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Abstract 
 

Carbohydrates are of fundamental importance in biology. These molecules are essential 

to life, serving to mediate diverse biological functions. Unraveling the biophysical 

mechanisms by which carbohydrates operate not only helps complete our understanding 

of life on Earth but enables rational engineering to fine-tune or even modify their roles in 

biology. However, carbohydrate molecules are complex, with their conformational 

diversity and chemical heterogeneity making it notoriously difficult to elucidate their 

structures experimentally. Yet these models are vital to our mechanistic understanding of 

carbohydrate-mediated biological functions, making scientific advancements challenging 

to achieve. Computational methods serve to fill this gap by generating native-like models 

of protein–carbohydrate systems. 

 

In this dissertation, I describe my advancements to the field of computational modeling 

with the development of GlycanDock, a protein–carbohydrate docking refinement method 

in Rosetta. I detail the extensive benchmark I developed to evaluate the effectiveness of 

the GlycanDock protocol to generate native-like protein–carbohydrate models. Further, I 

provide residue-level analyses of these models to demonstrate the utility of the protocol 

toward developing a biophysical understanding of protein–carbohydrate complexes. 

Finally, I describe an approach utilizing GlycanDock and other computational tools to 

address the more realistic “blind” docking scenarios. 

 

The development of GlycanDock enabled my work computationally modeling the 

structures of FpGalNAcDeAc and FpGalNase, two enzymes that together convert A-type 
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blood to the universal O-type. I identified FpGalNAcDeAc residues likely to govern the 

binding of terminal LacNAc motifs present on the surface of red blood cells, offering 

mutational sites to modify targeting to the cell surface. Additionally, I identified the 

FpGalNAcDeAc binding site residues most important for A-antigen recognition, providing 

a guide to understanding and controlling its enzymatic activity. For FpGalNase, I 

proposed a sequence- and structure-driven hypothesis regarding its active-site and 

unique specificity to the terminal α-GalN carbohydrate. My work serves as a blueprint for 

future experimental studies, including rational engineering toward modifying FpGalNase’s 

specificity to the B-antigen, which, if achieved, would mean complete conversion of all A, 

B, and AB blood types to the universal O-type. 

 

In sum, my work advanced our ability to model and dissect protein–carbohydrate 

systems.  
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Chapter 1 

1. Introduction 
 

1.1 Carbohydrate structure and biological function 

The Essentials of Glycobiology textbook 4th edition (the most recent edition at the time of 

writing) provides an excellent, thorough description of carbohydrate structure and 

function. I highly encourage readers who are interested in delving deeper into the realm 

of glycobiology (the study of carbohydrates in biological systems) to read the free e-book 

of the Essentials of Glycobiology 4th edition at: 

https://www.ncbi.nlm.nih.gov/books/n/glyco4/. 

 

Carbohydrates are the most structurally and chemically diverse biomolecule and are 

found in all living organisms on Earth. Carbohydrates are highly hydrated carbon-based 

molecules (chemical formula Cx(H2O)n). They primarily exist in a cyclic (i.e., ring) form 

and contain at least one asymmetric carbon. Carbohydrates are therefore chiral 

molecules that exist in either D or L configuration, with D being the primary stereoisomer 

in vertebrates1. The structural diversity of monosaccharides (single carbohydrate units) is 

due to (1) ring size (e.g., a five-membered pyranose or a six-membered hexose), (2) the 

conformation of the ring itself (e.g., type 4C1 chair versus 1C4 chair versus “envelope” 

versus “twist” conformations of a pyranose), and (3) the configuration of the anomeric 

carbon (i.e., α versus β stereoisomers)1. The chemical diversity of monosaccharides is 

due to (1) epimerization of the hydroxyl groups (α versus β for the anomeric carbon, axial 
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versus equatorial otherwise) and (2) chemical modification (e.g., methylation and 

acetylation). 

 

A comparison of the ten most abundant monosaccharides in mammals provides a 

visualization of these components of carbohydrate structural and chemical diversity 

(Figure 1.1). For example, three of the ten monosaccharides are epimers of each other 

(D-glucose, D-galactose, and D-mannose), three have additional chemical modifications 

(N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, and D-glucuronic acid), and the 

final four are otherwise modified (D-xylose, L-fucose, iduronic acid, and N-

acetylneuraminic acid (a type of sialic acid))1 (see Figure 1.1). 
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Figure 1.1: The ten most common monosaccharides in mammals and their corresponding Symbol 
Nomenclature for Glycans (SNFG) notation. Reprinted with permission from Figure 1A of Chen S., Qin R, 
and Mahal L, Crit. Rev. Biochem. Mol. Biol. 2021. 

 

The complexity of carbohydrates extends beyond the monosaccharide unit. In living 

organisms, carbohydrates are most often found covalently linked together as oligo- and 

polysaccharide chains (generally defined as chains of < 12 and ≥ 12 monosaccharide 

units, respectively). These carbohydrate chains are often referred to as “glycans”. 

Monosaccharides are joined together via glycosidic bonds which create a flexible 

glycosidic linkage between the two units. A glycosidic bond is formed between the 

anomeric carbon of one carbohydrate and a hydroxyl group of the other carbohydrate, 

meaning different regioisomers are possible depending on which hydroxyl group is used 
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for the bond. Typically, using an intracyclic hydroxyl group results in a glycosidic linkage 

with ϕ and ψ dihedrals whereas using an exocyclic hydroxyl group results in a glycosidic 

linkage with ϕ, ψ, and ω dihedrals. A single glycosidic torsion can contain either zero, 

one, or even two ω dihedral angles, depending on where (i.e., through which atoms) the 

glycosidic bond is made. Unlike protein ω dihedral angles which are generally fixed given 

its double bonded characteristic, carbohydrate ω angles are very flexible. See Section 

1.4 for a visual comparison of protein versus carbohydrate ϕ, ψ, and ω dihedral angles. 

 

In biological systems, glycan chains (consisting of various monosaccharide units and 

glycosidic linkages as described above) are primarily observed covalently attached to 

other macromolecular structures such as proteins (i.e., glycoproteins) and lipids (i.e., 

glycolipids; frequently those at the cell surface)2. In glycoproteins, the side-chain nitrogen 

of an asparagine or the side-chain oxygen of a serine or threonine serves as the 

attachment point, resulting in an N-linked or O-linked glycan, respectively. Glycans are 

enzymatically installed at a given attachment point starting with a pre-assembled “core” 

structure (e.g., for N-glycans, a “core” pentasaccharide consisting of two N-

acetylglucosamines and three mannoses). Once attached, the “core” structure can then 

be further enzymatically modified to create a more complex glycan, such as the highly 

branched variants characteristic of mammalian cell-surface glycans. Glycans are 

considered “branched” when more than one glycosidic bond is made to a single 

monosaccharide unit. Figure 1.2 depicts the three most common N-linked glycans in 

mammals, each of which vary in size, complexity, and number of branch points. 
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Figure 1.2: Illustration of the three most common N-linked glycans in mammals, which differ in chain size, 
chain length, and number of branch points. Reprinted with permission from Figure 2A of Chen S., Qin R, 
and Mahal L, Crit. Rev. Biochem. Mol. Biol. 2021. 

 

Glycans play many diverse, important roles in biology. These biological roles can be 

broadly classified as structural (e.g., rigidity and curvature of cellular membranes), 

metabolic (e.g., sources of energy and energy storage), modulatory (e.g., protein folding, 

misfolding, and degradation), intrinsic recognition (e.g., cell–cell interactions), and 

extrinsic recognition (e.g., pathogen detection)3. Many of these biological roles are 

modulated by the identity of the terminal carbohydrate (i.e., the carbohydrate at the non-

reducing end(s)). For example, human ABO blood typing is determined by the presence 

or absence of specific carbohydrate blood-antigens on the termini of red-blood cell 

associated glycolipids4. “Foreign” carbohydrate blood antigens (i.e., non-compatible 

blood types) are recognized by antibodies (important proteins in our immune system) and 
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can potentially trigger a lethal immune response. The ABO carbohydrate blood antigens 

are an important component of my doctoral work and are discussed further in Chapter 3. 

 

Our final introductory topic of this section covers how proteins serve as the primary 

mediators of carbohydrate-based biological function thanks to their ability to bind to the 

diversity of carbohydrates with varying specificity5. These types of proteins include 

antibodies, enzymes, lectins, and otherwise general glycan-binding proteins (GBPs). 

Lectins are glycan-binding proteins that are often highly specific for particular 

carbohydrates (hence the name lectin, the Latin word for “select”). One example of how 

protein–glycan binding and recognition mediates biological function is the mechanism by 

which humans are infected by the influenza virus (i.e., how we catch the flu). GBPs 

present on the surface of the virus are specific for α1-6 linked sialic acids, which are 

abundant on the surface of our cells. This protein–glycan binding event brings the virus 

close to the cell surface, facilitating its fusion with the cell membrane and the resulting 

infection5. The following section goes deeper into the biophysical mechanisms by which 

proteins bind to and recognize carbohydrates. 

 

1.2 Mechanisms of protein–glycan binding and recognition 

Experimental structural characterization provides residue-level resolution of protein–

glycan complexes, enabling our understanding of the biophysical mechanisms behind 

carbohydrate binding and recognition. Structural models allow us to visualize many of the 

interactions that drive protein–glycan complex formation: van der Waals contacts, CH–π 

and electrostatic interactions, and hydrogen bonds (both direct and water mediated). Two 
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important (and measurable) components of complex formation are affinity (i.e., the 

strength of binding) and specificity (i.e., the ability to bind the target of interest while 

discriminating against all others). I will provide the reader with additional description of 

hydrogen bonding given its foremost importance to both glycan binding affinity and 

specificity. 

 

Hydroxyl groups can serve as both hydrogen bond acceptors and donors (specifically, 

they can donate one hydrogen bond and accept two). Carbohydrates have many hydroxyl 

groups, making them polar molecules that prefer to be solvated to maintain satisfaction 

of these hydrogen bond donor/acceptor groups. It is therefore crucial that hydrogen bonds 

are made at a protein–glycan interface to ensure sufficient binding affinity to drive 

complex formation. The directionality of the hydroxyl groups is another relevant 

component of protein–glycan complex formation. Depending on the given carbohydrate 

epimer, different hydroxyl groups are oriented in different directions. For example, in D-

glucose the O3 hydroxyl is axial whereas it is equatorial in D-galactose. With the innate 

sensitivity of hydrogen bonding interactions to even slight distortions in geometry, proteins 

must not only have compatible amino acids at the interface to drive glycan binding affinity, 

but these amino acids must also be in the appropriate position and orientation to enable 

glycan binding specificity. 

 

As stated in the beginning of this section, structural models allow us to visualize hydrogen 

bonding and other important biophysical interactions at a protein–glycan interface. 

Characterizing these interfacial interactions is crucial to understanding the mechanism 
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behind a given protein’s glycan-binding affinity and specificity. Elucidating an 

experimental structure of a protein–glycan complex is, however, not an easy task. 

Computational techniques serve to fill this gap by providing a means of generating 

structural models of sufficient resolution in relatively short timeframes. In the next section, 

I provide a description of Rosetta, the computational “toolkit” I utilized extensively 

throughout my doctoral work and beyond. 

 

1.3 Rosetta macromolecular modeling and design software suite 

Rosetta is a comprehensive software suite for performing theoretical macromolecular 

modeling, structure and complex prediction, and design simulations6. Rosetta has been 

utilized time and time again to address diverse scientific challenges7. Virtually all of 

Rosetta’s modeling and design protocols aim to accomplish two overarching goals: given 

some biomolecular input, (1) quickly but broadly sample the structure and sequence 

space relevant to one’s scientific question (e.g., sampling a binding-competent 

conformation of a given glycan-binding protein), and (2) accurately distinguish the most 

relevant (and physically realistic) conformation(s) from the pool of all sampled 

conformations. The former goal is primarily accomplished through a Metropolis Monte 

Carlo-plus-minimization sampling approach, while the latter goal is accomplished by 

applying a scoring function with physical, empirical, and statistical terms that approximate 

the energy of a biomolecule given its current conformation. 
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1.3.1 Conformational sampling in Rosetta 

Rosetta primarily uses internal coordinates to represent and manipulate (i.e., sample) 

biomolecular structure. In each simulation, bond lengths are kept fixed, and the degrees-

of-freedom (DoFs) sampled are limited to the relevant ϕ, ψ, ω, and χ dihedral angles of 

each residue (and to rigid-body transformations if there are two or more independent 

bodies in the system). In 2017, Labonte et al. introduced the first framework for residue-

centric modeling of carbohydrates in Rosetta8. Carbohydrates are modeled using the 

same principle of limiting DoF sampling to the ϕ, ψ, and any ω glycosidic torsion angles, 

the many side-chain χ angles of the hydroxyl groups, and the χ angles of any chemical 

modifications. Users can, however, also enable sampling of carbohydrate ring 

conformations by including the internal  angles in the DoFs. Figure 1.3 compares the ϕ, 

ψ, ω, and χ DoFs of a peptide bond versus a glycosidic bond and depicts the carbohydrate 

 angles that determine ring conformation. 
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Figure 1.3: A comparison of the degrees-of-freedom (DoFs) found in polypeptide (A) and polysaccharide 
(B) chains. The first and second residue are labeled and colored red and blue, respectively. Torsion angles 
are indicated by arrows and labeled. Reprinted with permission from Labonte JW et al., J Comput. Chem., 
2017. 

 

The DoFs of a biomolecular structure are sampled in Rosetta using the Metropolis Monte 

Carlo-plus-minimization approach (MMCM)9. In MMCM sampling, a subset of DoFs is 

randomly perturbed (in Rosetta, this is referred to as a “move”), the DoFs of the entire 

system are energetically minimized, and the changes to the system are accepted if the 

system’s energy is lower (i.e., more negative; better) than it was previously. If the energy 

of the system is higher (i.e., more positive; worse), then the Metropolis criterion is applied. 

In the Metropolis criterion, the probability of accepting the system’s new conformational 

state is sampled from a Boltzmann distribution (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 =  
𝐸𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒  − 𝐸𝑜𝑙𝑑 𝑠𝑡𝑎𝑡𝑒

𝑘𝑇
 

where 𝑘 = Boltzmann constant, 𝑇 = temperature, 𝐸 = energy). If 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 ≥

𝑈[0,1] (where 𝑈[0,1] is a uniform random number between 0 and 1, inclusive), then the 

“move” is accepted; otherwise, the “move” is rejected and the system returns to its 

previous conformation. The MMCM steps are then repeated a pre-specified number of 

times. 
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Rosetta’s modeling philosophy follows Anfinsen’s dogma–that the native conformation of 

a biomolecular system (i.e., the most biologically relevant conformation) is a unique and 

stable conformation accessible at the global minimum of the energy landscape10. In 

computational simulations, the energy landscape is determined by the system’s DoFs and 

any modeled environmental conditions (e.g., temperature, pH, solvation). Given the 

ruggedness of any biomolecular system’s energy landscape, often this global energy 

minimum conformation is “trapped” behind various high-energy conformations. The 

MMCM approach allows for the occasional acceptance of “moves” that make the energy 

of the system higher, thus enabling better traversal of the energy landscape to find the 

low-energy, native conformation of interest. 

 

1.3.2 The Rosetta scoring function 

The Rosetta scoring function consists of multiple physical, empirical, and statistical terms 

that approximate the energy of a biomolecular system (e.g., a protein, a carbohydrate, a 

protein–carbohydrate complex) in a given conformation. The Rosetta scoring function can 

be represented in the functional form 𝐸𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑤𝑖 𝐸𝑖(𝐷𝑜𝐹, 𝑎𝑎), where the total energy of 

the system (𝐸𝑡𝑜𝑡𝑎𝑙) is the sum of each energy term (𝐸𝑖) calculated as a function of the 

system’s degrees of freedom (𝐷𝑜𝐹) and chemical identities (𝑎𝑎) and scaled by a pre-

determined weight (𝑤𝑖). 

 

Throughout my doctoral work, I solely employed the default (as of post-2016) Rosetta 

scoring function called REF201511. The energy terms of the REF2015 scoring function 

cover (1) physical laws such as Lennard–Jones attraction and repulsion, solvation 
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(addressed implicitly), and Coulombic electrostatics, (2) empirical observations such as 

the orientation and geometric dependence of hydrogen bonding and disulfide bonds, and 

(3) statistical potentials for amino acid identities (given the backbone dihedral angles), 

backbone dihedral angles (given the amino acid identity), side-chain rotamers (given 

backbone dihedral angles), penalizing non-planar backbone ω dihedral angles (given cis 

or trans ω configuration), penalizing the open conformation of proline rings, penalizing 

non-planar conformations of the side-chain hydroxyl group of tyrosine, and reference 

energies for the 20 canonical amino acid types. Rosetta’s energy terms are captured as 

one- and two-body components, allowing the calculation of the system’s total Rosetta 

energy to be relatively fast and intuitively decomposable. 

 

As of 2017 and upon specification by the user at the command line, any Rosetta scoring 

function can include a statistical energy term that captures the preferences of the ϕ and 

ψ angles of glycosidic linkages8,12,13. The ϕ angle preferences depend on the 

stereochemistry (i.e., α or β) of the anomeric carbon through which the glycosidic bond is 

made, and the ψ angle preferences depend on whether the connecting oxygen is axial or 

equatorial. This glycosidic linkage-based scoring term (called “sugar_bb”) ensures 

Rosetta preferably samples and favorably scores biologically relevant glycan 

conformations. 

