2}). Sampling under these

conditions resulted in a diverse set of antibody sequences. However, we

observed that the sequences frequently featured N-terminal truncations, a

common occurrence in the OAS database used for training [22]. For heavy

chains, these N-terminal deletions appeared as a left-shoulder in the sequence
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Figure 6.8: Adherence of generated sequences to chain conditioning tags

Top plot shows the percentage of heavy-chain-conditioned sequences classified as
heavy chains, for each species conditioning tag. Lower plots show the percentage of
light-chain-conditioned sequences, further divided by whether initial residues were
characteristic of lambda or kappa chains, classified as lambda or kappa chains.

length distribution (Figure 6.6, left) with lengths ranging from 100 to 110

residues. For light chains, we observed a population of truncated chains

with lengths between 98 and 102 residues (Figure 6.6, right). To address

truncation in generated sequences, we utilized a prompting strategy, wherein

we initialize each sequence with a three-residue motif corresponding to the

species and chain type tags. Specific intialization sequences are documented

in Table 6.3. For both heavy and light chains, prompting with initial residues

significantly reduced the population of truncated sequences (Figure 6.6). For

the following analysis, we consider only sequences generated with prompting.

Adherence to conditioning tags

To evaluate the effectiveness of contrallable generation, we considered the

agreement between the provided conditioning tags and the sequences pro-

duced by IgLM. For each generated sequence, we classified the species (ac-

cording to V-gene identity) and chain type using ANARCI [27]. We note

that the species classes provided by ANARCI diverge in some cases from
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Figure 6.9: Sampling temperature controls mutational load on generated sequences

Effect of sampling temperature on germline identity for generated heavy and light
chain sequences. As sampling temperature increases, generated sequences diverge
from the closest germline V- and J-gene sequences.

those provided by the OAS database, but there was a suitable corresponding

class for each conditioning token (e.g., alpaca for [CAMEL]). In Figure 6.7, we

show the makeup of sequences for each species conditioning tag, according to

sampling temperature. In each plot, the percentage of heavy and light chain

sequences classified as each species are indicated by solid and dashed lines,

respectively. For most species (human, mouse, camel, rabbit, rhesus), IgLM is

able to successfully generate heavy chain sequences at every temperature. The

exception to this trend is rat sequences, for which we were unable to produce

any sequences that ANARCI classified as belonging to the intended species.

The ability to generate sequences is not directly explained by prevalence

in the training dataset, as the model is trained on an order of magnitude

more rat heavy chain sequences than rhesus (Table 6.2). IgLM is generally
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less effective at generating light chain sequences for most species. With

the exception of human light chains, all species have a large proportion of

sequences classified as belonging to an unintended species (typically human).

For mouse and rhesus light chains, IgLM generates the correct species in

34.89% and 88.14% of cases, respectively (Table 6.4). For rabbit and rat light

chains, IgLM was not exposed to any examples during training. Interestingly,

despite having seen no such sequences during training, IgLM is capable of

generating sequences classified by ANARCI as rabbit light chains for 6.89% of

samples (1,120 sequences). The majority of these sequences are cases where

the model has instead generated a rabbit heavy chain. However, for 35 of

these 1,120 cases, IgLM has produced rabbit light chain sequences. We further

investigated the plausibility of these sequences by aligning to the nearest

germline sequences assigned by ANARCI with Clustal-Omega [28]. The

sequences appear to align well to rabbit germlines, though with conderable

mutations to the framework regions (Figure 6.23). To investigate the structural

viability of the generated rabbit light chain sequences, we predicted structures

with IgFold [21]. All structures were predicted confidently in the framework

residues, with the CDR loops being the most uncertain (Figure 6.24). Although

rare (35 sequences out of 20,000 attempts), these results suggest that IgLM

is capable of generating rabbit light chain sequences despite having never

observed such sequences during training. This may be achieved by producing

a consensus light chain, with some rabbit-likeness conferred from the heavy

chain examples.

We next evaluated the adherence of IgLM-generated sequences to chain
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type conditioning tags. In Figure 6.8, we show the percentage of sequences

classifed by ANARCI as heavy or light for each conditioning tag. Light

chains are further divided into lambda and kappa classes. When conditioned

towards heavy chain generation, IgLM effectively produces heavy chains for

all species. For light chains, we observe a similar trend, with IgLM producing

predominantly light chain sequences for all species. Only for rabbit sequences

do we observe a population of heavy chains when conditioning for light

chains. As noted above, these are cases where IgLM has instead produced a

rabbit heavy chain. When generating light chain sequences, we provide initial

residues characteristic of both lambda and kappa chains in equal proportion

(Figure 6.3). For most species (except rabbit), the generated sequences are

aligned with light chain type indicated by the initial residues. However, as

noted above, many of the light sequences for poorly represented species are

human-like, rather than resembling the desired species. Interestingly, these

results suggest that the chain type conditioning tag is a more effective prior

for IgLM than species.