 

1.4 Dissertation Outline 

Prior to my doctoral work, there was no established method in Rosetta to predict the 

bound conformation of protein–carbohydrate complexes. Meaning whenever elucidating 
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an experimental structure of a protein–carbohydrate complex was challenging or 

infeasible, researchers could not utilize Rosetta to generate a structural model to address 

that gap in important information. Therefore, the primary goal of my doctoral work 

was to develop and benchmark a Rosetta-based tool for protein–carbohydrate 

modeling, and accordingly apply this protein–carbohydrate modeling tool on an 

interesting and practical use case. 

 

Chapter 1 introduced readers to the general scientific concepts behind my doctoral work. 

In Chapter 2, I describe my development of a Rosetta protocol for modeling protein–

carbohydrate complexes. I also describe how I evaluated the protocol’s effectiveness in 

sampling and identifying native-like bound conformations. In Chapter 3, I detail my efforts 

modeling two enzymes that in conjunction covert A-type whole blood to O-type. My 

analyses resulted in enzyme–carbohydrate blood antigen models that facilitated 

understanding of the enzymatic mechanisms behind this conversion and will inform future 

protein engineering experiments. Finally, in Chapter 4 I summarize and map back my 

contributions to the field of computational protein–carbohydrate modeling. I also describe 

remaining challenges in the field and provide a roadmap for brave, future researchers to 

follow in their quest to continue and expand upon my doctoral work.



 14 
 

Chapter 2 

2. GlycanDock 
 

Adapted from Nance ML, Labonte JW, Adolf-Bryfogle, J, and Gray JJ, “Development and 
evaluation of GlycanDock: a protein–glycoligand docking algorithm in Rosetta” J. Phys. 
Chem. B 2021, 125, 25, 6807–6820, with permission from the publisher. Full text including 
all Supplemental Information referred to within this chapter is available online at 
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c00910. In this Chapter, all material that is 
stated to be available online can be found at this web address. 
 

2.1 Introduction 

Carbohydrates are the most abundant and diverse biomolecules found on Earth14,15. 

Finite chains of carbohydrates known as glycans play numerous functional roles in all 

three domains of life3,16–21 as well as viruses22,23. Three-dimensional structures of protein–

glycan complexes provide insight into how carbohydrates are recognized by proteins and 

mediate biological functions. For example, extensive structural analysis of lectins 

(carbohydrate-binding proteins) via X-ray crystallography uncovered the role of 

carbohydrate recognition in cell–cell interactions and pathogenic invasion24–27. The 

Protein Databank (PDB) serves as a global repository for experimentally determined 

three-dimensional structures28. Recent estimates indicate that entries containing 

carbohydrates make up less than 10% of the PDB29—of which only a few thousand 

represent a high-quality, true protein–glycoligand complex (a non-covalently attached 

glycan bound to a protein receptor)30. Consequently, resolved structures of protein–

glycoligand complexes are relatively underrepresented compared to their ubiquity in 

biology. Despite technological improvements in experimental structural glycobiology31,32, 
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the innate flexibility and chemical heterogeneity of carbohydrate chains continues to 

hinder high-throughput collection of high-quality structures33–36. Therefore, computational 

docking tools that accurately predict the conformation and interfacial interactions of 

protein–glycoligand complexes are needed to fill the gap in structural characterization and 

enable further scientific and engineering advancements37. 

 

Computational simulations have long demonstrated utility in supplementing and 

deciphering experimental data on the structure of glycans and protein–glycan 

complexes34–36,38–47. Molecular dynamics (MD) simulations in particular are able to 

sample oligosaccharide conformations that are consistent with experimental data48,49 and 

estimate the binding free energy of protein–glycoligand complexes34,50–52. However, MD 

becomes too costly when simulating large systems with many atoms and degrees of 

freedom53, making faster (though less rigorous) computational tools for docking more 

practical. Protein–ligand docking software including AutoDock54, AutoDock Vina55, 

DOCK56, FlexX57, Glide58, and GOLD59 have all been applied to protein–glycoligand 

systems60–65. However, these tools work best on rigid, small-molecule (i.e. drug-like) 

ligands with few rotatable bonds. Accordingly, modeling and docking tools that account 

for the size and flexibility of glycoligands, such as AutoDock Vina-Carb12,13 and the 

fragment-based approach developed by Samsonov and colleagues66, are necessary. 

 

The Rosetta macromolecular modeling and design software suite6 has been used to 

address diverse scientific challenges7,67,68. Rosetta’s protein–small molecule docking 

algorithm RosettaLigand69,70 has been applied to a protein–glycoligand system to capture 
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the effects of mutations on glycoligand binding energetics71. However, like other protein–

ligand docking software, RosettaLigand is only able to treat a ligand as a single residue 

with discrete, pre-computed conformations—not as flexible oligomers. The recently 

developed RosettaCarbohydrate framework enabled modeling and design of glycans and 

glycoconjugate systems in a residue-centric (i.e., oligomeric) approach8. To that end, we 

sought to develop a docking refinement algorithm that leverages the 

RosettaCarbohydrate framework and rapid conformational sampling and optimization 

techniques to predict native-like, biophysically accurate models of protein–glycoligand 

complexes. 

 

Here, we introduce GlycanDock—a residue-centric protein–glycoligand docking 

refinement algorithm available within the Rosetta software suite. In this work, we assess 

GlycanDock’s ability to sample and discriminate bound, native-like conformations of 

protein–glycoligand complexes using a benchmark target set of 109 high-resolution 

structures from the PDB. Targets represent protein binders of broad scientific interest, 

including 11 antibodies, 33 lectins, 22 enzymes, 24 carbohydrate-binding modules, and 

19 viral glycan binders. These 109 proteins are bound to glycoligands of various lengths, 

including 24 di-, 32 tri-, 28 tetra-, 14 penta-, 7 hexa-, 3 heptasaccharides, and 1 

undecasaccharide. 81 are linear oligosaccharides and 28 have one or more branched 

connections. 17 have one or more exocyclic linkages. We also use 62 experimentally 

determined unbound protein structures to evaluate the effect of pre-configuration of the 

protein backbone on docking performance. To assess whether GlycanDock captures 

high-resolution structural details, we examine the counts and recovery of native-like 
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biophysical features such as interfacial residue–residue contacts and hydrogen bonds. 

As a case study, we probe GlycanDock’s ability to recapitulate known glycoligand binding 

preferences of a carbohydrate-binding module (CtCBM6). Finally, we report on the results 

of a pipeline for performing “blind” glycoligand docking when only the unbound protein 

structure and glycoligand sequence are known. The results of the benchmark assessment 

presented in this work demonstrate the effectiveness and overall utility of the GlycanDock 

protein–glycoligand docking refinement algorithm. 

 

2.2 Materials and Methods 

2.2.1 GlycanDock: the Rosetta protein–glycoligand docking refinement algorithm 

GlycanDock is a Monte Carlo-plus-minimization docking refinement algorithm that 

features a high-resolution (all-atom) sampling and refinement strategy to locally optimize 

a glycoligand’s conformation within a putative protein receptor pocket. GlycanDock’s 

sampling algorithm leverages data mined from the Protein Data Bank (PDB)28 and 

extracted from quantum-mechanics calculations12,13 to ensure carbohydrate-specific 

degrees of freedom (DoFs) fall within energetically-favorable, native-like conformational 

space8. The output of a GlycanDock trajectory includes the coordinates of the predicted 

model in PDB format and a breakdown of the model’s total Rosetta score written to a 

Rosetta score file. The score file additionally reports some of the docking performance 

metrics described in this work, such as interface score, ring-RMSD, and ring-SRMSD. 
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2.2.1.1 Initial protein–glycoligand complex for use as input to GlycanDock 

The GlycanDock algorithm requires a pre-packed (see Stage 0 below) putative protein–

glycoligand complex as input, where the protein receptor and glycoligand each have their 

own unique chain identifiers (e.g., protein chain A and glycoligand chain X). GlycanDock 

performs local docking only, meaning the input structure must have the glycoligand 

physically placed within the predicted the binding site and, for larger glycoligands, placed 

in approximately the correct rigid-body orientation. It is assumed that the protein receptor 

backbone is approximately correct, as it is kept fixed throughout the docking trajectory. In 

contrast, the initial glycosidic torsion angles can be arbitrary, as they are sampled and 

energetically minimized during docking; however, it is recommended that the initial 

glycoligand conformation provided is low energy. Protein side-chain rotamers and 

carbohydrate side-chain rotamers (e.g., hydroxyl and N-acetyl groups) at the protein–

glycoligand interface are optimized throughout the docking trajectory to minimize clashes 

while searching for productive interfacial interactions. By default, carbohydrate ring 

conformations are not sampled, but may be included as a DoF using the command-line 

interface. Additional information describing the preparation of input structures is detailed 

in “Benchmarking and evaluation of the GlycanDock algorithm”. 

 

2.2.1.2 Stage 0: Pre-packing the initial, putative protein–glycoligand complex 

In Stage 0 of the GlycanDock algorithm, protein and carbohydrate side chains are pre-

packed72 to ensure compatibility of the input complex with the Rosetta scoring function. 

This is performed by removing any internal clashes within the initial structure and thus 

establishing a low-energy conformation at non-interface regions of the protein receptor. 
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In the case of the bound targets employed in this study, pre-packing additionally serves 

to erase the pre-configuration of the protein side chains at the interface to bind the 

glycoligand, thus reducing bias during docking. Hydrogen atoms are added, the 

glycoligand is separated by 1,000 Å from the protein receptor, and all non-disulfide bridge 

side-chain conformations are optimized by rotamer (i.e., packed) and energy-minimized. 

The glycoligand is then translated back to its starting position. The Stage 0 pre-packing 

procedure should be performed on the initial, putative protein–glycoligand complex prior 

to running the GlycanDock docking algorithm. Pre-packing can be performed using the 

following example command-line flags: 

/Rosetta/main/source/bin/./GlycanDock.linuxgccrelease -database 
/Rosetta/main/database -include_sugars -alternate_3_letter_codes 
pdb_sugar -auto_detect_glycan_connections -in:file:s target.pdb -
in:file:native crystal.pdb -nstruct 1 -ex1 -ex2 -ex3 -ex4 -ex1aro -
ex2aro -docking:partners A_X -out:pdb_gz -
carbohydrates:glycan_dock:prepack_only true 
 

Here, -docking:partners A_X informs the GlycanDock algorithm that the upstream 

protein receptor is identified by chain A and the downstream glycoligand is chain X. 

 

2.2.1.3 Stage 1: Initialize docking trajectory by applying random perturbations to 

the input glycoligand configuration 

Each GlycanDock trajectory begins by applying a small, random perturbation to the 

glycoligand’s rigid-body orientation and to all glycosidic torsion angles. The objective of 

Stage 1 is to increase glycoligand sampling coverage within the protein binding site by 

promoting additional conformational diversity to the input putative complex. A Gaussian 

translational perturbation centered around 0.5 Å and a rotational perturbation centered 
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around 7.5° is applied to the center-of-mass of the glycoligand. A uniform perturbation of 

± 12.5° is applied to each glycosidic torsion angle. We note that many Rosetta docking 

protocols typically employ an initial low-resolution (centroid) search stage in lieu of the 

Stage 1 initial perturbation procedure described here, but the functionality required to 

model carbohydrates as centroid representations has not yet been incorporated into the 

RosettaCarbohydrate framework8 at the time of writing. 

 

2.2.1.4 Stage 2: Docking and refinement of the input protein–glycoligand complex 

Stage 2 of the GlycanDock algorithm focuses on exploring the local conformational space 

of the glycoligand through rigid-body and glycosidic torsion angle sampling and 

refinement. This stage consists of two sets of eight inner cycles of Monte Carlo sampling 

and optimization of the glycoligand conformation at the putative binding site. The inner 

refinement cycles are wrapped by ten outer cycles that ramp the weights of the attractive 

and repulsive terms in the Rosetta scoring function, similar to the approach taken in the 

Rosetta FlexPepDock protein–peptide docking algorithm72,73. In the first outer cycle, the 

weight of the repulsive Lennard–Jones term (fa_rep) is reduced to 45% of its default 

magnitude, and the attractive van der Waals term (fa_atr) is increased by 325%. The 

weights are returned to their original magnitudes incrementally over the course of the 

proceeding outer cycles so that the final outer cycle uses the starting weights for these 

two score terms. 

 

The inner cycles perform the sampling and optimization procedures on the glycoligand. 

The inner cycles consist of a set of eight rigid-body perturbations and a set of eight 
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glycosidic torsion angle perturbations (performed in either order every inner cycle). Every 

perturbation is followed by interfacial side-chain rotamer optimization (packing), and every 

other perturbation is followed by full-structure energy minimization. Rigid-body sampling 

consists of uniform perturbations to the glycoligand’s center-of-mass as well as 

occasional translation of the glycoligand toward the protein receptor’s center-of-mass. 

This latter “sliding” step is occasionally necessary when clashes cause large gradients 

that during minimization jump the glycoligand far away from the protein. Glycosidic-

linkage sampling includes performing uniform and non-uniform perturbations of various 

magnitudes on randomly selected glycosidic torsion angles. Sampling may also include 

occasionally flipping an entire carbohydrate ring around with respect to the rest of the 

carbohydrate chain (without changing the internal conformation of the carbohydrate ring 

itself) for glycoligands that satisfy specific glycosidic dihedral topology requirements (see 

Supplemental). Further details on the sampling and optimization procedures performed 

in the GlycanDock algorithm are available in the Supplementary Information. 

 

GlycanDock trajectory-level information, such as the number of inner sampling and 

optimization cycles performed and accepted, are reported at the bottom of the output 

structure file. 
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2.2.1.5 Command-line usage of GlycanDock 

GlycanDock-specific flags are described in the Table S1 (online74). An example of the 

flags used for the benchmark assessment of GlycanDock is shown below: 

./GlycanDock.macosclangrelease -include_sugars -maintain_links 
-in:file:s target-prepacked.pdb -in:file:native crystal.pdb 
-cst_fa_file interface.cst -nstruct 50 -n_cycles 10 -ex1 -ex2 
-docking:partners A_X  -out:pdb_gz 
 
 

Here, -maintain_links is used rather than -auto_detect_glycan_connections 

because the input structure (target-prepacked.pdb) has already been processed by 

Rosetta and therefore has the appropriate LINK records defining the glycoligand’s 

carbohydrate connectivity8,75. 

 

2.2.2 Benchmarking and evaluation of the GlycanDock algorithm 

2.2.2.1 Metrics for evaluation of model accuracy and ranking of models 

The ring-RMSD metric is used to evaluate the structural accuracy of GlycanDock models. 

Ring-RMSD is the root-mean-squared deviation (RMSD) of all ring atoms of the 

glycoligand in its predicted conformation to its native bound conformation after 

superposition of the protein receptor onto the native protein backbone. Ring-RMSD 

captures both the deviation in the shape and the orientation with respect to the binding 

site of the glycoligand. Models below 2 Å ring-RMSD were classified as a near-native 

(i.e., sufficiently representative of the native bound conformation). Ring-SRMSD was also 

calculated to evaluate the structural accuracy of the shape of the glycoligand irrespective 

of its orientation in the binding site (i.e., this metric can be calculated irrespective of the 



 
 

23 

protein receptor). Ring-SRMSD is the RMSD of all ring atoms of the glycoligand after 

superposition of its predicted conformation onto its native bound conformation. 

 

GlycanDock models were ranked by interface score. The interface score is calculated by 

taking the total Rosetta score (the weighted sum of all the terms in the Rosetta scoring 

function) of the model and subtracting the total score of the separated model where the 

glycoligand is translated 1,000 Å away from the protein receptor. The interface score 

approximates the binding free energy of the complex in units of REU (Rosetta Energy 

Units). The N5 metric is used to quantify the effectiveness of GlycanDock sampling and 

the discriminatory power of the calculated interface score. N5 is the count of near-native 

models ranked among the top-5-scoring of all predicted models for a given target. 

 

2.2.2.2 Bootstrap statistical analysis to determine effective docking range 

Bootstrap case resampling was used as described previously76,77 to determine 

GlycanDock’s effective docking range. Briefly, for a given target, 5,000 sets of resampled 

models were generated by randomly selecting 1,000 models with replacement from the 

original set of GlycanDock models. The observed N5 of each target from each randomly 

resampled set was then averaged and reported as ⟨N5⟩ (standard deviation σ⟨N5⟩). 

Targets that resulted in ⟨N5⟩ ≥ 1.0 were considered a docking success. The effective 

docking range of GlycanDock was then defined as the maximum initial ring-RMSD from 

which 50% or more of tested protein–glycoligand targets achieved ⟨N5⟩ ≥ 1.0. Bootstrap 

case resampling was performed utilizing the pandas78 data analysis tool (see 

Supplemental Information online74 for pseudo-code example). 
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2.2.3 Analysis of biophysical features of GlycanDock models 

2.2.3.1 Definition of the protein–glycoligand interface and biophysical features 

A protein and carbohydrate residue are making an interfacial residue–residue contact if 

at least one non-hydrogen atom of a residue on one side of the interface (e.g. a protein 

residue) is within 5 Å of at least one non-hydrogen atom on the other side of the interface. 

A single protein or carbohydrate residue can make multiple unique interfacial residue–

residue contacts (e.g. carbohydrate residue 1 contacts protein residue 12; carbohydrate 

residue 2 contacts protein residues 12 and 19). Interface residues are defined by the 

unique set of all residues making interfacial contacts (e.g. carbohydrate and protein 

residues 1, 2, 12, and 19 of the previous example are interfacial residues). The counts of 

interfacial residue–residue contacts and interface residues are reported at the bottom of 

the output structure file. In addition, the set of interface residues is reported as a PyMOL79-

based residue selection at the bottom of the output structure file. 

 

Hydrogen bonds are identified geometrically as those interactions contributing at least -

0.5 energy units to the total “hbond” term of the Rosetta scoring function11,80. To be 

considered an interfacial hydrogen bond, a hydrogen bond must be between a 

carbohydrate residue of the glycoligand and a protein residue of the receptor. Interfacial 

hydrogen bond that pass the score cutoff are reported per carbohydrate residue in the 

form of a PyMOL-based residue selection at the bottom of the output structure file. The 

energetic filtering is performed by the HBondSelector at the end of a GlycanDock 

trajectory. Counting of interfacial protein–glycoligand hydrogen bonds is performed by 
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parsing the corresponding PyMOL-based residue selections using an in-house Python 

script. 

 

2.2.3.2 Measuring recovery of biophysical features 

We consider an interfacial residue–residue contact or interfacial hydrogen bond 

recovered if the pair of interacting residues is the same pair observed in the native crystal 

complex. Similarly, an interfacial residue is recovered if it is present at the interface in the 

native crystal complex. Recovery is given as a fraction of the native biophysical feature 

recovered. Recovery ranges from 0.0 to 1.0, where 1.0 indicates complete native 

recovery. Recovery of interfacial residue–residue contacts and interfacial residues is 

calculated at the end of the GlycanDock trajectory and reported at the bottom of the output 

structure file.  Recovery of interfacial hydrogen bonds is calculated using the 

corresponding data after parsing with the in-house Python script. 

 

2.2.4 Local docking refinement of the crystal complex as a reference for 

GlycanDock performance 

All bound protein–glycoligand crystal structures employed in this benchmark were subject 

to GlycanDock local docking refinement to serve as a reference for the measures of 

docking performance (i.e. N5, ⟨N5⟩, and biophysical feature counts and recoveries). An 

example of the flags used to perform crystal refinement is shown below: 

./GlycanDock.macosclangrelease -include_sugars -in:file:s crystal.pdb 
-in:file:native crystal.pdb -cst_fa_file interface.cst -nstruct 50 
-n_cycles 10 -out:pdb_gz -maintain_links -ex1 -ex2 -docking:partners A_X 
-carbohydrates:glycan_dock:refine_only true 
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Here, the -refine_only flag makes the GlycanDock algorithm skip Stage 1 and apply 

only a modified version of Stage 2 in which smaller perturbations are made to the 

glycosidic torsion angles (see Supplementary Information online74). 

 

2.2.5 Selection and preparation of benchmark set of protein–glycoligand 

complexes 

A total of 109 experimentally determined bound protein–glycoligand structures were 

collected from the PDB28 to create the bound target benchmark set. Thirty-three of these 

targets were selected from the AutoDock Vina-Carb benchmark set13 while the rest were 

selected from protein–carbohydrate databases30,81. Some targets contain the same 

protein receptor sequence; however, no two proteins of the same sequence are bound to 

identical glycoligands. For example, Streptococcus pneumoniae endo-β-1,4-

galactosidase binds three different glycoligands in PDB structures 2J1T, 2J1U, and 2J1V. 

We collected unbound protein structures for 62 of the bound targets to create the unbound 

target benchmark set. Unbound protein backbones were aligned onto the backbone of 

their corresponding bound protein structure. Only the coordinates of the aligned unbound 

protein and the glycoligand from the bound complex were kept. Alignment was performed 

using the align command in PyMOL and excluded hydrogens and non-protein atoms 

(remove hydrogens; align <unbound> and !organic, <bound> and !organic). 

Protein Cα-RMSD was calculated also using PyMOL (align <unbound> and name CA, 

<bound> and name CA, cycles=0). All benchmark targets were resolved using X-ray 

crystallography with a resolution of ≤ 2.0 Å. Further details on the selection and 
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preparation of the bound and unbound protein–glycoligand benchmark sets can be found 

in the Supplementary Information online74. 

 

2.2.6 Generation of increasingly perturbed starting structures used as input to 

GlycanDock 

After the preparation procedure described above, bound and unbound target structures 

were pre-packed (see Stage 0 of the GlycanDock algorithm). The glycoligand was then 

systematically perturbed in both rigid-body and glycosidic torsion angle conformational 

space to generate increasingly deviated input starting structures. The glycoligand’s 

center-of-mass was perturbed using uniform translational perturbations of 0.25 Å, 0.5 Å, 

1.0 Å, 2.0 Å, and 3.0 Å and uniform rotational perturbations of 3.75°, 7.5°, 15.0°, 30.0°, 

and 45.0°. Glycosidic torsion angles were perturbed using uniform perturbations of 6.25°, 

15.0°, 30.0°, 60.0°, and 90.0°. Perturbed structures were binned on increasing magnitude 

of deviation measured using ring-RMSD (1.0 ± 0.1 Å, 2.0 ± 0.1 Å, up to 10.0 ± 0.1 Å ring-

RMSD; Figure S1, online74). For unbound targets, ring-RMSD was calculated in reference 

to aligned starting structures. Ten perturbed starting structures per bound and unbound 

target for each ring-RMSD bin were generated. This process resulted in 10,900 perturbed 

starting structures for the bound benchmark set and 6,200 for the unbound. 

 

2.2.7 Docking constraints employed during benchmarking 

All GlycanDock benchmark docking trajectories employed a constraint that used a flat 

harmonic potential to bias the anomeric carbon atom of a specified carbohydrate residue 

to remain within a distance of 7.5 Å ± 2.5 Å to the Cα atom of any protein receptor residue. 
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Constraints were split evenly among the carbohydrate residues of the glycoligand to avoid 

bias to the known bound conformation. For example, a tetrasaccharide glycoligand would 

result in 25% of all GlycanDock models in which the first carbohydrate residue was 

constrained, 25% in which the second carbohydrate residue was constrained, etc. The 

biasing effect of the docking constraint is enforced via the Rosetta scoring function. 

 

2.2.8 GlycanDock benchmark run time 

A single GlycanDock protein–glycoligand docking trajectory resulting in one output model 

took on average 316 ± 154 seconds to complete (936 ± 292 seconds for targets containing 

neuraminic acid). A single GlycanDock receptor-free glycoligand conformational sampling 

trajectory resulting in one output model took on average 68 ± 41 seconds to complete. 

 

2.2.9 Rosetta Technical Details 

2.2.9.1 Modeling and sampling of carbohydrates in Rosetta 

Carbohydrate oligomers and their DoFs (e.g., main-chain and branch glycosidic torsion 

angles, internal ring torsions, side-chain torsions) are defined and modeled using the 

RosettaCarbohydrate framework8. In this benchmark, the internal ring torsion angles (ν) 

are held rigid across each docking experiment (i.e., predicted models retain the same ν 

values as the input starting structures). Glycosidic torsions angles (ϕ, ψ, and, if present, 

ω) and carbohydrate side-chain torsions (χ) are sampled and optimized throughout the 

GlycanDock algorithm. See Labonte et al. for more information on carbohydrate modeling 

in Rosetta8. 
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2.2.9.2 Rosetta scoring function and the glycosidic linkage scoring term 

We employed the standard Rosetta Energy Function 2015 (REF15)11 with an additional 

score term specific to the energetics of glycosidic torsion angles for this work. REF15 is a 

scoring function that includes terms for physically derived potentials, such as van der 

Waals attraction and Lennard–Jones repulsion, Coulombic electrostatics, and a Gaussian 

exclusion implicit solvation term. It also includes empirical potentials such as orientation-

dependent hydrogen-bonding terms and statistically derived terms to capture the 

energetic preferences of backbone and side-chain torsions in proteins. All scores are 

expressed as a unitless Rosetta Energy Unit (REU), with negative REU values 

representing favorable conformations. 

 

The additional Rosetta score term used to capture the energetic preferences of glycosidic 

torsion angles, deemed sugar_bb, is derived from the quantum-mechanics-based 

Carbohydrate Intrinsic (CHI) energy functions8,12,13. The CHI energy functions capture the 

energetic preferences of ϕ and ψ glycosidic torsion angles between pyranose residues. 

It depends on the stereochemistry of the anomeric carbon and the upstream connecting 

oxygen atom and not the chemical identity of the carbohydrate residue. 

 

Recently, the sugar_bb score term was expanded to include scoring of additional 

glycosidic linkage types. New parameters for the CHI energy function were added for the 

ψ torsion of α6 and β6 linkages. Previously, parameters were only available for ψ torsions 

of linkages that did not include exocyclic carbons. Additionally, a new energy function was 

added to represent the preferences for the ω torsions of glycosidic linkages by capturing 
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the “gauche effect”. The “gauche effect” occurs when an ω torsion angle prefers one of 

the two gauche orientations, instead of the expected anti configuration, when the hydroxyl 

group of the carbon atom two carbons previous to the exocyclic carbon is equatorial36. 

For example, the preferred ω angle for a residue attached in a (1→6) linkage to glucose, 

where O4 is equatorial, is not 180° as might be expected but rather 60° or −60°. The new 

energy function is essentially a set of three harmonic energy wells centered over the 

gauche and anti torsion angles. It effectively adds a scoring penalty to any glycosidic 

conformation that does not demonstrate this “gauche effect”. 

 

In this benchmark assessment, the scoring function used included the REF15 score terms 

and weights, the updated sugar_bb score term with a weight of 0.5, and the 

fa_intra_rep_nonprotein score term with a weight of 0.55. 

 

2.2.9.3 Rosetta version number and documentation 

The GlycanDock algorithm is available as of version 61659 (weekly release #283) of the 

Rosetta macromolecular modeling and design software suite. See the online 

documentation for more information: 

https://rosettacommons.org/docs/latest/application_documentation/carbohydrates/Glyca

nDock 

 

2.3 Results 

Figure 2.1 outlines the Rosetta GlycanDock Monte Carlo-plus-Minimization (MCM) 

algorithm for docking flexible glycoligands to protein receptors. Briefly, the GlycanDock 
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algorithm takes a pre-packed (Stage 0) putative protein–glycoligand complex as an input 

structure. During Stage 1 of GlycanDock, the initial glycoligand conformation is randomly 

perturbed in both rigid-body and glycosidic torsion angle space. Stage 1 serves to 

promote conformational diversity in each independent docking trajectory; therefore, this 

initial, random perturbation is not subject to the Metropolis criterion. During Stage 2, a set 

of inner refinement cycles alternates between rigid-body and glycosidic torsion angle 

sampling followed by protein and carbohydrate side chain optimization at the interface 

and full-complex energy minimization. To promote thorough sampling of local 

conformational space, the inner refinement cycles are wrapped in a set of outer cycles 

that ramp down the van der Waals attractive weight and ramp up the Lennard–Jones 

repulsive weight of the scoring function11. Thus, the early cycles of Stage 2 refinement 

allow clashes and promote diversification, while later cycles enforce rigid sterics—a 

strategy shown to be effective in protein–peptide docking72,73. Stages 0, 1, and 2 of the 

GlycanDock algorithm are performed with implicit solvent in Rosetta’s high-resolution, all-

atom mode. 
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Figure 2.1: Overview of the GlycanDock algorithm. Stage 0 prepacks the initial, putative protein–
glycoligand complex. The prepacked output structure is then given to the GlycanDock algorithm as input 
(indicated by the dashed arrow) to the sampling and optimization stages. Stage 1 applies a random 
perturbation to the glycoligand in rigid-body and glycosidic torsion angle space (without employing the 
Metropolis criterion). Stage 2 performs inner cycles of high-resolution rigid-body and glycosidic torsion 
angle sampling and optimization, where optimization includes packing and energy minimization at specific 
intervals. Outer cycles wrap the two sets of inner sampling cycles and control the incremental adjustment 
of the weights of the attractive (fa_atr) and repulsive (fa_rep) Rosetta score terms. 

 

In this benchmark assessment, we apply an ambiguous atom-pair constraint to enforce 

one random carbohydrate residue of the glycoligand to remain physically close to the 

protein receptor throughout each independent docking trajectory. That is, this constraint 

ensures that the final set of models includes, for each carbohydrate residue, a portion of 

models where that residue contacts the protein. Bound protein–glycoligand models are 

ranked by a calculated interface score in REU (Rosetta Energy Units) that approximates 

the binding free energy of the complex. Model quality (i.e., structural accuracy) is 
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measured by calculating the root-mean-squared deviation (RMSD) of the heavy-atoms 

that compose each carbohydrate ring of the glycoligand in its predicted conformation 

compared to its native bound state after superposition of the protein receptor backbone 

(ring-RMSD). We consider models under 2 Å ring-RMSD (a standard model quality cutoff 

in the field of molecular docking13,82) to be sufficiently representative of the native bound 

conformation and are thus referred to as near-native models. 

 

2.3.1 Determination of effective glycoligand docking range for bound and unbound 

protein backbones 

The effectiveness of a local docking algorithm such as GlycanDock depends on the initial 

quality of the putative input complex. Raveh, London, and Schueler-Furman defined an 

algorithm’s effective docking range as the maximum deviation of a given ligand from 

which near-native models can be sampled and correctly ranked73. To identify the effective 

docking range of the GlycanDock algorithm, we assessed docking performance on 109 

bound and 62 unbound protein–glycoligand targets (Table S2, online74) of increasing 

initial deviation. We generated a benchmark set of starting structures by systematically 

perturbing the 109 bound and 62 unbound protein–glycoligand complexes and binning 

the resulting conformations based on increasing ring-RMSD (1–10 Å ring-RMSD; Figure 

S1, online74). We generated ten unique starting structures per target for each ring-RMSD 

bin to ensure diversity of input conformations. Prior to input to GlycanDock, all perturbed 

starting structures underwent an independent optimization of all side-chain rotamers. In 

the case of bound targets, this procedure erased pre-configuration of the interfacial side 

chains to bind the glycoligand. We then used GlycanDock to generate 2,000 models per 
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target per ring-RMSD bin (10 input starting structures per target × 200 models each = 

2,000 models). See Materials and Methods. 

 

Figure 2.2 shows how GlycanDock sampled and discriminated near-native models of a 

branched xyloglucan oligomer bound to its receptor starting from input structures with 

initial glycoligand deviation of 2.0, 4.0, and 6.0 Å ring-RMSD (± 0.1 Å). For the 2.0 and 

4.0 Å inputs (panels A and B, respectively), GlycanDock generated multiple low-scoring 

models similar to the experimental (native) crystal complex. However, in the 6.0 Å case 

(panel C), the top-5 lowest-scoring structures (blue diamonds) are scattered from 2.5–13 

Å ring-RMSD from the native. These non-native-like models score worse (i.e., more 

positive REU) than the refined native models (maroon), suggesting that the scoring 

function is sufficient to discriminate near-native models for this target, but the sampling 

failed to find those low-scoring conformations. 

 

 
Figure 2.2: Example “funnel” plots depicting GlycanDock N5 and ⟨N5⟩ performance on bound target 4BJ0 
at different initial ring-RMSD values. “Funnel” plots depict the relationship between interface score and ring-

RMSD of a set of models (gray circles). While ⟨N5⟩ must be calculated, N5 can be determined directly by 
counting the number of near-native models (models below 2 Å ring-RMSD) within the top-5-scoring models 
(blue diamonds). (A) GlycanDock models predicted from 2.0 ± 0.1 Å initial ring-RMSD input structures 

demonstrate unambiguous (⟨N5⟩ = 5.00) funneling toward the refined native crystal structure (maroon 
circles). (B) Models from 4.0 ± 0.1 Å initial ring-RMSD input structures demonstrate acceptable funneling 

(⟨N5⟩ = 3.66) toward the refined native. (C) Models from 6.0 ± 0.1 Å initial ring-RMSD input structures 

demonstrate no funneling (⟨N5⟩ = 0.30) toward the refined native. Accordingly, the funnel plots in panels A 
and B demonstrate docking success while the funnel plot in panel C demonstrates docking failure. 
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From data like those shown in Figure 2.2, we quantify docking success using N5—the 

count of near-native models ranked among the 5-top-scoring of all predicted models. Due 

to the stochastic nature of any MCM sampling algorithm, we performed a bootstrap 

statistical analysis to quantify the variability within each benchmark docking run68,76. For 

each bound and unbound protein–glycoligand target across all initial ring-RMSD bins, we 

performed bootstrap case resampling to calculate ⟨N5⟩—the bootstrap average of N5 and 

a statistical measure of the reliability of observed docking success76,77. We defined ⟨N5⟩ 

≥ 1.0 (i.e., sampling and discriminating at least one near-native model among the 5-top-

scoring with statistical reliability) as the threshold indicating docking success. For 

example, ⟨N5⟩ = 5.00 and ⟨N5⟩ = 3.66 for the two successful docking cases presented in 

Figure 2.2, whereas ⟨N5⟩ = 0.30 for the failure case. Finally, we define the effective 

docking range of the GlycanDock algorithm as the maximum ring-RMSD from which 50% 

or more of the 109 bound and 62 unbound protein–glycoligand targets achieve ⟨N5⟩ ≥ 1.0. 