Sampling temperature controls mutational load

Increasing sampling temperature has the effect of flattening the probability

distribution at each position during sampling, resulting in a greater diversity

of sequences. We evaluated the effect of sampling temperature on the diversity

of generated sequences by measuring the fractional identity to the closest

germline sequences using ANARCI [27]. In Figure 6.9, we show the germline

identity for V- and J-genes for each species and chain type. At the lowest

sampling temperature (T = 0.6), IgLM frequently recapitulates germline
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sequences in their entirety for some species (human, mouse, rhesus). As

temperature increases, sequences for every species begin to diverge from

germline, effectively acquiring mutations. Interestingly, J-gene sequences

typically acquire fewer mutations than V-genes for both heavy and light

chains. This is likely a reflection of the concentration of CDR loops within the

V-gene (CDR1 and CDR2). Only a portion of the CDR3 loop is contributed by

the J-gene, with the remaining sequence being conserved framework residues.

6.3.3 Therapeutic antibody diversification

Diversification of antibody CDR loops is a common strategy for antibody

discovery or optimization campaigns. Through infilling, IgLM is capable of

replacing spans of amino acids within antibody sequences, conditioned on

the surrounding context. To demonstrate this functionality, we generated

infilled libraries for a set of therapeutic antibodies and evaluated several

therapeutically relevant properties.

Infilled libraries for therapeutic antibodies

To evaluate the utility of infilling with IgLM for diversifying antibody se-

quences, we created infilled libraries for 49 therapeutic antibodies from Thera-

SAbDab [29]. For each antibody, we removed the CDR H3 loop (according to

Chothia definitions [30]) and generated a library of infilled sequences using

IgLM (Figure 6.10). To produce diverse sequences, we used a combination of

sampling temperatures (T ∈ {0.8, 1.0, 1.2}) and nucleus sampling probabilities
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IgLM

...

Trastuzumab

Cetuximab

Adalimumab

Pembrolizumab

...

Therapeutic Abs (without H3)

Infilled sequences

Figure 6.10: Procedure for generating therapeutic antibody libraries by infilling CDR
H3 loops

(P ∈ {0.5, 0.75, 1.0}). Nucleus sampling effectively clips the probability dis-

tribution at each position during sampling, such that only the most probable

amino acids (summing to P) are considered. For each of the 49 therapeutic

antibodies, we generated one thousand infilled sequences for each combi-

nation of T and P, totaling nine thousand variants per parent antibody. In

Figure 6.13, we show predicted structures (using IgFold [21]) for a subset of

ten infilled loops derived from the trastuzumab antibody. The infilled loops

vary in length and adopt distinct structural conformations. Across the infilled

libraries, we see a variety of infilled CDR H3 loop lengths, dependent on the

parent antibody’s surrounding sequence context (Figure 6.11). The median

length of infilled loops across antibodies ranges from 11 to 16 residues. Inter-

estingly, we observe little impact on the length of infilled loops when varying

the sampling temperature and nucleus probabilities (Figure 6.12).
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Figure 6.11: Distribution of infilled CDR H3 loop lengths for 49 therapeutic antibodies

The distributions of infilled loop lengths vary considerably over the 49 ther-

apeutic antibodies. Because IgLM is trained on natural antibody sequences, we

hypothesized that the model may be performing a sort of germline matching,

wherein sequences with similar V- and J-genes lead to similar distributions

of loop lengths. To test this, we identified the closest germline genes for each

antibody with ANARCI [27]. We then group parent antibodies according to

common V- and J-gene groups and compared the distributions of infilled loop

lengths for each group (Figure 6.14). While there may be some tendency for

similar V- and J-genes to lead to similar distributions of infilled loop lengths,

we observe considerable variation. This suggests that IgLM is not purely

performing germline matching, but rather is considering other properties of

the parent antibody.
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Figure 6.12: Effect of sampling parameters on generated CDR H3 loop lengths

Relationship between sampling temperature (T) and nucleus probability (P) and
length of infilled CDR H3 loops.

Infilling generates diverse loop sequences

Diverse loop libraries are essential for discovering or optimizing sequences

against an antigen target. To evaluate the diversity of infilled loops produced

by IgLM, we measured the pairwise edit distance between each loop sequence

and its closest neighbor amongst the sequences generated with the same

sampling parameters. We then compared the diversity of sequences according

to loop length and choice of sampling parameters (Figure 6.15). Generally, we

observe that generated loops are more diverse at longer lengths, as expected

given the increased combinatorial complexity available as more residues are
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Infilled H3sParent H3

Figure 6.13: Structural diversity of infilled CDR H3 loops for trastuzumab

Infilled CDR H3 loops for trastuzumab therapeutic antibody adopt diverse lengths
and conformations. Structures for infilled variants are predicted with IgFold.

added. Increasing both sampling temperature and nucleus probability results

in a greater diversity of sequences. However, these parameters affect the

relationship between length and diversity in distinct ways. For a given loop

length, increasing temperature produces more variance in the pairwise edit

distance, while increases to nucleus probability provides a more consistent

increase in diversity across loop lengths. Indeed, the marginal distribution of

pairwise edit distance as nucleus probability is increased produces a much

larger shift (Figure 6.15B, marginal) than that of temperature (Figure 6.15A,

marginal). In practice, a combination of sampling parameters may be suitable

for producing a balance of high-likelihood (low temperature and low nucleus

probability) and diverse sequences sequences.
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Figure 6.14: Germline composition partially determines infilled loop length

Distribution of infilled CDR H3 loop lengths for therapeutic antibodies grouped by
nearest germline gene groups.