 

2.3.2 GlycanDock’s effective docking range is 8 Å ring-RMSD for bound protein 

backbones and 7 Å for unbound 

Figure 2.3A summarizes GlycanDock’s ⟨N5⟩ performance on the bound benchmark set 

as a function of the ring-RMSD of the input structures. More than 50% of the 109 bound 

targets achieved ⟨N5⟩ ≥ 1.0 (green bars) up to 8 Å ring-RMSD, suggesting an effective 

docking range of 8 Å initial ring-RMSD with bound protein backbones. Figure 2.3B 

summarizes the same data for the unbound benchmark set (average protein Cα-RMSD 

to bound 0.49 Å ± 0.48 Å, minimum 0.05 Å, maximum 3.13 Å). More than 50% of the 62 

unbound targets achieved ⟨N5⟩ ≥ 1.0 up to 7 Å ring-RMSD, suggesting an effective 
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docking range of 7 Å initial ring-RMSD with unbound protein backbones. To illustrate 

docking success, Figures 2.3C and D depict the near-native conformations of a top-5- 

and top-1-scoring model, respectively, while Figure 2.3E depicts a top-1-scoring, sub-

angstrom model. Table S3 (online74) reports all observed N5 and bootstrap ensemble 

averages ⟨N5⟩ and standard deviations (σ⟨N5⟩) for the bound benchmark set; Table S4 

(online74) reports docking results for the unbound benchmark set. 

 

 

Figure 2.3: Summary of GlycanDock docking benchmark performance: (A) GlycanDock ⟨N5⟩ performance 
on 109 bound protein–glycoligand targets as a function of initial ring-RMSD bin. Blue bars represent the 

fraction of targets that achieved ⟨N5⟩ ≥ 3. Green bars represent the fraction of targets that achieved ⟨N5⟩ ≥ 
1.0 (the threshold for docking success). Gray bars represent the fraction of targets that sampled at least 3 
near-native models overall but failed to rank them among the 5-top-scoring. (B) Same as panel A, but on 
the 62 targets of the unbound benchmark set. (C–E) Glycoligand conformation from the bound crystal 
structure (orange) compared to conformation after the stage 1 random perturbation (purple, transparent) 
and the final conformation (gray) after GlycanDock sampling for three example targets. Protein backbones 
omitted for clarity. 

 

While achieving ⟨N5⟩ ≥ 1.0 indicates docking success, the fraction of targets surpassing 

the ⟨N5⟩ ≥ 3 threshold (i.e., sampling and discriminating at least three near-native models 



 
 

37 

among the 5-top-scoring with statistical reliability) underscores the robustness of the 

GlycanDock algorithm. More than 50% of bound and unbound targets achieved ⟨N5⟩ ≥ 3 

from input structures up to 5 Å and 3 Å initial ring-RMSD, respectively (Figure 2.3A and 

2.3B, blue bars). For both the bound and unbound benchmark target set, we found no 

significant difference in the average count of near-native models among the 50-top-

scoring models based on either the length of the glycoligand or whether the glycoligand 

was linear or branched (Figure S2, online74). 

 

Docking failure cases (⟨N5⟩ < 1.0) can be either attributed to not having sampled near-

native models (i.e., sampling failure), or to the scoring function not correctly discriminating 

near-native models as top-scoring (i.e., scoring failure). More than 50% of bound and 

unbound targets sampled three or more near-native models overall from inputs up to 10 

Å and 9 Å initial ring-RMSD, respectively (Figure 2.3A and B, gray bars).  Accordingly, 

most GlycanDock failure cases in this benchmark assessment can be attributed to scoring 

failures. Similarly, the greater fraction of unbound targets exhibiting scoring failures (gray 

bars) compared to bound targets highlights the sensitivity of the scoring function to 

changes in the protein backbone induced by glycoligand binding. While additional 

sampling (e.g., generating more models or using more refinement cycles, re-refining top-

scoring output models73, using employing alternative protein receptor backbone 

conformations77,83) may be sufficient to overcome cases of sampling failure, faithful 

discrimination of near-native models depends on the efficacy of the scoring function. 
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2.3.3 Analysis of biophysical feature recovery of top-scoring GlycanDock models 

Glycan-binding proteins have evolved a variety of sequences and structures to recognize 

the great diversity of carbohydrates, often with impressive selectivity5,84. For example, 

different influenza haemagglutinin subtypes can discriminate between α2,3- and α2,6-

linked terminal sialic acids, which determines if a given influenza strain can infect animals 

or humans or both85. To understand how proteins selectively recognize the chemical and 

structural diversity of carbohydrate chains, the structural model must reveal key interfacial 

protein–glycoligand interactions. To this end, we examined the counts and recovery rates 

of protein–glycoligand interfacial residue–residue contacts and hydrogen bonds by the 

50-top-scoring models per target from the bound benchmark set. Explicit water molecules 

(involved in water-mediated hydrogen bonding or otherwise) are not modeled and thus 

not considered in this analysis. See Materials and Methods. 

 

The 50-top-scoring GlycanDock models exhibited a distribution of counts of interfacial 

residue–residue contacts similar to that of the 50-top-scoring refined crystal structures 

across the initial ring-RMSD bins examined (Figure 2.4A). However, as initial ring-RMSD 

increased, more of these contacts were made between non-native pairs of residues (i.e., 

low contact recovery; Figure 2.4B). The distributions of the counts and recovery of 

interface residues followed a similar pattern (Figure S3, online74). Further, top-scoring 

models of targets bound to short glycoligands (i.e., di- and trisaccharides) resulted in 

similar distributions (i.e., shifted left toward lower counts as the initial ring-RMSD bin 

increased) compared to targets bound to long glycoligands (Figure S4, online74). On the 

other hand, top-scoring GlycanDock models did not make as many interfacial hydrogen 
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bonds as compared to the refined crystal structures, with the recovery of native interfacial 

hydrogen bonds decreasing more drastically across increasing initial ring-RMSD bins 

(Figure 2.4C & 2.4D). Hydrogen bonds are more challenging to sample with high fidelity 

because they require precise atom-pair geometries to form86. For instance, native 

interfacial hydrogen bonding networks were difficult to identify and maintain even when 

the glycoligand was refined starting from its crystal conformation (Figure 2.4D, maroon). 

 

 
Figure 2.4: Counts and recovery of biophysical features by the 50-top-scoring GlycanDock models of each 
target from the bound benchmark set. (A) Distributions of the count of interfacial residue–residue contacts 
by the 50-top-scoring GlycanDock models per target predicted starting from input structures of 4.0, 6.0, and 
8.0 Å initial ring-RMSD (gray dashed, dash–dot, and dotted lines, respectively). The distribution of the count 
of interfacial residue–residue contacts after GlycanDock crystal refinement (solid, maroon) serves as a 
reference. (B) Distributions of the recovery of native interfacial residue–residue contacts by the 50-top-
scoring GlycanDock models per target. (C) Same as panel A, but for the count of interfacial hydrogen 
bonds. (D) Same as panel B, but for the recovery of interfacial hydrogen bonds. Discrete data are smoothed 
using kernel density fits using Seaborn87 (kdeplot), resulting in some curves extending below fractions of 
0.0 and above 1.0. Bin widths of 1.0 and 0.5 were used to fit the counts of interfacial residue–residue 
contacts and hydrogen bonds, respectively, and a bin width of 0.1 was used to fit the recoveries. 
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GlycanDock’s top-scoring models sampled productive protein–glycoligand interfaces as 

measured by the counts of biophysical features such as interface residues and interfacial 

residue–residue contacts (Figures 2.4 and S3, online74). However, interfacial hydrogen 

bonds—whether seen in the native bound structure or otherwise—were especially difficult 

to make (Figure 2.4). This analysis provides a deeper evaluation of the GlycanDock 

algorithm’s ability to sample biophysically realistic protein–glycoligand interfaces and 

highlights the challenge the Rosetta scoring function faces in correctly discriminating true, 

native-like interfaces. Detailed results and biophysical features for all of the 50-top-

scoring models per target per initial ring-RMSD bin are available in Table S5 and S6 

online74. 

 

2.3.4 GlycanDock Refinement Qualitatively Recapitulates Glycoligand Specificity 

of CtCBM6 

Carbohydrate-binding modules (CBMs) are discretely folded, non-catalytic, sugar-binding 

proteins88. CBMs are typically found linked to carbohydrate-active enzymes, serving to 

enhance catalytic efficiency by binding to carbohydrate ligands and directing the enzyme 

to its substrate89. While some CBMs bind to a range of different carbohydrate ligands, 

others display distinct binding specificities90. For example, the CBM from xylanase 10A 

of Clostridium thermocellum (CtCBM6) binds xylohexaose with a 100-fold higher affinity 

over cellohexaose91. A fast and accurate computational docking tool capable of 

discriminating glycoligand binders from non-binders would aid in the identification of key 

interfacial residues that inform protein design efforts to engineer new or improved binding 

behavior. Here, as a case study, we tested whether GlycanDock local docking refinement 
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can capture the structural and energetic factors that determine the glycoligand specificity 

of CtCBM6. 

 

A synthetic CtCBM6–cellopentaose starting structure was created by manually adding 

the atoms of glucose’s exocyclic hydroxymethyl moiety to each carbohydrate residue of 

the native CtCBM6–xylopentaose crystal structure (PDB 1UXX). A synthetic CtCBM6U–

cellopentaose starting structure (where CtCBM6U distinguishes the unbound protein 

backbone, PDB 1GMM) was created using the same approach on the aligned unbound 

CtCBM6U–xylopentaose structure from the unbound benchmark target set. RMSD 

calculations for cellopentaose-bound models used the input starting structure as the 

reference structure, whereas xylopentaose-bound models used the native bound crystal 

structure (PDB 1UXX). We then applied the GlycanDock algorithm as described earlier 

on all four complexes, including the pre-packing in Stage 0 and the random perturbations 

in Stage 1. Despite these perturbations, we might expect the bound CtCBM6–

xylopentaose case to have some memory of the crystal interface (PDB 1UXX) that favors 

it enough to provide a lower score. But the unbound docking case (starting with PDB 

1GMM) will not have this memory and will provide a balanced comparison when docking 

different substrates. 

 

Figure 2.5A depicts the resulting funnel plot for the 50-top-scoring CtCBM6–

xylopentaose GlycanDock models (orange circles) versus the 50-top-scoring CtCBM6U–

xylopentaose models (blue triangles) versus the 2,000 CtCBM6–cellopentaose models 

(gray circles) versus the 2,000 CtCBM6U–cellopentaose models (gray triangles). As 
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expected, the Rosetta scoring function clearly favored the native xylopentaose 

glycoligand docked to the bound conformation of CtCBM6 (orange). More importantly, the 

docking of xylopentaose was favored in the unbound docking case (blue) over the 100-

fold weaker cellopentaose binder docked to either conformation of CtCBM6 (gray). 

 

 
Figure 2.5: Results of GlycanDock local docking refinement qualitatively discriminate between a native 
glycoligand binder versus a 100-fold weaker binder to CtCBM6. (A) Funnel plots depicting results of 
GlycanDock local docking refinement of the native CtCBM6–xylopentaose complex (orange circles) versus 
CtCBM6U–xylopentaose (blue triangles, where CtCBM6U distinguishes the unbound protein backbone) 
versus CtCBM6–cellopentaose (gray circles) versus CtCBM6U–cellopentaose (gray triangles). The top-
scoring CtCBM6U–cellopentaose model containing the 100-fold weaker cellopentaose binder is marked 
with an arrow. (B) Comparison of the conformation of the native bound CtCBM6–xylohexaose crystal 
structure (orange, transparent; PDB code 1UXX) to the top-scoring CtCBM6U–cellopentaose model 
marked in panel A (gray). The rearranged receptor tryptophan is shown in sticks. 

 

It has been suggested that the striking difference in binding affinity between xylopentaose 

and cellopentaose is due to steric clashes with the distinguishing exocyclic hydroxymethyl 

moiety of glucose in two subsites of CtCBM6’s binding site91. The effect of these proposed 

steric clashes can be seen in Figure 2.5B where GlycanDock’s top-scoring CtCBM6U–

cellopentaose model (gray) is unable to bury as deeply in the binding site as the native 

xylopentaose glycoligand (orange). Further, these steric clashes led to a rearrangement 

of a receptor tryptophan in the binding site, disrupting an important CH–π “stacking” 

interaction92 with a carbohydrate residue of the glycoligand (Figure 2.5B). These results 
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suggest that cellopentaose would not bind as well as xylopentaose; accordingly, the 

results of GlycanDock local docking refinement qualitatively match the experimentally 

determined glycoligand specificity of CtCBM6. 

 

2.3.5 Combination of FTMap and RosettaLigand Produces Putative Protein–

Glycoligand Models within GlycanDock’s Effective Docking Range Starting from 

“Blind”-like Inputs 

In real molecular docking cases, the bound conformation of the target complex is 

unknown. In fully “blind” docking cases without experimental data, the location of the 

binding site on the protein receptor is also unknown. In this work, we demonstrated that 

the GlycanDock algorithm’s effective glycoligand docking range is up to 7 Å initial ring-

RMSD when using unbound protein backbones (Figure 2.3). Accordingly, GlycanDock 

requires as input a putative protein–glycoligand complex where the glycoligand is placed 

near the binding site and in approximately the correct orientation. When only the unbound 

protein structure and glycoligand sequence is known, an approach to effectively generate 

this putative complex is necessary. Here, we report the results of a pipeline for “blind” 

glycoligand docking using FTMap93 and RosettaLigand69,70. We used FTMap to predict 

the glycoligand binding site and RosettaLigand to generate an initial protein–glycoligand 

structure. Details on the setup and usage of FTMap and RosettaLigand can be found in 

the Supplemental Information. 

 

While various ligand binding site prediction software exist94, including some specific to 

carbohydrate ligands95,96, we chose FTMap for its speed and ease of use via its online 
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webserver97. FTMap predicts ligand-binding “hot spots” by extensively sampling the 

surface of a macromolecular receptor using various small organic molecules as probes. 

Among the probes used is cyclohexane (CHX)—a compound structurally similar to that 

of a carbohydrate. We hypothesized that the FTMap “hot spots” predicted with a CHX 

probe would map to glycoligand binding sites. In 36 of the 62 unbound targets, the FTMap 

server resulted in a CHX probe within the known glycoligand binding site as determined 

by visual inspection (Figure 2.6A; see Table S2 online for list of the 36 targets). 

Accordingly, we used the 36 unbound protein structures and the Cartesian coordinate of 

the center-of-mass of the CHX probe to produce putative protein–glycoligand models 

using RosettaLigand. 

 

 
Figure 2.6: Example results of FTMap binding site prediction and RosettaLigand docking. (A) Results of 
FTMap ligand binding “hot spot” prediction using the unbound structure of CsCBM27-1 (PDB 1PMJ) as 
input. Cyan spheres represent the center-of-mass of each site prediction identified by the cyclohexane 
(CHX) probe. The native bound crystal structure (PDB 1PMH) shows that one carbohydrate residue of the 
glycoligand (orange sticks) overlaps directly on one of the FTMap CHX probe predictions. (B) A 5.7 Å 
heavy-RMSD RosettaLigand model ranked among the 5-top-scoring models. The same native bound 
crystal structure from panel A is shown. The predicted conformation of the glycoligand (transparent cyan 
sticks) overlaps reasonably well with the native conformation (orange sticks) in the binding site but is shifted 
over by one carbohydrate unit. This RosettaLigand predicted conformation (transparent cyan sticks) is 
within the effective docking range of the GlycanDock algorithm. 

 

RosettaLigand requires pre-generated conformations of ligands that have multiple 

rotatable bonds. We used the Rosetta GlycanSampler algorithm (Jared Adolf-Bryfogle, 
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unpublished) to generate 200 initial conformations for each of the 36 unbound target 

glycoligands (see Supplemental Information online74 for details and for other methods of 

generating initial glycoligand conformations). GlycanSampler glycoligand models had an 

average heavy-SRMSD of 1.48 Å ± 0.65 Å (minimum 0.73 Å, maximum 4.98 Å), where 

heavy-SRMSD is calculated using all glycoligand heavy-atoms after superposition of the 

model glycoligand onto the native bound glycoligand. Using the center-of-mass of the 

CHX probe predicted within the known glycoligand binding site as the starting 

coordinates, we generated 2,000 docked models per target using RosettaLigand. Models 

were ranked by interface score, and glycoligand RMSD was calculated using all 

glycoligand heavy-atoms after alignment of the protein receptor (heavy-RMSD). 

RosettaLigand sampled one or more models below 7 Å heavy-RMSD within the 5-top-

scoring models for 25 of the 36 unbound targets (Figure 2.6B). Three of the eleven failure 

targets were carbohydrate binding modules that resulted in top-scoring RosettaLigand 

models where the glycoligand was docked in the reverse direction compared to the native 

structure (i.e., the non-reducing-end carbohydrate of the model aligned with the reducing 

end of the native structure).  RosettaLigand sampled near-native models (here, below 2 

Å heavy-RMSD) among the 5-top-scoring for only seven of the 36 unbound targets. Taken 

together, we have shown that the combination of FTMap and RosettaLigand can produce 

putative protein–glycoligand models within the effective docking range of the GlycanDock 

algorithm starting from “blind”-like docking conditions. 
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2.4 Discussion 

We have developed and evaluated GlycanDock (Figure 2.1), a new, residue-centric 

protein–glycoligand docking refinement algorithm within the Rosetta macromolecular 

modeling and design software suite. GlycanDock treats carbohydrate chains as flexible 

oligomers, allowing for extensive conformational sampling of the glycoligand. Further, 

conformations with glycosidic linkages that fall within pre-determined, energetically-

favorable torsion space are rewarded during sampling to ensure biophysically-realistic 

carbohydrate structures8,12,13. The RosettaCarbohydrate framework8,75 enables the ability 

to handle both simple and complex glycoligands including variations in length, 

composition, ring shape, glycosidic connectivity, and branching, making GlycanDock a 

robust carbohydrate modeling tool. With continued efforts to improve the capabilities of 

the RosettaCarbohydrate framework and expand the Rosetta chemical database6 with 

natural and non-natural monosaccharides and chemical modifications, GlycanDock will 

be able to simulate systems that represent the carbohydrate diversity observed in nature98 

and beyond. 