Infilled loops display improved developability

Developability encompasses a set physiochemical properties – including ag-

gregation propensity and solubility – that are critical for the success of a

therapeutic antibody. Libraries for antibody discovery or optimization that

are enriched for sequences with improved developability can allieviate the

need for time-consuming post-hoc engineering. To evaluate the developability

of sequences produced by IgLM, we used high-throughput computational

tools to calculate the aggregation propensity (SAP score [31]) and solubility

(CamSol Intrinsic [32]) of the infilled therapeutic libraries. As a precursor to
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Figure 6.15: Effect of sampling parameters on infilled CDR H3 loop lengths

(A-B) Effect of sampling temperature (T) and nucleus probability (P) on diversity of
infilled CDR H3 loops for lengths between 10 and 18 residues. Pairwise edit distance
measures the minimum edits between each infilled loop to another in the same set
of generated sequences (i.e., within the set of sequences produced with the same T
and P parameters). For both parameters, less restrictive sampling produces greater
infilled loop diversity.

calculation of aggregation propensity, we used IgFold [21] to predict the struc-

tures of the infilled antibodies (including the unchanged light chains). We then

compared the aggregation propensities and solubility values of the infilled

sequences to those of the parent antibodies. For aggregation propensity, we
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Figure 6.16: Change in predicted aggregation propensity of infilled sequences relative
to their parent antibodies

Infilled sequences display reduced aggregation propensity (negative is improved),
particularly for shorter loops. Asterisks indicate statistical significance (p < 0.001)
from a one-sample t-test.

observed a significant improvement (negative is better) by infilled sequences

over the parent antibodies (Figure 6.16). Similarly for solubility, infilled se-

quences tend to be more soluble than their parent antibodies (Figure 6.17).

In both cases, the largest improvements tend to correspond to the shorter

loops. Further, we observe a positive correlation between improvements to

aggregation propensity and solubility (Figure 6.18). These results suggest

that infilling can be used to generate libraries enriched for sequences with

improved developability.

We next investigated whether choice of sampling parameters affects the
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Figure 6.17: Change in predicted solubility of infilled sequences relative to their
parent antibodies

Infilled sequences display increased solubility (positive is improved). Asterisks
indicate statistical significance (p < 0.001) from a one-sample t-test.

developability of infilled sequences. When we compared the aggregation

propensity and solubility of infilled sequences according to the sampling

temperature and nucleus sampling probability, we found marginal practical

differences (Figure 6.25). This is likely explained by the relative consistency of

infilled loop lengths across sampling parameters (Figure 6.12). These results

suggest that developability should not be a concern when tuning the diversity

of a generated library.
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Figure 6.18: Relationship between predicted changes in aggregation propensity and
solubility for infilled sequence libraries

Infilled loops are more human-like

Therapeutic antibodies must be human-like to avoid provoking an immune

response and to be safe for use in humans. To evaluate the human-likeness of

infilled sequences, we calculated the OASis identity (at medium stringency)

[19]. OASis divides an antibody sequence into a set of 9-mers and calculates

the fraction that have been observed in human repertoires. Thus, higher OASis

identity indicates a sequence that is more similar to those produced by humans.

When compared to their respective parent antibodies, sequences infilled by

IgLM were typically more human-like (Figure 6.19A). This is expected, given

that IgLM is trained on natural human antibodies. We also investigated the

impact of sampling parameters on the human-likeness of infilled sequences.
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Figure 6.19: Change in humanness of infilled sequences relative to their parent
antibodies

Asterisks indicate statistical significance (p < 0.001) from a one-sample t-test (A) or
a two-sample t-test (B). (A) Change in humanness of infilled sequences relative to
their parent antibodies. Humanness is calculated as the OASis identity of the heavy
chain sequence, with positive larger values being more humanlike. (B) Relationship
between sampling temperature (T) and nucleus probability (P) and change in human-
likeness (OASis identity) of infilled heavy chains relative to their parent sequences.
(F) Receiver operating characteristic (ROC) curves for human sequence classification
methods. The area under the curve (AUC) is shown for each method.

For both sampling temperature and nucleus probability, we find that less

restrictive sampling tends to produce less human-like sequences (Figure 6.19B).

For practical purposes, this suggests that sampling with lower temperature

and nucleus probability may be more suitable when immunogenicity is a

concern.
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Figure 6.20: Evaluation of IgLM for human antibody classification

Receiver operating characteristic (ROC) curves for human sequence classification
methods. The area under the curve (AUC) is shown for each method.

6.3.4 Sequence likelihood is an effective predictor of human-
ness

Likelihoods from autoregressive language models trained on proteins have

been shown to be effective zero-shot predictors of protein fitness [17, 15].

Antibody-specific language models in particular have been used to measure

the "naturalness" of designed sequences [33], a measure related to humanness.

To evaluate the effectiveness of IgLM for distinguishing human from non-

human antibodies, we utilized the model’s likelihood to classify sequences
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from the IMGT mAb DB [34]. Sequences in this set span a variety of species

(human and mouse) and engineering strategies (e.g., humanized, chimeric,

felinized). We considered all sequences not specifically labeled as human to be

non-human, and calculated a likelihood (conditioned on human species) for

each. All sequences had both a heavy and light chain, for which we calculated

separate likelihoods and then multiplied.

We compared the performance of IgLM to that of a number of other meth-

ods previously benchmarked by Prihoda et al. [19] using a receiver operating

characteristic (ROC) curve (Figure 6.20). The results here for alternative meth-

ods are adapted from those presented by Prihoda et al., but with several

redundant entries removed to avoid double-counting. We additionally eval-

uated model likelihoods from ProGen2-base and ProGen2-OAS [15], which

are models similar to IgLM that contain significantly more parameters (764M).

ProGen2-base is trained on a diverse set of protein sequences, while ProGen2-

OAS is trained on a dataset similar to IgLM (OAS clustered at 85% sequence

identity). We find that IgLM is competitive with state-of-the-art methods

designed for human sequence classification, though not the best. Interest-

ingly, IgLM outperforms ProGen2-OAS (ROC AUC of 0.96 for IgLM vs. 0.94

for ProGen2-OAS), despite having significantly fewer parameters (13M vs.

764M). This may result from the different strategies for constructing training

datasets from OAS. By filtering at a less stringent 95% sequence identity, IgLM

is likely exposed to a greater proportion of human antibody sequences, which

dominate the OAS database. These distinctions highlight the importance of
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aligning training datasets with the intended application and suggest that train-

ing on only human sequences may further improve performance for human

sequence classification.

6.4 Discussion

Antibody libraries are a powerful tool for discovery and optimization of

therapeutics. However, they are hindered by large fractions of non-viable se-

quences, poor developability, and immmunogenic risks. Generative language

models offer a promising alternative to overcome these challenges through

on-demand generation of high-quality sequences. However, previous work

has focused entirely on contiguous sequence decoding (N-to-C or C-to-N)

[15, 24]. While useful, such models are not well-suited for generating anti-

body libraries, which vary in well-defined regions within the sequence, and

for which changes may be undesirable in other positions. In this work, we

presented IgLM, an antibody-specific language model for generation of full-

length sequences and infilling of targeted residue spans. IgLM was trained

for sequence infilling on 558M natural antibody sequences from six species.

During training, we provide the model with conditioning tags that indicate the

antibody’s chain type and species-of-origin, enabling controllable generation

of desired types of sequences.

Concurrent work on autoregressive language models for antibody se-

quence generation have been trained on similar sets of natural antibody se-

quences and explored larger model sizes [15]. However, models like ProGen2-

OAS are limited in utility for antibody generation and design, as they are
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difficult to guide towards generation of specific types of sequences (e.g.,

species or chain types). Both this work and the ProGen2-OAS paper have

utilized prompting strategies to guide model generation towards full-length

sequences. While these strategies may help in some cases (particularly to

overcome dataset limitations), significantly more residues may need to be

provided to guide the model towards a specific sequence type (e.g., human

vs rhesus heavy chain). In contrast, by including conditioning information

for species and chain type in the model’s training, IgLM is able to generate

sequences of the desired type without additional prompting. Still, as shown

in this work, increasing the capacity of models like IgLM may lead to bet-

ter performance for sequence infilling (lower perplexity) and scoring (better

likelihood estimation), a promising direction for future work.

IgLM’s primary innovation is the ability to generate infilled residue spans

at specified positions within the antibody sequence. In contrast to traditional

generative language models that only consider preceding the residues, this

enables IgLM to generate within the full context of region to be infilled. We

demonstate the utility of infilling by generating libraries for 49 therapeutic

antibodies. We found that IgLM was capable of generating diverse CDR H3

loop sequences, and that diversity was largely tunable by choice of sampling

parameters. Further, the infilled libraries possessed desirable developability

traits (aggregation propensity, solubility) while being more human-like on

average than their parent sequences. Notably, IgLM achieves these improve-

ments over antibodies that are already highly optimized, as all of the parent

sequences have been engineered for mass-production and use in humans.
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Although we focused on antibody loop infilling in this work, similar strate-

gies may be useful for proteins generally. For example, a universal protein

sequence infilling model may be applicable to redesign of contiguous protein

active sites or for generating linkers between separate domains for protein

engineering.

6.5 Methods

6.5.1 Infilling formulation

Designing spans of amino acids within an antibody sequence can be formu-

lated as an infilling task, similar to text-infilling in natural langauge. We

denote an antibody sequence A = (a1, ...an), where ai represents the amino

acid at position i of the antibody sequence. To design a span of length

m starting at position j along the sequence, we first replace the span of

amino acids S = (aj, ...aj+m−1) with a single [MASK] token to form a sequence

A\S = (a1, ...aj−1, [MASK], aj+m, ...an). To generate reasonable variable-length

spans to replace S given A\S, we seek to learn a distribution p(S|A\S).