 

In this work, we described the results of a benchmark assessment of the Rosetta 

GlycanDock protein–glycoligand docking refinement algorithm. We evaluated 

GlycanDock performance on 109 bound and 62 unbound protein–glycoligand targets 

using input structures of systematically increasing initial ring-RMSD. Docking 

performance was measured per target using N5—the count of near-native models ranked 

among the five top-scoring models (Figure 2.2). We used bootstrap case resampling to 

calculate ⟨N5⟩, setting a threshold of ⟨N5⟩ ≥ 1.0 to define docking success. Bootstrap 
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statistical analysis indicated that GlycanDock’s effective docking range is 8 Å ring-RMSD 

with bound protein backbones and 7 Å for unbound (Figure 2.3). Notably, benchmarking 

of GlycanDock included modeling side-chain flexibility at the protein–glycoligand interface 

and examination of glycoligand docking performance on 62 unbound protein structures 

(~58% of the 109 bound benchmark targets). 

 

We sought to measure the GlycanDock algorithm’s ability to recapitulate some of the 

biophysical features that drive glycoligand binding. Hydrogen bonding, for instance, is an 

important interaction at protein–glycoligand interfaces36, but forming productive hydrogen 

bonds requires precise alignment of local atomic geometries86. Sampling these exact 

interactions can be challenging, as evidenced by the relatively poor interfacial hydrogen 

bonding recovery of top-scoring GlycanDock models (Figures 2.4C & D). Future work on 

the RosettaCarbohydrate framework will address additional carbohydrate modeling 

considerations such as CH–π stacking interactions92,99–104 and water-mediated hydrogen 

bonding105–107, which may improve GlycanDock sampling of native-like biophysical 

features at protein–glycoligand interfaces. 

 

We found that the results of GlycanDock local docking refinement qualitatively 

corresponded with the experimentally determined binding specificity of CtCBM6 to 

xylopentaose and cellopentaose glycoligands (Figure 2.5). While further study is needed, 

initial results indicate GlycanDock can be used to predict binder from non-binder 

glycoligands. 
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The performance of other tools for protein–glycoligand docking such as AutoDock Vina-

Carb12,13 and the fragment-based approach by Samsonov and colleagues66 has also 

been published. However, both assessments employed different benchmark target sets 

and docking success definitions, making direct performance comparison difficult. Further, 

both AutoDock Vina-Carb and the method by Samsonov et al. include full rigid-body 

rotations and translations using a grid box sampling approach, whereas our GlycanDock 

docking refinement algorithm does not perform such extensive sampling of rigid-body 

space. Accordingly, we presented a possible “blind” docking pipeline that utilizes 

FTMap93,97 and RosettaLigand69,70 (the latter of which performs grid box sampling) to 

generate putative protein–glycoligand complexes that are within the effective docking 

range of the GlycanDock docking refinement algorithm (Figure 2.6). Models from this 

FTMap-RosettaLigand docking pipeline, AutoDock Vina-Carb, or the method by 

Samsonov et al. could then be refined by the GlycanDock algorithm for further evaluation. 

The scientific community therefore has a selection of useful tools to address a variety of 

modeling and prediction challenges in glycoscience research. 

 

Protein–carbohydrate interactions modulate many cellular and molecular processes that 

are fundamental to all life. High-resolution models of protein–glycoligand complexes help 

us understand how proteins recognize carbohydrates and how glycan structure can bring 

about such diversity in observable function. While experimental limitations continue to 

hinder high-quality protein–glycoligand structure determination, computational modeling 

tools have served to fill this gap. We developed the GlycanDock docking refinement 

algorithm to model, dock, and refine protein–glycoligand complexes and serve as a tool 
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to reveal the atomic details behind the molecular roles carbohydrates play. Also, 

GlycanDock refinement can be combined with the design algorithms of the Rosetta 

software suite. With the ubiquity of glycans in biology and biotechnology, the expanded 

suite of computational tools for glycans has the potential to aid in innovations in human 

health and disease, glycomimetic drug design, pathogen detection and defense, plant-

based renewable bioenergy, and more. 
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Chapter 3 

3. Carbohydrate Blood-antigen Enzyme Modeling and 

Design 

 

3.1 Introduction 

Carbohydrates play an integral role in cell–cell interactions and recognition. One key 

example of this role is the human ABO blood group system. The surface of our red blood 

cells (RBCs) is covered in glycoproteins and glycolipids containing carbohydrate chains 

that terminate in the different ABO carbohydrate blood antigens108. The A, B, AB, and O 

blood types are all differentiated by the identity of (or lack of) the terminal carbohydrate 

of the blood antigen structure (Figure 3.1). 
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Figure 3.1: The human ABO carbohydrate blood antigens. Carbohydrates are depicted using the SNFG 
notation109, and the red blood cell (RBC) surface is depicted as a red half circle. The AB blood type is 
defined by the presence of both the A- and B-antigens on the RBC surface. 

 

In blood transfusions, it is critical to provide compatible blood types to avoid severe 

medical complications. For instance, individuals with Type A blood naturally make 

antibodies against the Type B blood antigen; meaning if a Type A patient were to receive 

Type B blood, those antibodies would activate a potentially lethal immune response. 

Providing Type O blood avoids this situation entirely as it contains neither the Type A nor 

B antigen (Figure 3.1) to activate that immune response, making Type O the “universal” 

blood group. Notably, patients must have the same or compatible Rhesus type (e.g., Type 

O- versus O+), but the impact of Rhesus type is otherwise not discussed in this Chapter 

for clarity. 

 

Given its “universal” nature, a sufficient supply of Type O blood in medical and emergency 

situations is essential, but unfortunately difficult to maintain. To address this limitation, 
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Rahfeld et al. uncovered and characterized an enzymatic pathway in the human gut 

microbiome that converts Type A blood to the “universal” Type O110,111. They found two 

enzymes from Flavonifractor plautii (Fp) that catalyze this two-step conversion–an A type 

blood N-acetyl-alpha-D-galactosamine deacetylase (FpGalNAcDeAc) and an A type 

blood alpha-D-galactosamine galactosaminidase (FpGalNase) (Figure 3.2). 
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Figure 3.2: The A antigen type1tetra-MU is deacetylated by FpGalNAcDeAc, followed by cleavage of 
galactosamine by FpGalNase, yielding H antigen. Mass spectra show the mass loss of 42 on deacetylation 
by FpGalNAcDeAc and 161 mass loss following cleavage of the galactosamine linkage. The black arrow 
indicates the deprotonated species and the grey arrow indicates the chloride adduct of the product. Sugars 
are presented as chemical structures (red-labelled part of the chemical structure is the functional group 
being converted by FpGalNAcDeAc) and symbols using the SNFG notation109. Reprinted with permission 
from Rahfeld et al. Nat. Microbiol. 4, 1475–1485, 2019 (DOI: 10.1038/s41564-019-0469-7). 

 

I wanted to develop a deeper understanding of how FpGalNAcDeAc and FpGalNase 

catalyze the conversion of A type blood to universal O type. This Chapter is 

therefore broken up into two sections: Section 1 focuses on my modeling and 

analyses of FpGalNAcDeAc and Section 2 on FpGalNase. 
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3.2 Section 1 – FpGalNAcDeAc computational modeling and 

design 

 

3.2.1 Goal 1A – Model the full-length FpGalNAcDeAc enzyme structure 

At the time of this study, only the deacetylase domain of FpGalNAcDeAc had been 

experimentally determined (PDB IDs 6N1A and 6N1B). I wanted to generate a full-length 

structural model to inform relevant computational simulations (discussed in this Chapter) 

and future biochemical experiments (suggested throughout this Chapter). To accomplish 

this goal, I used AlphaFold to predict a structural model of all four domains of 

FpGalNAcDeAc. I then used this FpGalNAcDeAc model to conduct further computational 

studies including glycoligand docking (Goals 1B and 1C) and protein design (Goal 1D). 

  

3.2.1.1 AlphaFold predicts the full-length FpGalNAcDeAc enzyme structure with 

high estimated accuracy 

The full-length sequence of FpGalNAcDeAc (772 residues, including the signal peptide) 

is published under UniProt accession number P0DTR4. From this sequence, I generated 

a full-length structural model of FpGalNAcDeAc using AlphaFold112. FpGalNAcDeAc 

consists of four distinct protein domains (as published in Rahfeld et al. 2019): the N-

terminal catalytic deacetylase domain (referred to here on out as FpDeAc), an invasin 

linker domain, a CBM32 domain (referred to here on out as FpCBM32), and a C-terminal 

CBM of unknown family. During the time of writing this thesis, an interactive model of the 

full-length FpGalNAcDeAc structure automatically generated by AlphaFold became 
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available online through the AlphaFold Protein Structure Database at 

https://alphafold.ebi.ac.uk/entry/P0DTR4113. 

 

Figure 3.3 depicts the AlphaFold structural model of the full-length FpGalNAcDeAc 

colored by protein domain. The mean pLDDT of the FpGalNAcDeAc model when 

excluding the signal peptide is 95.48 (specifically, excluding residues 1–27). The mean 

pLDDT of the model when also excluding the FpDeAc domain, which has two available 

crystal structures, is 94.07 (specifically, excluding residues 1–418). Accordingly, the 

predicted accuracy of the AlphaFold-predicted full-length FpGalNAcDeAc structural 

model is on average very high. See Section 3.7 Detailed Methods for more information 

on pLDDT predicted confidence. While the two FpDeAc crystal structures (PDB IDs 6N1A 

and 6N1B) would likely have been included in AlphaFold’s training set, this fact does not 

appreciably affect my work presented here. 

 

 

 

https://alphafold.ebi.ac.uk/entry/P0DTR4
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Figure 3.3: AlphaFold structural model of full-length FpGalNAcDeAc colored by domain. The N-terminal 
FpDeAc domain is in orange, the invasin linker domain is in gray, the FpCBM32 domain is in blue, and the 
C-terminal CBM domain of unknown family is in yellow. 

 

Readers may be interested in comparing FpGalNAcDeAc to experimentally resolved 

structures of other carbohydrate-active enzymes with multiple domains, specifically, 

those with a catalytic domain and a carbohydrate-binding domain linked together via a 

rigid protein domain like invasin. Examples include bacterial sialidases such as PDB IDs 

1EUT, 1W8N, and 2BZD. 

 

3.2.1.2 AlphaFold structural modeling provides more specific residue boundaries 

for the four domains of FpGalNAcDeAc 

As published in Rahfeld et al. 2019, FpGalNAcDeAc is predicted to have a ~145-residue, 

C-terminal carbohydrate binding module (CBM) of family 32 (i.e., FpCBM32; UniProt 

P0DTR4 residues 504–648)110. InterPro (a sequence-based protein domain prediction 

software)114 initially identified this as a much longer ~265-residue, C-terminal CBM32 

domain (UniProt P0DTR4 residues 504–765; see Rahfeld et al. 2019 Supplementary 
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Figure 7110). The AlphaFold-predicted model of full length FpGalNAcDeAc divided this 

~265-residue region into two distinct domains: the originally identified FpCBM32 domain 

and an additional CBM-like domain (see Figure 3.3). Sequence analysis of this additional 

CBM-like domain (UniProt P0DTR4 residues 658–765) failed to classify it into any 

previously reported CBM family (data not shown), meaning this domain is either a new 

family of CBM or is potentially not a CBM at all. Future biochemical experiments 

should probe the role, if any, of this additional, C-terminal CBM-like domain. 

 

In summary, the AlphaFold predicted full length structural model of FpGalNAcDeAc 

provides clearer residue-level boundaries for the four domains of this enzyme. Reported 

as UniProt P0DTR4 residue numbers, the four domains of FpGalNAcDeAc are as 

follows: residues 32–422 the catalytic deacetylase domain, residues 423–503 the 

invasin domain, residues 504–648 the CBM32, and residues 655–772 the 

unidentified CBM-like domain (Figure 3.3). This residue-level information on the 

domain boundaries of FpGalNAcDeAc should be helpful for guiding future truncation and 

biochemical analyses. 

 

3.2.2 Goal 1B – Predict the bound conformation of the FpCBM32–LacNAc complex 

As discussed in the previous Section 3.2.1, FpGalNAcDeAc contains a FpCBM32 domain 

toward the C-terminus. CBM32s have predominantly been reported bind a variety of 

galactose-containing glycoligands such as lactose and N-acetyllactosamine (LacNAc)115. 

Rahfeld et al. reported glycan array data showing FpCBM32 is specific to glycans with 

repeating LacNAc structures. The authors hypothesized that FpCBM32 anchors the 
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FpGalNAcDeAc enzyme to the red blood surface via non-competitive binding to LacNAc 

units (a repeating, terminal component of cell surface glycolipids)110. 

 

Given this interesting anchoring hypothesis, I wanted to generate a structural 

model of the FpCBM32–LacNAc bound complex. To accomplish this, I first identified 

the relevant binding site residues of FpCBM32 using the ligand binding site prediction 

server RaptorX116 in combination with a structural comparison to an experimentally 

resolved CBM32–galactose complex. I then utilized a Rosetta all-atom refinement 

protocol to generate diverse, low-energy conformations of FpCBM32. To improve 

glycoligand docking refinement outcomes, I filtered out FpCBM32 conformations that 

were unlikely to be able to accommodate LacNAc at the predicted binding site using the 

P2Rank binding pocket prediction tool117. Finally, using these selected FpCBM32 

conformations, I used my GlycanDock protein–glycoligand docking refinement algorithm 

(Chapter 2) to generate FpCBM32–LacNAc complex models. 

 

3.2.2.1 Predicting the LacNAc binding site residues of FpCBM32 using RaptorX and 

structural comparison to an experimental structure of a homologous CBM32 bound 

to galactose 

Given a protein sequence, RaptorX predicts which ligand(s) the protein binds (e.g., 

calcium, glycerol, galactose) and through which residues this binding occurs (e.g., 

galactose binding via protein residues 4, 13, 23, and 26)116. The RaptorX server can be 

accessed at http://raptorx.uchicago.edu/StructPredV2/predict/. Providing the sequence 

of FpCBM32 (UniProt P0DTR4 residues 504–648), RaptorX predicted that 
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FpGalNAcDeAc residues Glu527, His543, Tyr546, Arg574, Asn579, Phe635 bind to 

galactose. 

 

The composition of a galactose binding site of a homologous bacterial CBM32 

(CpCBM32–α-galactose PDB ID 2V72; 46% amino acid identity with 95% coverage) is 

nearly identical to predicted binding site residues of FpCBM32 (the only difference being 

a tryptophan instead of the equivalent Tyr546 in FpCBM32). Structural alignment reveals 

a high degree of overlap between the predicted galactose binding residues of FpCBM32 

with the experimentally resolved galactose binding residues of PDB 2V72 (Figure 3.4). 

CpCBM32’s specificity for galactose is reported to be driven by direct hydrogen bonds to 

the equatorial O3 and axial O4 atoms by the binding-site Arg68 and His37 residues, 

respectively (using residue numbers as reported in PDB 2V72; see Figure 3.4)118. Given 

the presence and predicted orientation of the corresponding Arg574 and His543 residues 

in my FpCBM32 model, I hypothesized that these two residues played the same important 

role in recognizing the galactose residue of LacNAc. I therefore moved forward with high 

confidence in (1) the accuracy of the predicted binding site residues of FpCBM32 and (2) 

the importance of hydrogen bonds made by FpCBM32’s His543 and Arg574 residues for 

LacNAc docking refinement. 
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Figure 3.4: Illustration of the similarities between the β-Gal binding site of the experimental CpCBM32–β-
Gal crystal structure (PDB 2V72) versus the predicted LacNAc binding site of the FpCBM32 AlphaFold 
model. (A) Overall comparison of the carbohydrate binding sites of CpCBM32 (gray, experimental) and 
FpCBM32 (blue, predicted). CpCBM32 was resolved bound to β-Gal (yellow, sticks). There is significant 
structural overlap between the β-Gal binding site residues of CpCBM32 and the predicted LacNAc binding 
residues of FpCBM32 (gray versus blue sticks). (B) A zoom-in on the two primary residues of CpCBM32 
that contribute to β-Gal specificity. CpCBM32 residues Arg68 and His37 (gray, opaque sticks) hydrogen 
bond specifically to the equatorial O3 and axial O4 atoms of β-Gal, respectively (yellow, dashed lines; atom-
pair distances are in reported Ångstroms). FpCBM32 has the equivalent Arg574 and His543 residues (blue, 
transparent sticks) predicted to be in the same orientation as the corresponding residues in the CpCBM32–
β-Gal crystal structure. 