We draw inspiration from the Infilling by Language Modeling (ILM) frame-

work proposed for natural language infilling [25] to learn p(S|A\S). For assem-

bling the model input, we first choose a span S and concatenate A\S, [SEP],S,

and [ANS]. We additionally prepend conditioning tags cc and cs to specific the

chain type (heavy or light) and species-of-origin (e.g., human, mouse, etc.) of

the antibody sequence. The fully formed sequence of tokens X for IgLM is:

242



X = (cc, cs, a1, ...aj−1, [MASK], aj+m, ...an, [SEP], aj, ...aj+m−1, [ANS]) (6.1)

We then train a generative model with parameters θ to maximize p(X|θ),

which can be decomposed into a product of conditional probabilities:

max
`

p(X|`) = max
`

∏
i

p(Xi|X<i, `) (6.2)

6.5.2 Model implementation

The IgLM model uses a modified version of the GPT-2 Transformer decoder

architecture [35] as implemented in the HuggingFace Transformers library

[36]. We trained two models, IgLM and IgLM-S, for sequence infilling. Hyper-

parameter details are provided in Table 6.1.

Table 6.1: IgLM model hyperparameters.

IgLM IgLM-S

Number of layers 4 3
Embedding dimension 512 192
Hidden dimension 512 192
Attention heads 8 6
Feed-forward dimension 2048 768

Total parameters 12,889,600 1,439,616

6.5.3 Antibody sequence dataset

To train IgLM, we collected unpaired antibody sequences rom the Observed

Antibody Space (OAS) [18]. OAS is a curated set of over one billion unique

243



antibody sequences compiled from over eighty immune repertoire sequencing

studies. After removing sequences indicated to have potential sequencing

errors, we were left with 809M unique antibody sequences. We then clustered

these sequences using LinClust [37] at 95% sequence identity, leaving 588M

non-redundant sequences. The distribution of sequences corresponding to

each species and chain type are documented in Figure 6.2 and Table 6.2. The

dataset is heavily skewed towards human antibodies, particularly heavy

chains, which make up 70% of all sequences. We held out 5% of sequences

as a test set to evaluate model performance. Of the remaining sequences, we

used 558M sequences for training and 1M for validation.

6.5.4 Model training

During training, for each sequence A = (a1, ..., an) we chose a mask length

m uniformly at random from [10, 20] and a starting position j uniformly at

random from [1, n − m + 1]. We prepended two conditioning tags cc and cs

denoting the chain type and species-of-origin of each sequence as annotated

in the OAS database. Models were trained with a batch size of 512 and 2

gradient accumulation steps using DeepSpeed [38, 39]. Training required

approximately 3 days when distributed across 4 NVIDIA A100 GPUs.
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Figure 6.21: Infilling perplexity for IgLM and IgLM-S on heldout test dataset of 30M
sequences, divided by species-of-origin

Values are reported for CDR loops and random spans of 10-20 residues within se-
quences.
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Figure 6.22: Infilling perplexity for IgLM and IgLM-S on heldout test dataset of 30M
sequences, divided by chain type

Values are reported for CDR loops and random spans of 10-20 residues within se-
quences.
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GermlineGenerated sequences

Figure 6.23: Alignment of generated rabbit light chain sequences with the closest
germline sequences
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Figure 6.24: Prediction of generated rabbit light chain sequences by IgFold

Structures are colored by predicted RMSD from IgFold.
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Figure 6.25: Impact of sampling parameters on developability of infilled libraries

Library properties are largely unaffected by choice of sampling temperature (T) and
nucleus sampling probability (P).
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Table 6.2: Distribution of sequences in clustered OAS dataset

Species Heavy chains Light chains Total

Human 412,807,447 70,584,881 483,392,328
Mouse 93,360,086 3,198,407 96,558,493
Camel 1,091,641 - 1,091,641
Rat 3,700,086 0 3,700,086
Rabbit 2,644,903 0 2,644,903
Rhesus 381,021 719,674 1,100,695

Total 513,985,184 74,502,962 588,488,146

Table 6.3: Full-length sequence generation parameters

Description Chain token Species token Initial residues Number generated

Human heavy chain [HEAVY] [HUMAN] EVQ 20,000
Human light chain (lambda) [LIGHT] [HUMAN] QSA 10,000
Human light chain (kappa) [LIGHT] [HUMAN] DIQ 10,000
Mouse heavy chain [HEAVY] [MOUSE] QVQ 20,000
Mouse light chain (lambda) [LIGHT] [MOUSE] QAV 10,000
Mouse light chain (kappa) [LIGHT] [MOUSE] DIV 10,000
Camel heavy chain [HEAVY] [CAMEL] QVQ 20,000
Rabbit heavy chain [HEAVY] [RABBIT] QEQ 20,000
Rabbit light chain (lambda) [LIGHT] [RABBIT] QPA 10,000
Rabbit light chain (kappa) [LIGHT] [RABBIT] ALV 10,000
Rat heavy chain [HEAVY] [RAT] EVQ 20,000
Rat light chain (lambda) [LIGHT] [RAT] QAV 10,000
Rat light chain (kappa) [LIGHT] [RAT] GIQ 10,000
Rhesus heavy chain [HEAVY] [RHESUS] QVQ 20,000
Rhesus light chain (lambda) [LIGHT] [RHESUS] QSV 10,000
Rhesus light chain (kappa) [LIGHT] [RHESUS] AIQ 10,000

Total 220,000
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Table 6.4: Adherence to species conditioning tags for full-length generation

Chain token Species token T = 0.6 T = 0.8 T = 1.0 T = 1.2 Overall

[HEAVY] [HUMAN] 99.98% 99.94% 99.66% 99.30% 99.72%
[HEAVY] [MOUSE] 99.94% 99.34% 98.32% 96.62% 98.55%
[HEAVY] [CAMEL] 98.36% 97.72% 96.76% 92.72% 96.39%
[HEAVY] [RABBIT] 100.00% 100.00% 99.96% 99.98% 99.98%
[HEAVY] [RAT] 0.00% 0.00% 0.00% 0.00% 0.00%
[HEAVY] [RHESUS] 99.00% 94.82% 87.14% 71.58% 88.14%

[LIGHT] [HUMAN] 100.00% 99.98% 99.92% 99.40% 99.82%
[LIGHT] [MOUSE] 13.84% 86.62% 16.64% 22.46% 34.89%
[LIGHT] [RABBIT] 14.56% 5.84% 1.37% 2.22% 6.89%
[LIGHT] [RAT] 0.00% 0.00% 0.02% 0.15% 0.04%
[LIGHT] [RHESUS] 70.14% 49.02% 44.80% 51.15% 54.03%

Percentage of matches between conditioning tag used for generation and species
classification from ANARCI for each generation configuration.
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Chapter 7

Discussion and Conclusion

Antibodies are critical immune molecules that recognize and facilitate neu-

tralization of a broad range of pathogens. The specific binding of antibodies

that is enabled by the hypervariable loops has made them an effective tool

for therapeutic and diagnostic applications. However, despite the biological

and medical importance of antibodies, they remain difficult to model and

challenging to design. Application of machine learning to the vast space of

protein data explored by nature has driven advances in structure prediction

and design. However, many of these advances are enabled by capturing and

reproducing broad evolutionary patterns. Antibodies, which evolve rapidly

in response to antigenic pressure within individuals, are not subject to the

same evolutionary pressures. As such, existing tools are poorly suited to the

challenges of antibody structure prediction and design.
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7.1 My contributions

I began my doctoral studies at the dawn of a machine learning revolution in

protein modeling. Inspired by the progress achieved in protein structure pre-

diction [1] and sequence modeling [2], yet clear-eyed of their limitations, I set

out to develop a set of antibody-specific tools to improve our understanding

of these critical moleucles. In this dissertation, I presented a series of machine

learning tools designed to model increasingly complex aspects of antibody

structure, with increasing accuracy and speed. Next, I presented two projects

aimed at generation of antibody sequences (and proteins more broadly).

Antibody structure prediction is a challenging problem. Despite the similar

high-level goal of accurately predicting three-dimensional atomic coordinates,

the distinct structural nuances of antibodies highlight many of the limitations

of current generalist tools. Foremost is the irregularity of structural varia-

tion. For antibodies, the tertiary fold is entirely pre-determined, save for a

set of variable-length loops. This stands in stark contrast to the more general

problem of protein structure prediction, where the tertiary fold is largely un-

known. Further, the co-evolutionary signals driving general protein structure

predictors are largely irrelevant to antibodies, in part because of their distinct

evolutionary environment, but also because of their function as binders to a

complementarity antigen. To begin addressing these shortcomings, I devel-

oped three tools for antibody structure prediction: DeepH3 [3], DeepAb [4],

and IgFold [5].

Prior to DeepH3 [3], the state-of-the-art methods for prediction of CDR H3

loops relied on grafting (which is limited by poor templates) [6, 7] or extensive
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sampling (which is limited by poor energy functions and high computational

cost) [8]. With DeepH3, I aimed to address the latter scenario by learning a

sequence specific energy function for CDR H3 loops. DeepH3 formulated this

task as the prediction of inter-residue distances and orientation potentials,

which were used in substitue of the Rosetta energy function for structure scor-

ing. By making more effective use of previously solved structures, DeepH3

was able to significantly outperform RosettaAntibody [8] at scoring struc-

tural decoys. This improvement also had the indirect effect of reducing the

computational cost of structure prediction (by an order of magnitude), as

the improved scoring function allowed for more efficient identification of

native-like loops.

The limited scope of DeepH3, in that it only rebuilt CDR H3 loops given

the surrounding FV structure, made it reliant on other tools for complete

functionality. With DeepAb [4], I extended the model to full FV structure

prediction. DeepAb built on a similar ResNet [9] architecture to DeepH3, but

increased the number of output potentials predicted and incorporated novel

architectural improvements to increase accuracy and interpretability. The first

such improvement was the use of pretraining on natural paired antibody se-

quences from the Observed Antibody Space (OAS) database [10]. Embeddings

from a sequence-to-sequence encoder-decoder model exposed the model to

nearly two orders of magnitude more antibody sequences than there were

structures for training. The second improvement involved incorporation of

an efficient attention mechanism to improve prediction of output features.