 

3.2.2.2 Pre-sampling conformations of FpCBM32 that are best poised to 

accommodate LacNAc at the predicted binding site 

Given the uncertainty as to whether AlphaFold predicted a bound or unbound 

conformation of FpCBM32, I wanted to increase my chances of generating an accurate 

FpCBM32–LacNAc complex model by pre-sampling conformations of FpCBM32 that 

could realistically accommodate LacNAc at the predicted binding site prior to performing 

glycoligand docking. Using the Rosetta FastRelax protocol in dual-space (i.e., all-atom 

refinement in both dihedral and Cartesian space)119,120, I generated 250 low-energy 

conformations of FpCBM32 starting from the predicted AlphaFold model. Since Rosetta 

score alone cannot distinguish a bound versus unbound conformation in the absence of 

the given binder, I turned to assessing the accessibility of the predicted binding site using 



 
 

61 

P2Rank: a machine learning-based, protein template-free tool for predicting ligand 

binding sites using the calculated solvent accessibility of local chemical neighborhoods117. 

The P2Rank server is accessible at https://prankweb.cz/. By assessing each relaxed 

FpCBM32 model using P2Rank, I identified 52 (among the original 250) refined FpCBM32 

models that I expected to be the best poised to accommodate and bind LacNAc at the 

predicted binding site. Selection criteria for P2Rank-assessed models were as follows: 

the top-ranked ligand binding pocket must contain no more than eight residues total and 

must contain all six predicted LacNAc binding residues (reported in bold in the previous 

section). 

 

3.2.2.3 Using GlycanDock to refine a model of the FpCBM32–LacNAc complex 

structure 

To run GlycanDock protein–glycoligand refinement, I needed to generate an initial 

FpCBM32–LacNAc complex to serve as the input starting structure for each of the 52 

relaxed FpCBM32 conformations selected by P2Rank. To do so, I first re-aligned these 

52 relaxed FpCBM32 conformations and PDB 2V72 onto the original FpCBM32 

AlphaFold model. I then grafted in a LacNAc disaccharide by aligning its galactose 

residue onto the bound galactose residue of PDB 2V72. Finally, I grafted this aligned 

conformation of LacNAc onto each of the P2Rank-selected 52 relaxed FpCBM32 

conformations, resulting in 52 initial FpCBM32–LacNAc input starting structures to be 

refined using GlycanDock. 
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In Figure 3.5, the blue circles depict the “funnel” plot results of GlycanDock refinement 

on all the 52 initial FpCBM32–LacNAc models (where the x-axis is the ring-atom RMSD 

of the refined LacNAc conformation taken to its starting conformation, which is identical 

in all 52 inputs). Similarly, the orange diamonds depict the “funnel” plot results of 

GlycanDock refinement when employing atom-pair distance constraints to enforce direct 

hydrogen bonds between the equatorial O3 and axial O4 atoms of LacNAc’s terminal 

galactose residue with FpCBM32’s Arg574 and His543 residues, respectively. While 

GlycanDock sampled more conformational space when no constraints were employed 

(as evident by the wider spread of blue circles all along the x-axis of Figure 3.5), the atom-

pair distance constraints guided sampling toward more realistic docked models that better 

matched experimental information. 

 

  

Figure 3.5: Results of GlycanDock refinement of FpCBM32–LacNAc complex models. (A) Results of 
GlycanDock refinement depicted as a “funnel” plot where the x-axis is the RMSD (Ångstroms) of the 
carbohydrate ring atoms of the refined model taken to the starting conformation, and the y-axis is Rosetta 
interface score (REU) of the refined model. Blue circles represent models that did not have any atom-pair 
distance constraints guiding the system; orange diamonds represent models that did. (B) Two 
representative GlycanDock refined models of FpCBM32–LacNAc as indicated by the arrows of 
corresponding color in Panel A. Both models came from a GlycanDock refinement simulation that employed 
atom-pair distance constraints. The red spheres highlight the reducing-end oxygen atoms (connected to 
the C1 anomeric carbons) of LacNAc from which, in the relevant biological setting, additional LacNAc units 
would extend. 
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The top-scoring FpCBM32–LacNAc model from GlycanDock refinement using atom-pair 

distance constraints is indicated with a green arrow in Figure 3.5A and shown in green in 

Figure 3.5B. While the galactose unit of LacNAc may be appropriately hydrogen bonding 

with the FpCBM32 Arg574 and His 543 residues (hydrogen bonds not indicated), the N-

acetyl-glucosamine unit of LacNAc appears to be lying flat against the protein. This 

explains this docked model’s highly favorable interface score (-11.2 REU) since more 

interfacial interactions generally leads to more favorable interface score. However, this 

conformation where the N-acetyl-glucosamine is lying flat against the protein is likely not 

a biologically relevant conformation despite its favorable Rosetta score. A more 

biologically relevant conformation is shown in yellow in Figure 3.5B and indicated with a 

yellow arrow in Figure 3.5A. This docked model still has a favorable interface score of -

7.3 REU, but importantly has the N-acetyl-glucosamine unit of LacNAc oriented toward 

the solvent (i.e., away from the protein). This docked conformation is more relevant 

because, in the predicted biological setting where FpCBM32 is binding to the terminal 

LacNAc component of a cell surface glycolipid, there would be additional, repeating 

LacNAc units extending off the C1 atom of the N-acetyl-glucosamine (shown as a 

sphere). Therefore, the C1 atom of the reducing end N-acetyl-glucosamine should be 

oriented toward the solvent like it is in the yellow model. 

 

This FpCBM32–LacNAc docking study serves as a reminder that all known or 

predicted biological contexts and any experimental information should be 

considered when selecting a final model to represent the docked complex, rather 

than selecting a final model based on Rosetta score alone. 
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3.2.3 Goal 1C – Predict the bound conformation of the FpDeAc–A-antigen complex 

As mentioned in Section 3.2.1, Rahfeld et al. published a crystal structure of FpDeAc (the 

deacetylase catalytic domain of FpGalNAcDeAc) in both an unbound state (PDB ID 

6N1A) and in a state bound to the blood carbohydrate B-antigen trisaccharide (PDB ID 

6N1B; FpDeAc–B-antigen). While the actual substrate of FpDeAc is the A-antigen, the B-

antigen mimics FpDeAc’s reaction product, the GalN-antigen (deacetylating the A-antigen 

trisaccharide results in the GalN-antigen trisaccharide). As a reminder, the differences 

between the A-, B-, and GalN-antigen trisaccharides are as follows: the A-antigen is 

characterized by containing a terminal N-acetyl-galactosamine residue at the non-

reducing end whereas the B-antigen contains a galactose and the GalN-antigen contains 

a galactosamine (in all three cases the carbohydrate is α-linked to its parent). In any case, 

the structures of the FpDeAc–A-antigen and FpDeAc–GalN-antigen complexes (i.e., the 

enzyme–substrate and enzyme–product complexes, respectively) would better inform 

FpDeAc’s catalytic mechanism and serve as more relevant starting models for future 

enzyme engineering endeavors (e.g., improving FpDeAc’s catalytic activity on the A-

antigen). In this Section 3.2.3, I report my steps to generate a Rosetta-refined model of 

the FpDeAc–A-antigen and FpDeAc–GalN-antigen complexes using the available 

FpDeAc–B-antigen crystal structure as a template (PDB ID 6N1B). I then detail my 

findings after performing a closer structural comparison between all three refined 

FpDeAc–blood-antigen trisaccharide complex models. 

 



 
 

65 

3.2.3.1 Using the experimental FpDeAc–B-antigen structure to generate refined 

models of the FpDeAc–A-antigen and FpDeAc–GalN-antigen complexes 

To manually generate an initial model of the FpDeAc–A-antigen complex, I first aligned 

an α-N-acetyl-galactosamine monosaccharide (PDB ID A2G) onto the terminal, non-

reducing α-galactose of the B-antigen trisaccharide from the FpDeAc–B-antigen 

experimental structure (PDB ID 6N1B) using PyMOL. I then replaced the coordinates of 

the α-galactose’s O2 atom with the coordinates of the N-acetyl group from the aligned 

A2G molecule, thus manually generating a starting model of the FpDeAc–A-antigen 

complex. By performing these same steps but replacing the α-galactose’s O2 atom with 

the coordinates of only the nitrogen atom of the aligned A2G molecule, I also manually 

generated a starting model of the FpDeAc–GalN-antigen complex. Finally, I refined both 

initial complex models using the Rosetta FastRelax protocol (i.e., all-atom refinement in 

dihedral space)119. Throughout this process I retained two of the four resolved calcium 

ions from PDB 6N1B: the active-site calcium and the calcium ion likely important for 

enzyme structure (calcium ion residues 501 and 502, respectively). Therefore, relaxing 

the FpDeAc–blood-antigen models included any non-water-mediated effects of calcium’s 

(a divalent metal ion) reported role of coordinating the active site for catalysis110. 

 

Figure 3.6 compares the results of subjecting the experimentally resolved FpDeAc–B-

antigen structure (gray circles) and the two manually generated FpDeAc–A-antigen 

(orange diamonds) FpDeAc–GalN-antigen (blue squares) models to Rosetta’s FastRelax 

all-atom refinement protocol. We can clearly observe that the FpDeAc–A-antigen model 

has the most favorable Rosetta interface score (average -19.65 ± 0.86 REU) compared 
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to FpDeAc–B-antigen (-14.17 ± 0.97) and FpDeAc–GalN-antigen (-13.04 ± 0.99). This 

result agrees with experimental information given that the FpDeAc–A-antigen complex is 

the true enzyme–substrate complex, which requires favorable binding for catalysis to 

proceed, and that the FpDeAc–GalN-antigen complex is the true enzyme–product 

complex, which requires less favorable binding for the deacetylated product to be 

released. 

 

Figure 3.6: “Funnel” plot depicting the relationship between the carbohydrate heavy-atom RMSD (x-axis; 
Ångstroms) and the Rosetta interface score (y-axis; Rosetta Energy Units) after FastRelaxing the 
experimental FpDeAc–B-antigen complex (gray circles) and the manually generated FpDeAc–A-antigen 
(orange diamonds) and FpDeAc–GalN-antigen (blue squares) complex models (nstruct = 250 each). The 
carbohydrate heavy-atom RMSD is calculated using the corresponding input structure as the reference. 

 

3.2.3.2 Analysis of the refined FpDeAc–A-antigen complex models reveals the 

active site residues most important for binding the terminal N-acetyl-

galactosamine residue 

Given the agreement between the Rosetta FastRelax simulation results and experimental 

information, I used my refined FpDeAc–A-antigen complex models to identify the active 

site residues that contribute the most (and the least) to binding the terminal N-acetyl-
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galactosamine residue characteristic of the A-antigen. Here, contribution to binding is 

approximated by the two-body Rosetta energy score between the terminal N-acetyl-

galactosamine and a given FpDeAc interfacial residue. 

 

Figure 3.7 depicts the average Rosetta two-body energy scores between the terminal N-

acetyl-galactosamine of the A-antigen and the specified FpDeAc residues (including the 

active site calcium ion, residue 501A) at the interface after the FastRelax refinement 

described in the previous section. Error bars represent the standard deviation. Only two-

body energies where the given FpDeAc residue was present in at least 10% of the refined 

models generated (i.e., at least 25 of the 250) are shown. The count of FpDeAc residues 

that contributed to the interface in fewer than the 250 the refined models generated are 

noted at the top of the figure. All two-body energy scores are calculated from direct 

interactions; there are no explicit water molecules or water-mediated interactions 

modeled in the system. 
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Figure 3.7: Breakdown of average Rosetta two-body energy scores (y-axis; REU) between the N-acetyl-
galactosamine of the A-antigen to the FpDeAc interfacial residues (x-axis) across refined FpDeAc–A-
antigen complex models (nstruct = 250). The more negative the two-body energy, the more favorably the 
given residue interacts with the N-acetyl-galactosamine. If a given FpDeAc residue was not present at the 
FpDeAc–A-antigen interface in all 250 of the refined complex models, the count of times it was present is 
noted at the top of the chart. 

 

It is clear from Figure 3.7 that the active site calcium (FpDeAc residue 501A) energetically 

contributes the most to binding the terminal N-acetyl-galactosamine residue of the A-

antigen. Rahfeld et al. already noted the importance of this calcium (a divalent metal ion) 

for FpDeAc catalysis to occur. Active site coordinated calcium ions are also commonly 

observed in carbohydrate deacetylase enzymes121. 

 

FpDeAc protein residues 97A (His), 182A (Tyr), 210A (Tyr), and 367A (Trp) also 

contribute significantly to terminal N-acetyl-galactosamine binding. Interestingly, His97A 

only contributed to the interface in 70 of the 250 refined FpDeAc–A-antigen complex 

models. In those 70 models, His97A is making a hydrogen bond to terminal N-acetyl-

galactosamine’s C3 hydroxyl, whereas His97A is oriented away from the carbohydrate in 
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the remaining 180 refined models and is therefore not contributing this interfacial 

hydrogen bond (data not shown). The aromatic residues Tyr182A, Tyr210A, and Trp367A 

appear to be stacking against the bound A-antigen (data not shown), though not 

necessarily in the canonical orientations observed for CH–π interactions (see Fig 2 of 

Spiwok 201792). Nevertheless, multiple carbohydrate–aromatic interactions likely serve 

to make desolvation upon complex formation less unfavorable (thanks to the electron 

density in the aromatic π orbitals) and are therefore still important for FpDeAc–A-antigen 

binding122. Finally, due to the implicit solvation model Rosetta employs, my analysis does 

not include the effect of water-mediated hydrogen bonding interactions, which have long 

been identified as key determinants of productive protein–carbohydrate binding107. 

Future computational work should model the FpDeAc–A-antigen system with 

explicit waters and analyze their effects on interfacial Rosetta two-body energies. 

 

3.2.4 Goal 1D – Predict mutations that improve the stability of the FpDeAc catalytic 

domain 

Commercialization typically necessitates an increase in the scale of enzyme production 

and/or an increase in enzyme stability to ensure it remains catalytically active throughout 

the conversion process. In short, enzyme stability and ease of expression positively 

correlates with its commercial effectiveness. While Rahfeld et al. did not provide explicit 

details on the stability (e.g., melting temperature) or ease of expression of 

FpGalNAcDeAc (e.g., average protein yield in milligrams per milliliter of host organism 

expression)110, any enzyme mutant that increases stability and/or expression without 

affecting its catalytic activity is a generally welcomed modification. Accordingly, I wanted 
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to utilize my refined FpDeAc–A-antigen complex model (see previous Section 3.2.3), 

server-generated multiple sequence alignments, and automated Rosetta protein design 

protocols to identify mutations that are predicted to improve the stability and expression 

of FpDeAc (and, by association, the FpGalNAcDeAc enzyme as a whole). 

 

3.2.4.1 DeepMSA server generates a multiple sequence alignment created from 

multiple genome databases 

Some protein design protocols can utilize a multiple sequence alignment (MSA) to guide 

the sequence space explored during the design process (see PROSS in next Section 

3.2.4.2). I used DeepMSA123 (automated server available at 

https://seq2fun.dcmb.med.umich.edu/DeepMSA/) to generate an MSA for FpDeAc 

(UniProt P0DTR4 residues 33–417). DeepMSA is an “open-source method for sensitive 

MSA construction, which has homologous sequences and alignments created from multi-

sources of whole-genome and metagenome databases through complementary hidden 

Markov model algorithms”123. DeepMSA generated an alignment with 14,634 sequences 

(including FpDeAc) with an alignment depth of 355.873 (see Zhang et al. 2019 for more 

information on alignment depth). I then employed HHfilter124 via its implementation into 

the MPI Bioinformatics Toolkit server (https://toolkit.tuebingen.mpg.de/tools/hhfilter) to 

extract a representative set of sequences from the first 10,000 sequences of the MSA 

(HHfilter has an upper sequence limit of 10,000). HHfilter filtered representative 

sequences with a maximum of 90% sequence identity, a minimum of 30% sequence 

identity, and a minimum of 75% sequence coverage with respect to the FpDeAc query 
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sequence. The resulting representative MSA contained 77 sequencesb, including 

FpDeAc. 

 

3.2.4.2 PROSS server identifies mutations predicted to improve FpDeAc stability 

and bacterial expression 

PROSS (the Protein Repair One-Stop Shop server) takes an enzyme structure and uses 

Rosetta protein design protocols combined with MSA-derived evolutionary sequence 

constraints to identify mutations predicted to improve enzyme stability and bacterial 

expression125. For my work, I provided PROSS the bound FpDeAc–B-antigen crystal 

structure (PDB ID 6N1B) as input (removing only two calcium ions, CA 503 and 504), and 

the MSA generated by DeepMSA as described in the above Section 3.2.4.1. I also 

provided a list of seventeen protein residues to keep fixed during the design process to 

minimize the risk of sampling mutations that would impact enzyme activity: FpDeAc 

positions 36, 59, 61, 64, 97, 99, 100, 102, 121, 182, 185, 209, 210, 251, 252, 254, 315 

(using the residue numbering as in 6N1B). Finally, I specified that PROSS use the 

REF2015 Rosetta scoring function during the protein design simulation (the “sugar_bb” 

energy term for glycosidic linkages cannot be included via the server, but this limitation 

does not appreciably affect my results). PROSS outputs nine designs it predicts to be 

more stable and/or easily expressed (in bacteria) than the wildtype, where each design 

generally contains more mutations than the previous. Table 3.1 provides a summary of 

                                            
b I do not fully know how the MSA with >14,000 sequences was filtered down to a representative set of only 
77 sequences. DeepMSA’s output did not include identifiers for the sequences (e.g., a UniProt ID) so I 
could not perform an appropriate follow-up investigation. 
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seven of the suggested FpDeAc mutations identified by PROSS for improvement 

of stability and expression. 