Not only did addition of this attention layer improve accuracy, it also allowed
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for the identification of important residues for predicting CDR H3 loops. To-

gether, these improvements allowed DeepAb to significantly outperform its

contemporaries across all six CDR loops. Most notably, DeepAb reduced the

RMSD of CDR H3 loop structure predictions by 0.5 Å, a 20% improvement

over the next best method.

While DeepAb established deep learning as a compelling alternative to tra-

ditional approaches for antibody structure prediction, it was ultimately quite

rigid in its application. DeepAb was unable to incorporate known structural

information into its predictions, was opaque with respect to expected accuracy

on individual outputs, and performed poorly on nanobodies (single chain

antibodies). To address these shortcomings, and to create a more universal

antibody structure predictor, I developed IgFold [5]. IgFold was designed

to be a Swiss Army Knife for antibody structure prediction. The foundation

of IgFold is AntiBERTy [11], a transformer encoder model that I trained on

558 million natural antibody sequences. Using embeddings from AntiBERTy,

IgFold directly predicts the backbone atomic coordinates of antibody FV struc-

tures. This end-to-end training regime allows IgFold to predict structures

significantly faster than DeepAb, while improving accuracy over alternative

methods (including AlphaFold [12, 13]). IgFold is able to incorporate known

structural information into its predictions in the form of templates, making

it a more flexible tool for antibody engineering. Along with its predictions,

IgFold provides a per-residue confidence score that can be used to identify

regions of uncertainty. Finally, IgFold is trained on a mixture of paired and

single-chain structures, extending its use beyond conventional antibodies.
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If antibody structure prediction represented the first thrust of my gradu-

ate research, protein language models would make up the second. Protein

sequences are a very natural modality for training and studying language

models (perhaps better than natural human language). This is because pro-

teins, as physical objects, are constrained by the laws of physics. One of the

key innovations of modern language modeling is the attention operation [14],

which allows the model to learn relationships between pairs of tokens (e.g.,

amino acids or words). While for natural language these relationships carry

abstract meaning, in proteins they are often physical (and even functional) re-

lationships. In the final two projects described in this dissertation, I presented

my work on a pair of generative protein language models: ProGen2 [15] and

IgLM [16].

In a collaboration with Salesforce Research, I contributed to the develop-

ment of ProGen2 [15]. ProGen2, or rather the suite of ProGen2 models, sought

to investigate the impacts of training increasingly massive language models

for protein generation (including the largest such model to date, with 6.4

billion parameters). Among these models is ProGen2-OAS, a model trained

on immune repertoire sequences for generation of antibodies. We showed that

ProGen2 can effectively generate protein sequences that span the diversity of

natural folds, while diverging significantly in sequence. Through finetuning

of ProGen2, we demonstrate deliberate generation of a single protein archi-

tecture. Beyond generation, we demonstrate that autoregressive models are

effective predictors of protein fitness, a broad notion of protein functions and

properties ranging from enzymatic activity to thermal stability. In contrast to
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prior work in the field, we reported a divergence in the benefits of scaling pro-

tein language models for fitness prediction. Specifically, we found that larger

models were more effective at predicting fitness for mutational landscapes

with high sequence diversity, while smaller models were more effective at

ranking the fitness of more similar sequences. For antibody specific tasks, we

showed that pretraining on more antibodies (in the form of immune reper-

toires) does not result in improved antibody fitness prediction (for binding,

stability, or expression). These results highlight the importance of considering

the specific task at hand when designing protein language models.

Aside from scaling model parameters, another means of producing useful

language models is specialization. IgLM [16] was designed specifically for

antibody sequence generation. During training, IgLM is provided with condi-

tioning tokens indicating the species and chain type that should be generated.

In practice, this enables controllable generation of sequences from several

species. Going beyond traditional N- to C-terminal generation, IgLM learns

to fill in internal segments of antibodies (such as CDR loops) through rear-

rangement of sequence segments during training. This infilling capability has

strong implications for antibody library design, as it enables IgLM to diversify

specified segments of antibody sequence while conforming to the surrounding

context and the natural sequence space of human antibodies. I validated the

utility of this approach by creating infilled libraries for 49 clinically approved

therapeutic antibodies and conducting extensive computational validation of

their properties. The resulting libraries were shown to be diverse in sequence,

have improved developability profiles (lower aggregation propensity, higher
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solubility), and be more human-like than their parents. These results are par-

ticularly promising given that the parent sequences have already undergone

extensive optimization on their route to clinical use.

7.2 Future directions

Looking forward, I believe there is incredible potential for machine learning to

continue to transform antibody modeling and design, as well as the study of

proteins more broadly. I will focus on three areas that I believe will particularly

impactful in the coming years: flexible structural modeling, escaping the

bottlenecks of co-evolution, and generative modeling of proteins.

7.2.1 Flexible structural modeling

The current paradigm in protein structure prediction views proteins as static

objects, void of the dynamics and flexibility that are intrinsic to their function.

While this paradigm has served us well, it is increasingly clear that it places

an upper limit on the utility of our models. For example, using current tools it

is not possible to sample the conformational space of a protein or to predict

the effect of a mutation on protein dynamics. While some of these limitations

can be partially addressed by manipulating existing models like AlphaFold2

[17, 18], these are not ideal solutions. In the case of antibodies, dynamics are

of particular importance for long CDR loops, which can undergo significant

conformational change [19]. Perhaps not by coincidence, these are the types of

loops that are most difficult to predict with current methods. In the future, I

believe that we must transition towards models that predict a distribution over
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protein structures. This will allow us to directly model the conformational

space of proteins, and to sample from it. I foresee two main obstacles to this

transition in the short term: the need for large datasets of conformationally

diverse protein structures and the need for new ways of representing proteins.

The first of these challenges may be indirectly addressed by recently released

large-scale datasets of predicted protein structures [20, 21], which likely con-

tain a significant amount of conformational diversity (though this remains to

be proven). The second challenge is more fundamental, and will require new

ways of representing proteins that are more flexible than the current atom-

centric approaches. A promising step in this direction is the development of a

decorrelated representation space for protein structure generation [22].

7.2.2 Escaping the bottlenecks of co-evolution

Many, if not all, of the significant advances in protein structure prediction

over the last decade have involved improved harnessing of co-evolutionary

information. Beginning with statistical analysis of residue co-variation [23, 24]

and culminating in the development of deep learning models that explicitly

take sequence alignments as input [12], the powerful co-evolutionary signal

has ushered in an era of highly accurate protein structure prediction. However,

the co-evolutionary signal is not without its limitations. For example, it is

absent in proteins without known homologs. In addition, co-evolutionary

models are not well suited to the prediction of protein dynamics, which con-

found residue co-variation. Finally, and closer to the theme of this dissertation,

such models are generally unable to predict antibody-antigen complexes [13],
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which have a disjoint co-evolutionary signal between binding partners. One

response to these issues has been the development of models that take only a

single sequence as input and rely on a pretrained language model to inform

structure prediction [21, 25]. While this is a promising direction, such models

are likely front-loading the process of learning co-evolutionary dependen-

cies during pretraining rather than obtaining any distinct insights into the

sequence-structure relationship. As an alternative, I believe that we must

seek an escape from the bottleneck of co-evolution. This will require a shift in

focus from the co-evolutionary signal to the underlying sequence-structure

relationship. While historically building such models has been infeasible, the

large-scale databases [20, 21] mentioned above may provide utility here as

well. In particular, due to the size of these datasets, it should be possible

to train models on clustered (yet still large) sets of proteins that share little

co-evolutionary information. This would allow us to emphasize the relation-

ship between sequence and structure with more examples than the PDB [26]

has to offer, hopefully without the shortcut of co-evolutionary information.

To benchmark such a model, antibody-antigen complexes could be used as

a test set, as they are known to be difficult for co-evolutionary models [13]

due to the one-sidedness of the co-evolutionary signal (antibodies mature in

response to mostly static antigen, while antigen evolves outside the context of

the individual immune response).
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7.2.3 Generative modeling of proteins

The final area I will discuss is generative modeling of proteins. Protein design

is, at its core, a task in sampling new proteins to meet some specification.

Traditionally, this specification took the form of a particular fold designed by

experts [27]. With the development of differentiable models for sequence-to-

structure prediction, this satisfaction of this specification could be achieved

through hallucination or gradient-based sequence optimization [28, 29, 30].

However, these approaches are not ideal, as they operate outside the trained

context of their respective models and frequently produce unrealistic protein

designs. In recent years, numerous approaches have been proposed for direct

generative modeling of proteins [31, 32, 33]. These approaches largely focus

on capturing the distribution of protein sequence (e.g., language models) or

structure (e.g., diffusion models), but not both. The utility of language models

has been illustrated throughout this dissertation, and they will undoubtedly

continue to be a powerful tool for protein design. In a recent application,

language models were used to generate lysozymes that matched the functional

activity of natural proteins, while sharing only 31.4% sequence identity to

any previously observed protein [34]. Current protein language models are

largely identical to their counterparts in natural language processing. While

these off-the-shelf models are in many ways well-suited for protein tasks,

consideration of the ways in which they are not would be a worthy endeavor.

Diffusion models have recently shown immense promise across a diverse

array of design tasks [35, 22, 36]. These models seek to learn the function

∇ log P(x) (denoted the score) for a data distribution, which can be used to
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generate new samples through solution of stochastic differential equations

[37]. Successful applications of protein diffusion models have shown promise

for unconditional generation of protein monomers and complexes [22], design

and scaffolding of binding motifs [36], and antigen-specific antibody design

[38]. While these models are promising, one major limitation is the separation

of sequence and structure. In the future, I believe that we must seek to unify

the generative process over sequence and structure, rather than treat one as a

latent variable of the other.
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