 

  



 
 

73 

Table 3.1: All FpDeAc PROSS designs predicted to improve the enzyme’s expression with < 10% of a 
mutational load to the native sequence. FpDeAc residue numbering follows that of the 6N1B crystal 

structure. 

 
Count Position WT Des1 Des2 Des3 Des4 Des5 Des6 Des7 

7 72 S N N N N N N N 

7 60 I D D D D D D D 

7 237 G N N N N N N N 

7 88 E V V V V V V V 

7 51 A M M M M M M M 

7 114 A C C C C C C C 

7 101 A P P P P P P P 

6 360 K  G G G G G G 

6 327 A  P P P P P P 

6 107 A  P P P P P P 

5 274 R   E E E E E 

5 253 Q   L L L L L 

5 200 L   M M M M M 

4 233 V    S S S S 

4 302 S    T T T T 

4 81 E    P P P P 

3 130 V     I I I 

3 268 S     I I I 

3 194 F     T T T 

3 215 A     N N N 

3 166 A     K K K 

2 108 E     K K K 

2 16 Q      L L 

2 112 M      L L 

2 202 A      Y Y 

1 126 V       S 

1 282 H       Y 

1 230 G       S 

1 329 D       N 

1 349 A       Q 
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3.2.4.3 Rosetta Cartesian ΔΔG protocol identifies mutations predicted to improve 

FpDeAc stability 

To supplement the stabilizing FpDeAc mutations predicted by PROSS, I also used the 

Rosetta Cartesian ΔΔG protocol (cart_ddg) to identify mutations that stabilize the 

protein’s fold126,127. The cart_ddg protocol uses Cartesian-space refinement restricted to 

the neighborhood of a specified mutational site to allow for local side chain and backbone 

movement to accommodate the change in residue identity. The resulting total energy 

change due to the mutation (ΔGmutant) is compared to the resulting total energy change 

due to performing the same mutation-plus-refinement process when “mutating” to the 

wildtype residue (ΔGwildtype). If the mutation is energetically favorable (i.e., ΔGmutant – 

ΔGwildtype = ΔΔGmutation < 0), then the mutation is predicted to stabilize the protein’s fold. 

 

The cart_ddg protocol requires a relaxed starting structure as input. I took the bound 

conformation of FpDeAc from the 6N1B crystal structure (keeping only the protein 

residues) and relaxed it in Cartesian space using the parameters suggested by the online 

cart_ddg documentation (https://www.rosettacommons.org/docs/latest/cartesian-ddG). I 

kept only the protein residues because metals/ions are generally incompatible with any 

form of Cartesian-space sampling in Rosetta, and cart_ddg is not well tested with protein 

interfaces. I performed the initial relaxation preparation step 50 independent times and 

used the lowest scoring model by total Rosetta score as input to cart_ddg. 

 

Using the cart_ddg protocol, I sampled all point mutations of FpDeAc excluding the same 

seventeen positions that were held fixed when running PROSS. In other words, I used 
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cart_ddg to independently sample each of the twenty amino acids at all but seventeen 

positions of FpDeAc (385 residues in length as resolved in 6N1B). The command line 

arguments to run a cart_ddg simulation for a single mutation are provided in Section 3.6. 

Table 3.2 lists all single-point cart_ddg designs with a ΔΔGmutation ≤ -7.0 REU. 

 

Table 3.2: All FpDeAc single-point Rosetta cart_ddg designs predicted to stabilize the enzyme’s fold. 
FpDeAc residue numbering follows that of the 6N1B crystal structure. 

Position WT Mutant Position WT Mutant 

35 P I / V 117 N F 

56 N I / V 203 N V 

88 E V 253 Q F 

   268 S V 

 

Each design identified by cart_ddg appears to install an additional hydrophobic residue 

to increase hydrophobic burial (a major driver of protein folding). While these types of 

mutations were not explicitly sought, mutations that increase the amount of stabilizing van 

der Waals contacts with neighboring residues (as captured by the “fa_atr” Rosetta score 

term) are the simplest to identify since these types of residue-pair interactions are 

independent of orientation and direction (unlike geometry-sensitive interactions like 

hydrogen bonds and salt bridges). 

 

3.3 Section 1 Summary 

In this Section, I described the structural model of full-length FpGalNAcDeAc that I 

generated using AlphaFold. I detailed how I leveraged binding site prediction software, 

homologous structural information, and my Rosetta protein–glycoligand docking 

refinement protocol to generate a model of the FpCBM32–LacNAc complex. Similarly, I 
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detailed my steps to generate a refined model of the FpDeAc–A-antigen complex and the 

FpDeAc–GalN-antigen complex, leading to a description of the residues important for 

terminal N-acetyl-galactosamine binding. Finally, I reported the mutations I identified 

using two different protein design approaches that are predicted to stabilize FpDeAc and 

improve enzyme expression. Designed FpDeAc sequences were shared with our 

experimental collaborators (Peter Rahfeld and Charlotte Olagnon from the lab of Stephen 

Withers at the University of British Columbia, Vancouver, Canada) for testing.  
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3.4 Section 2 – FpGalNase computational modeling and design 

 

3.4.1 Goal 2A – Model the full-length FpGalNase enzyme structure 

Unlike FpGalNAcDeAc, there were no experimentally determined structures for any 

domain of FpGalNase at the time of my study. Accordingly, I used AlphaFold to predict 

the full-length structure of FpGalNase (Goal 2A). This predicted FpGalNase model was 

then used to conduct structure- and sequence-based analyses to probe the origin of 

FpGalNase’s unique specificity to α-D-galactosamine (Goal 2B). 

 

3.4.1.1 AlphaFold predicts full-length FpGalNase enzyme structure with high 

predicted accuracy 

The full-length sequence of FpGalNase (1078 residues, including the signal peptide) is 

published under UniProt accession number P0DTR5. From this sequence, I generated a 

full-length structural model of FpGalNase using AlphaFold112. FpGalNase also consists 

of four distinct protein domains: the N-terminal α-galactosaminidase catalytic domain 

(FpGH36; a glycosyl hydrolase (GH) of family 36) and three consecutive carbohydrate 

binding modules (CBMs) of unknown family110. During the time of writing this thesis, an 

interactive model of the full-length FpGalNase structure automatically generated by 

AlphaFold became available online through the AlphaFold Protein Structure Database at 

https://alphafold.ebi.ac.uk/entry/P0DTR5113. 

 

Figure 3.8 depicts the full-length FpGalNase AlphaFold model colored by the four distinct 

protein domains. About 96% of the FpGalNase residues (excluding the signal peptide) 
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had a pLDDT estimate ≥ 70 (80% of residues were ≥ 90), meaning the overall confidence 

in the accuracy of the AlphaFold model is high and can therefore be used in downstream 

analyses such as those described in the following sections. 

 

Figure 3.8: AlphaFold structural model of full-length FpGalNase colored by domain. The N-terminal, 
catalytic FpGH36 domain is in orange and the three CBMs of unknown family are in yellow, blue, and green. 
Linker regions between domains are colored in gray. 

 

3.4.1.2 Predicted AlphaFold model provides more specific residue-level boundaries 

for the four domains of FpGalNase 

Often, enzymes are truncated down to their individual domains to perform biochemical 

experiments that can then identify that domain’s function. In these truncation experiments, 

it is important for the experimentalist to have accurate start- and end-residue cutoffs to 

ensure only the protein domain of interest is biochemically interrogated and that the given 

domain is in its most biologically relevant, stable form. 
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AlphaFold’s predicted model of full-length FpGalNase provides clearer residue-level 

boundaries for the four domains of this enzyme. Reported as UniProt P0DTR5 residue 

numbers, the four domains of FpGalNase are as follows: residues 28–697 the 

catalytic α-N-acetyl-galactosamine galactosaminidase (GH36) domain, residues 

710–827 the first CBM of unknown family, residues 833–950 the second CBM of 

unknown family, and residues 958–1078 the third and final CBM of unknown family 

(see Figure 3.8). Future FpGalNase truncation experiments–in particular, those that 

probe the carbohydrate specificities of the three unknown CBMs–should be based on 

these reported start- and end-residue domain cutoffs. 

 

3.4.2 Goal 2B – Predict the FpGH36 residues important for GalN-antigen binding 

and specificity 

Rahfeld et al. identified the catalytic domain of FpGalNase as a glycosyl hydrolase (GH) 

of family 36 (FpGH36)110. The GH36 family is a member of the glycosyl hydrolase clan 

GH-D superfamily, which primarily consists of α-galactosidases and α-N-acetyl-

galactosaminidases128. Enzymes in this superfamily typically share a common catalytic 

mechanism and structural topology129. While α-galactosidases (EC 3.2.1.22) hydrolyze 

terminal, non-reducing α-D-galactose residues130, FpGH36 is specific to terminal, non-

reducing α-D-galactosamine (α-GalN) residues (and not α-D-galactose (α-Gal) nor α-D-

N-acetyl-galactosamine (α-GalNAc) residues)110. Rahfeld et al. claimed that, to the best 

of their knowledge, there is no other previously reported GH36 enzyme specific to α-D-

galactosamine. 
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My goal was to perform a structure- and sequence-based interrogation toward 

developing a biophysical understanding of FpGH36’s unique specificity to 

terminal, non-reducing α-GalN sugars. To identify FpGH36 residues important for 

carbohydrate binding, specificity, and catalysis, I compared the active sites of the 

predicted FpGH36 AlphaFold model to experimental structures of other GH36 enzymes 

as well as known residue motifs reported in the GH-D superfamily literature. Figure 3.9 

illustrates the sequence and predicted structure of each residue motif as it is found in the 

FpGH36 model.  Table 3.3 reports additional information about these conserved residue 

motifs and the experimental structures used in this analysis. Both Figure 3.9 and Table 

3.3 are referred to throughout this Section 3.4.2. Ultimately, the results of my analysis 

should guide future biochemical experiments toward targeted mutational investigation of 

the FpGH36 active site. 
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Figure 3.9: Predicted conformations of FpGH36 active site residues that are the equivalent to known GH-
D superfamily motifs. (A) The D-D-G-W motif (cyan sticks) with respect to Asp463/Asp532 (orange sticks; 
the two catalytic residues of FpGH36, gray cartoon). (B) The equivalent K-x-D motif (green sticks) with 
respect to Asp463/Asp532 (orange sticks). (C) The equivalent C-x-x-G-x-x-R motif (purple sticks) with 
respect to Asp463/Asp532 (orange sticks). (D) The equivalent acid/base motif (yellow sticks) with respect 
to Asp463/Asp532 (orange sticks). In all panels, the orientation of FpGH36 does not change. 
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Table 3.3: The residue motifs of FpGH36 compared to those present in five experimental GH36 structures. * indicates that the Asp residue was 

mutated to Asn for crystallization purposes. The A chain was utilized for analysis unless otherwise stated.

Target FpGalNase 2YFO 
4FNT 

(chain B) 
6PI0 6JHP 6LCK 

Resolution — 1.35 Å 2.6 Å 2.09 Å 2.56 Å 2.85 Å 

% Identity 
(% Coverage) 

— 
31.73% 
(14%) 

27.16% 
(22%) 

34.74% 
(13%) 

24.30% 
(49%) 

30.77% 
(25%) 

Bound 
Substrate 

— α-Galactose Raffinose 

Linear Blood 
Group B 
Type 2 

Trisaccharide 

— 
p-nitrophenyl 

α-D-
galactopyranoside 

Catalytic 
Residues 

(nucleophile / 
acid/base) 

Asp463 / 
Asp532 

Asp478 / 
Asp540 

Asp478 / 
Asp548* 

Asp472* / 
Asp541 

Asp509 / 
Asp571 

Asp301 / 
Asp355 

D-D-G-W 
Motif 

346D-D-G-W349 D-D-G-W D-D-G-W D-D-G-W D-D-G-W D-D-G-W 

K-x-D 
Motif 

461K-G-D463 K-W-D K-W-D K-W-D K-W-D K-L-D 

C-x-x-G-x-x-R 
Motif 

Partly; 
511C-N-C-G-T-P-Q517 

Yes; 
C-S-G-G-G-G-R 

Yes; 
C-S-G-G-G-G-R 

Yes; 
C-S-G-G-G-G-R 

Yes; 
C-A-S-G-G-G-R 

No; 
Active site Trp50 

Acid/Base Motif 
Not Present 

[see resi. 528–532] 
“W-x-x-D” “W-x-x-D” “W-x-x-D” “W-x-x-D” “R-x-x-x-D” 

Oligomeric 
State 

Monomer 
[personal 

correspondence] 
Tetramer Tetramer Tetramer Tetramer Hexamer 

Other 
Related PDBs 

— 2YFN 
4FNP, 4FNQ, 
4FNR, 4FNS, 

4FNU 

6PHU, 6PHV, 
6PHW, 6PHX, 
6PHY, 6PQL, 
6PRE, 6PRG 

— 6LCJ, 6LCL 
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3.4.2.1 The invariant catalytic residues of GH36 enzymes are two aspartic acid 

residues 

Rahfeld et al. identified FpGH36’s two catalytic aspartic acid residues before I began this 

project. Reported in UniProt P0DTR5 numbering, these residues are: Asp463 (a catalytic 

nucleophile that forms a covalent intermediate with α-GalN) and Asp532 (a general 

acid/base residue)110. Readers should visit the CAZypedia (an online encyclopedia for 

carbohydrate-active enzymes90) for details on the GH family’s catalytic mechanism: 

https://www.cazypedia.org/index.php/Glycoside_hydrolases. 

 

3.4.2.2 Conserved active-site residue motifs contribute to GH36 enzymatic activity 

There are at least four evolutionary-derived sequence motifs that contain catalytic and/or 

non-catalytic residues important for GH36 activity (including binding, specificity, and 

stabilizing the reaction pathway). Here, I describe my sequence- and structure-based 

comparison of the four residue motifs as they appear (or not) in FpGH36. 

 

3.4.2.2.A The D-D-G-W substrate recognition motif recognizes the hydroxyl groups 

at the 4- and 6-position of the bound, terminal carbohydrate 

The D-D-G-W substrate recognition motif is nearly invariant across all identified GH36 

enzymes131–133. This motif appears in an active-site loop where the two aspartic acid 

residues contribute to enzyme activity by directly hydrogen bonding with the hydroxyl 

groups at the 4- and 6-position of the terminal carbohydrate substrate133,134. FpGH36 

contains the D-D-G-W motif, consisting of residues 346D-D-G-W349 (Figure 3.9A). 

AlphaFold predicted Asp346 and Asp347 to be in an appropriate conformation in my 
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FpGH36 structural model to make the same direct hydrogen bonds important for 

carbohydrate binding specificity. The D-D-G-W motif does not contribute to α-GalN 

specificity over α-Gal in FpGH36, though, since the 4- and 6-positions are both invariant 

between the two carbohydrates. 

 

3.4.2.2.B The K-x-D catalytic nucleophile motif recognizes the hydroxyl groups at 

the 3- and 4-position of the bound, terminal carbohydrate 

The K-x-D catalytic nucleophile motif is also nearly invariant across GH36 enzymes133,134. 

Here, the X represents a hydrophobic residue (most often Trp, Leu, or Val) and D is the 

catalytic nucleophile (Asp463 in FpGH36). The K-x-D motif appears in a β-strand where 

the lysine makes conserved hydrogen bonds to the hydroxyl groups at the 3- and 4-

position of the terminal carbohydrate substrate. The aspartic acid is the catalytic 

nucleophile that attacks the C1 atom of the terminal carbohydrate substrate to form the 

covalent intermediate during catalysis. In FpGH36, the K-x-D motif consists of residues 

461K-G-D463 where Asp463 is the catalytic nucleophile and Gly462 is, notably, not a 

hydrophobic residue (Figure 3.9B). AlphaFold predicted Lys461 to be in an appropriate 

conformation in my FpGH36 model to make the same hydrogen bonds to the 3- and 4-

position carbohydrate hydroxyl. Though like the D-D-G-W motif, the K-x-D motif does not 

directly contribute to FpGH36’s specificity for terminal α-GalN over α-Gal since the 3- and 

4-positions are invariant between the two carbohydrates. 

 

I wondered if the unique presence of Gly462 as residue X of the K-x-D active-site motif 

(rather than a bulky hydrophobic residue) played any role in FpGH36’s unique α-GalN 
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specificity. However, no matter its amino acid identity, the sidechain of residue X points 

away from the active site (due to the alternating nature of a β-strand) and the backbone 

atoms of residue X are too far away to make any meaningful interactions with a 

carbohydrate residue. For these reasons, I ruled out the possibility of the K-x-D active-

site residue motif directly contributing to FpGH36’s specificity for terminal α-GalN over α-

Gal. It remains to be explored, however, whether the bulky tryptophan residue or 

the β-branched leucine or valine residues at the hydrophobic X position of the K-

x-D motif have any allosteric or rigidifying effect that indirectly contributes to 

FpGH36’s terminal carbohydrate specificity. 

 

3.4.2.2.C Either a C-x-x-G-x-x-R active-site residue motif or an active-site 

tryptophan recognizes the carbohydrate hydroxyl group at the 2-position, 

depending on the GH36 enzyme 

Fredslund et al. identified the C-x-x-G-x-x-R motif as a characteristic of a subgroup of 

GH36 enzymes’ active site [see publication’s Supplementary Figure 1, bottom left 

column]133. In this motif, the glycine directly hydrogen bonds to the hydroxyl group at the 

2-position of a bound, terminal carbohydrate via its backbone nitrogen atom; the cysteine 

is a highly conserved active-site residue in GH-D enzymes that appears to also interact 

with the 2-position of the carbohydrate; and the arginine makes a structural salt bridge. 

In a different GH36 subgroup, this motif is absent and instead an active-site tryptophan 

residue (rather than a glycine) directly hydrogen bonds to the 2-position hydroxyl group 

via its cyclic nitrogen atom (Fredslund et al. did not report any corresponding active-site 

residue motif that included this tryptophan)133. The existence of these GH36 motifs 
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suggests the importance of a (nitrogen atom-mediated) hydrogen bond for terminal 

carbohydrate recognition at the 2-position. 

 

At first inspection, FpGH36 contains most of the residues of the C-x-x-G-x-x-R motif: 511C-

N-C-G-T-P-Q517, where FpGH36 has a glutamine (Gln517) instead of the salt-bridging 

arginine (Figure 3.9C). However, AlphaFold predicted the Gly514 to have its backbone 

nitrogen atom oriented away from the active site (pLDDT estimate of 77.91), meaning it 

is unlikely that Gly514 plays the same role characteristic of the motif. Instead, AlphaFold 

predicted the thiol group of Cys513 to be oriented toward the active site (pLDDT estimate 

of 79.71). Taken together, I hypothesized that the active site-oriented thiol group of 

Cys513 in part contributes to FpGH36’s unique specificity to terminal α-GalN 

targets while the lack of a properly oriented Gly514 backbone nitrogen atom denies 

specificity to terminal α-Gal. Understanding exactly how the thiol group of Cys513 

interacts with the -NH2 group of α-GalN, if at all, would greatly benefit from the 

determination of an experimental structure of a FpGH36–α-GalN complex. Until then, I 

recommend experimental studies to observe the effects, if any, of mutating 

FpGH36 Cys513 to other residues such as glycine, alanine, and serine. 

 

3.4.2.2.D Neither of the two GH36 type-dependent acid/base residue motifs that 

help recognize the hydroxyl group at the 2-position of α-galactose are present in 

FpGH36 

There are two reported motifs that contain the catalytic acid/base residue required by 

GH36 enzymes (Asp532 of FpGH36): W-x-S-D133 and R-x-x-x-D134. In both cases, the 
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acid/base residue motif is found on an active-site loop. While these two motifs may seem 

rather distinct in sequence space (i.e., tryptophan is bulky and aromatic whereas arginine 

is long and positively charged), they contribute essentially the same atoms in nearly 

identical geometries to the GH36 active site. In the W-x-S-D active-site residue motif, the 

cyclic nitrogen of the tryptophan makes a coordinating hydrogen bond with the side-chain 

carboxyl group of the acid/base residue and the 2-position hydroxyl of the terminal 

carbohydrate substrate133. Similarly in the R-x-x-x-D motif, the arginine uses its terminal 

nitrogen atoms to coordinate the same acid/base residue with the 2-position carbohydrate 

hydroxyl134. 

 

Neither the W-x-S-D nor the R-x-x-x-D acid/base residue motif is present in FpGH36. 

Instead, the sequence of this active-site loop region is 528I-A-T-A-D532, where Asp532 is 

the catalytic acid/base residue (Figure 3.9D). None of these residues (Ile, Ala, Thr) can 

contribute the same coordinating hydrogen bonds observed by the Trp and Arg residues 

of the W-x-S-D and R-x-x-x-D motifs, respectively. Further, none of the five other GH36 

crystal structure I examined have this 528I-A-T-A-D532 (or similar) sequence; they instead 

have either the W-x-S-D or R-x-x-x-D motif (see Table 3.3). 

 

The lack of either conserved motif in FpGH36 led me to develop two potential theories, 

that FpGH36 either (1) uses a different mechanism (e.g., non-conserved residue(s)) to 

coordinate the acid/base residue with the terminal α-GalN substrate for catalysis or (2) 

does not need to make this type of residue-level coordination for catalysis to occur. Given 

the unique presence of an additional thiol group (provided by Cys513 of the C-x-x-G-x-x-
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R motif discussed in the previous paragrapah) predicted to be oriented toward the active 

site, I believe the former theory is the most relevant. In fact, it is possible that these 

two active site cysteines (Cys513 and the highly conserved Cys511)—given their 

proximity to each other and predicted orientation—bind a divalent metal (e.g., zinc) 

that then helps coordinate FpGH36 catalysis135,136. A chelation assay (such as the one 

Rahfeld et al. performed on FpGalNAcDeAc110) should provide a quick assessment of the 

influence of divalent metals such as zinc on FpGalNase activity. If FpGalNase shows 

sensitivity to metal chelation, it would be interesting to test the effects of mutating Ile528, 

Ala529, Thr530, and Ala531 to alanine and/or glycine on FpGH36 activity and 

carbohydrate specificity. 

 

3.5 Section 2 Summary 

In this Section, I described the structural model of full-length FpGalNase that I generated 

using AlphaFold. I reported in detail four conserved residue-level motifs and their 

structural and functional implications in the GH36 family of enzymes. I then identified the 

equivalent motifs present in FpGH36 (the catalytic domain of FpGalNase) and provided 

my hypotheses on the functional role of the non-conserved residues present in the active 

site. Finally, I suggested mutations to test these hypotheses experimentally toward 

developing a complete understanding of FpGH36’s unique specificity to terminal α-GalN 

carbohydrate substrates (summarized in Table 3.4). Ultimately, a complete picture of 

FpGH36 will enable rational design efforts to alter its specificity to the B-antigen, thus 

achieving complete conversion of A, B, and AB blood types to the universal O type. 
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Table 3.4: Summary of all suggested mutations to test the hypotheses regarding FpGalNase catalytic 

function and carbohydrate specificity. 

Design Motif Rationale Section 

Gly462I/L/W K-x-D 
X is supposed to be a bulky 

hydrophobic residue in this motif 
3.4.2.2.B 

Cys513G/A/S 
C-x-x-G-x-x-

R 

Probe the role, if any, of Cys513 on 

catalysis and/or specificity 
3.4.2.2.C 

Ile528A 

Ala529G 

Thr530G/A 

Ala531G 

W-x-S-D and 

R-x-x-x-D 

Since Ile, Ala, and Thr cannot 

contribute the same hydrogen 

bonding coordination as W or R of 

these motifs, it would be interesting 

to probe the impact of increasing 

flexibility in this active-site region 

3.4.2.2.D 

 

 

3.6 Detailed Methods 

AlphaFold 

Open-source AlphaFold and the corresponding databases was downloaded from its 

Github repository (https://github.com/deepmind/alphafold) and installed on Rockfish. 

Rockfish is computing cluster provided by the Johns Hopkins University and maintained 

by the Advanced Research Computing (ARCH) in Baltimore, Maryland 

(https://www.arch.jhu.edu/). All AlphaFold modeling was executed on Rockfish. 

 

Command 

While logged into Rockfish, first access a compute node with a GPU partition using slurm: 

srun --account=<account_name> --nodes=1 --ntasks-per-node=6 --
partition=<GPU_partition> --gres=gpu:1 --time=6:00:00 --pty bash 
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AlphaFold was run with the following command: 

python run_alphafold.py --fasta_paths=</path/to/*.fasta> --gpus 1 --
cpus 8 
 

pLDDT 

AlphaFold output includes a per-residue estimate of its confidence of model accuracy on 

a scale of 0–100 called pLDDT (predicted local distance difference test). Briefly, residues 

with pLDDT ≥ 90 are modeled with very high confidence sufficient for further structural 

characterization; residues with pLDDT values between 70–89 are confident but should 

generally be treated with some caution; and residues with pLDDT values < 70 should 

generally be considered as incorrectly placed. Refer the associated AlphaFold 

publications for more information112,137. 

 

Rosetta all-atom refinement 

FastRelax 

/Rosetta/main/source/bin/relax.linuxgccrelease -database 
</path/to/database> -ignore_unrecognized_res -flip_HNQ -no_optH false 
-ex1 -ex2 -out:pdb_gz true -
multiple_processes_writing_to_one_directory -in:file:s 
</path/to/input.pdb> -in:file:native </path/to/native.pdb> 
 

DualspaceRelax 

/Rosetta/main/source/bin/relax.linuxgccrelease -database 
</path/to/database> -ignore_unrecognized_res -flip_HNQ -no_optH false 
-ex1 -ex2 -out:pdb_gz true -
multiple_processes_writing_to_one_directory -in:file:s 
</path/to/input.pdb> -in:file:native </path/to/native.pdb> -
relax:dualspace true 
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Rosetta Cartesian ΔΔG 

Relaxing starting structure in Cartesian space: 

/Rosetta/main/source/bin/relax.linuxgccrelease -database 
</path/to/database> -ignore_unrecognized_res -flip_HNQ -no_optH false 
-ex1 -ex2 -out:pdb_gz true -
multiple_processes_writing_to_one_directory -in:file:s 
</path/to/input.pdb> -in:file:native </path/to/native.pdb> -fa_max_dis 
9.0 -relax:script cart2.script 
 

Where the cart2.script file contains: 

switch:cartesian 
repeat 2 
ramp_repack_min 0.02  0.01     1.0  50 
ramp_repack_min 0.250 0.01     0.5  50 
ramp_repack_min 0.550 0.01     0.0 100 
ramp_repack_min 1     0.00001  0.0 200 
accept_to_best 
endrepeat 
 

And the cart_ddg protocol is run using: 

/Rosetta/main/source/bin/cartesian_ddg.linuxgccrelease -database 
</path/to/database> -flip_HNQ -no_optH false -ex1 -ex2 -out:pdb_gz 
true -multiple_processes_writing_to_one_directory -in:file:s 
</path/to/input.pdb> -in:file:native </path/to/native.pdb> -fa_max_dis 
9.0 -ddg:iterations 3 -ddg:force_iterations false -ddg:bbnbrs 1 -
ddg:frag_nbrs 4 -ddg:score_cutoff 1.0 -ddg:cartesian -ddg:json false -
ddg:legacy false -ddg:flex_bb false -ddg:dump_pdbs false -
score:weights ref2015_cart -ddg:mut_file example_mutfile.txt 
 

Where example_mutfile.txt contains (as a single example case): 

total 1 
1 
E 76 L 
 

Here, “total 1” means we are testing only a single point mutant design. This example 

cart_ddg design is Glu (E) at Rosetta position number 76 to Leu (L). 
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Rosetta GlycanDock 

/Rosetta/main/source/bin/GlycanDock.linuxgccrelease -database 
</path/to/database> -flip_HNQ -no_optH false -ex1 -ex2 -out:pdb_gz 
true -multiple_processes_writing_to_one_directory -in:file:s 
</path/to/input.pdb> -in:file:native </path/to/native.pdb> -
include_sugars -maintain_links -lock_rings -
alternate_3_letter_pdb_codes pdb_sugar -docking_partners A_X -
carbohydrates:glycan_dock:stage1_perturb_glycan_com_rot_mag 0.0 -
carbohydrates:glycan_dock:stage1_perturb_glycan_com_trans_mag 0.0 -
carbohydrates:glycan_dock:stage1_rotate_glycan_about_com false -
carbohydrates:glycan_dock:stage1_torsion_uniform_pert_mag 0.0 
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Chapter 4 

4. Conclusion and Future Directions 

 

Carbohydrates are an integral component of all biological life as we know it. 

Carbohydrates play important roles in protein structure and function, cellular recognition 

and signaling, metabolism and regulation, health and disease, and much more. 

Understanding the residue-level interactions between carbohydrates and their protein 

binding partners is key to unraveling the mechanisms underlying their diverse functional 

roles in biology. However, elucidating experimental, three-dimensional structures of 

protein-carbohydrate complexes remains challenging, leaving researchers to primarily 

rely on computational tools to generate these necessary models. In early 2016, the 

development of AutoDock Vina-Carb marked a significant step toward accurate, in silico 

prediction of protein–carbohydrate complex structures12,13. However, the AutoDock tool 

is–as the name suggests–limited to docking only, meaning researchers who were 

interested in performing downstream analyses or protein design must turn to another 

computational tool. In this dissertation, I have further advanced the field’s computational 

modeling capabilities by integrating a new protein–carbohydrate docking tool into the 

much functionally broader Rosetta macromolecular modeling and design software suite. 

 

4.1 Summary of my contributions to the field 

I dedicated most of my doctoral career developing and benchmarking GlycanDock, a 

Rosetta tool for modeling and docking protein–carbohydrate complexes74. To rigorously 
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evaluate its accuracy, I curated a set of diverse, biologically relevant experimental 

complex structures. Ultimately, I used this benchmark set to demonstrate GlycanDock’s 

ability to sample and discriminate native-like docked protein–carbohydrate models from 

starting structures of up to 7 Å root-mean-square deviation in the carbohydrate ring 

atoms. Hoping to set a new, higher standard for evaluating the accuracy of a protein–

carbohydrate docking tool, I also provided an analysis of the important biophysical 

features of GlycanDock complex models, such as interfacial residue-residue contacts and 

hydrogen bonds. To illustrate the practical usage of GlycanDock by future researchers, I 

detailed an example case where I found GlycanDock modeling results to qualitatively 

correlate with experimental binding data. This observation served as a first step toward 

demonstrating GlycanDock’s ability to discriminate between binding and non-binding 

glycoligands. I also provided a detailed guide to address the more realistic “blind” docking 

scenarios using GlycanDock and the FTMap solvent mapping tool. Overall, my work has 

resulted in a new computational tool that can contribute to advancing our understanding 

of protein-carbohydrate interactions. 

 

In the final phase of my doctoral research, I employed multiple computational tools to gain 

insights into an enzymatic system with the potential for significant scientific and societal 

impact. I began by generating full-length structural models of FpGalNAcDeAc and 

FpGalNase, two multi-domain enzymes identified by Rahfeld et al. that together convert 

A-type blood to the universal O-type110,111. Using GlycanDock, I generated a docked 

model of FpCBM32–LacNAc, identifying the FpGalNAcDeAc residues that likely govern 

carbohydrate binding and thus offering targeted mutational sites to potentially modify or 
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strengthen FpGalNAcDeAc’s cell-surface interactions. Similarly, I used GlycanDock to 

generate a model of the FpDeAc–A-antigen complex, providing a more relevant structural 

model to further investigate FpGalNAcDeAc’s enzymatic mechanism. In the case of 

FpGalNase, which did not have an experimental model available at the time of my 

doctoral work, I developed a hypothesis supported by structure- and sequence-based 

analysis regarding the active-site residues important for FpGH36’s unique carbohydrate 

specificity. If future experimental studies were to result in support of my hypothesis, then 

the detailed analyses reported in this dissertation will serve as a blueprint toward 

modifying FpGalNase’s carbohydrate specificity toward the B-antigen, thus enabling 

complete A- and B-type blood conversion to the universal O-type. 

 

4.2 Future directions 

There is much left to do in the field of computational glycoscience. While improved 

conformational sampling techniques are valuable, the field would benefit most from 

technical advancements that enhance the ability of scoring functions (Rosetta-based or 

otherwise) to faithfully distinguish the biologically relevant protein–carbohydrate 

conformations among all docked models. Most current scoring functions have been 

optimized on proteins, meaning they are likely not adequately capturing the complexities 

of protein–carbohydrate interactions. Water molecules play a critical role in carbohydrate 

binding36,46,107,138, from general solvent effects to mediating interfacial hydrogen bonding, 

yet the Rosetta scoring function only implicitly considers solvent. Similarly, CH–π 

stacking92,139 (an aromatic-mediated interaction at the electron orbital level) is an 

important interaction that is essentially all but ignored at this computational scale. 
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The primary focus of continued computational work on the FpGalNAcDeAc and 

FpGalNase systems should be on design. At the time of writing this dissertation, an 

experimental model of FpGalNase was resolved through X-ray crystallography, but not 

publicly released. Upon availability of this structure, the first step should be to employ 

GlycanDock to predict a model of the catalytic FpGH36 domain bound to the GalN- and 

B-antigens. Understanding the residue-level interactions that drive GalN-antigen 

specificity will inform rational design toward favoring the B-antigen. However, it is 

possible, given the uniqueness of the FpGH36 binding site, that an entire active-site 

redesign may be necessary to achieve B-type specific conversion. Ultimately, Rahfeld 

and Withers seek to employ FpGalNAcDeAc and FpGalNase toward producing 

universally accepted organs (as the ABO carbohydrate blood antigens, among others, 

are also present on cell surface of organs such as the heart and liver and thus contribute 

to organ transplant rejection)110,111,140–142. Again, protein design will play a vital role in 

achieving this ambitious yet exciting goal. Future work should start by combining 

GlycanDock and Rosetta design tools to engineer the enzymes’ carbohydrate-binding 

domains to attach to surface glycans that are more prevalent on the desired cell type143. 

 

4.3 Parting thoughts 

Undoubtedly, molecular modeling tools have been and continue to be instrumental in 

driving our understanding of complex biomolecular systems. Recently, the rise of 

employing machine learning techniques on biological data has been quick and the results 

are promising. AlphaFold, for example, is a modern-day revolution–enabling anyone with 
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access to sufficient computing power to generate a protein structural model from 

sequence with impressive accuracy. While the necessary data to train an equivalently 

powerful tool for carbohydrate or protein–carbohydrate modeling is far from available, it 

is an important direction to consider and strive toward. Already, my colleagues in the Gray 

lab have developed a machine learning based tool for carbohydrate binding site prediction 

given a protein structure144. These strides forward are only made possible by the diligent 

work of interdisciplinary scientists and, as always, the generation and open sharing of 

more experimental data.
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