
© 2024 Sen Wei
All rights reserved

ROSETTA ENERGY APPROXIMATION USING
A MACHINE LEARNING APPROACH

by
Sen Wei

A thesis submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Master of Science

Baltimore, Maryland
May 2024



Abstract

The advent of AlphaFold2 has significantly accelerated advancements in protein struc-

ture prediction using deep learning. Despite its monumental success, the AlphaFold2-

like learning-based methods lack explainability and generalization, which has limited

further understanding and application. Traditionally, the minimizing free energy

approach, exemplified by Rosetta, has been cornerstone in protein structure predic-

tion, embedding extensive biophysical insights into its methodology. Notably, when

researchers encounter improbable structures, Rosetta is used to refine them, enhanc-

ing their physical plausibility. The critical interplay between structure prediction

and energy optimization highlights a gap in current deep learning approaches, which

overlook the integration of energy information. Addressing this, my project aims to

incorporate energy-based metrics into deep learning models, enhancing both their

predictive performance, generalization and explainability, alleviating AlphaFold2-like

models’ heavy reliance on Multiple Sequence Alignments (MSAs) and extensive data

sets. By employing equivariant graph neural networks, I have begun to approximate

Rosetta’s one-body and two-body energy terms, achieving Pearson correlations with

Roseta’s energy metrics above 0.7 for most terms. My work has prepared machinery

to integrate the energy model into some deep learning models like IgFold, an antibody

structure prediction method developed by our lab. This integration aims to enhance

IgFold’s performance and its ability to generalize across diverse antibody structures.
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Chapter 1

Introduction

In recent years, deep learning based methods have achieved significant success in

predicting protein structure[1–4]. However, as with machine learning applications in

other fields such as computer vision and natural language processing, explainability

and generalizability remain problematic due to limitations in data quantity and qual-

ity. Additionally, obtaining protein structures through experiments is more complex

compared to obtaining pictures or texts. The experimental determination of protein

structures is not only time-consuming but also expensive. Additionally, explainability

in this field is a greater concern compared to machine learning’s application in other

fields[5].

Before the dominance of machine learning in the field of protein structure prediction,

Rosetta was considered one of the best tools to predict and design protein struc-

tures[6]. It is based on minimizing the free energy of the protein, as the native struc-

ture is typically the structure with the lowest energy[7]. However, this important

information, energy, is completely ignored in most machine learning based meth-

ods. Although energy minimizing methods alone cannot achieve results comparable

to machine learning based methods, partly due to inaccurate energy calculations, I

hypothesize that incorporating this domain knowledge into machine learning model

will be helpful. Energy information may not only improve the generalization but

also the explainability of the learning-based methods. In this way, I can alleviate
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Chapter 1. Introduction

the AlphaFold2-like models’ dependence on multiple sequence alignments and also

improve the unrealistic predicted structures[8]. Notably, thermodynamic integration

has been shown to enhance the performance and generalizability of machine learning-

based RNA structure predictions[9], suggesting that similar benefits could extend to

protein structure predictions. However, obtaining the Rosetta energy with its gra-

dient is an expensive and cumbersome calculation, which complicates its integration

into the existing learning based model. Therefore, the first step is to capture the

energy properties, and this forms the cornerstone of my thesis.

The pursuit of a learned energy function for molecular and protein structures can be

approached mainly through two methodologies. The first is the supervised method,

which relies on experimentally determined energy values. However, the datasets avail-

able for such experiments are limited. For instance, databases like GDB[10] and Free-

Solv[11] cater predominantly to small molecules, whereas others such as Megascale[12]

and FireProt[13] focus on smaller proteins with point mutations. And PDBBind[14]

is specialized in binding affinity. There is unclear how well these data will generalize

to larger proteins.

The second type of approach is unsupervised learning. For example, DSMBind[15]

and Yang et al’s deep neural network energy function[16] do not require experimen-

tally determined energy labels. while correlations being drawn between these pseudo-

energies and experimental energies or Root Mean Squared Deviation (RMSD) between

given structures and natural structures, the resulting pseudo-energies lack direct bio-

physical explanations and such comparisons may not directly demonstrate causality.

Thus, these models are less interpretable, as vital information is only implicitly con-
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Chapter 1. Introduction

sidered within the protein structure prediction models.

More importantly, these energy terms are represented by a single scalar indicating

the stability of the entire structure or the binding energy, not the breakdown on a

residue-by-residue basis. The research conducted by Zhou et al. [17] demonstrates

that evaluating energy at the residue level is more effective for fine-tuning models

than considering the energy of the entire structure.

The representations of data in computational models varies significantly. For example,

all-atom representations are utilized by ANI [18], GraphomerMapper [19], and DSM-

Bind [15]. However, these all-atom representations are computationally expensive,

limiting their application primarily to small molecules or specific regions of proteins.

To facilitate the modeling of larger proteins, some methods, such as ThermoMPNN

[13] and ProteinMPNN [2], employ protein backbone coordinates. Others may lever-

age residue-level representations and invariant features based on distance, direction,

and orientation [20].

In my research, I have followed the IgFold and AlphaFold2, employing embeddings and

frames of each residue as inputs[1, 4]. To enhance the detail of energy calculations

for each residue and expand training datasets, I utilized the AlphaFold DataBase

(AFDB), with energy terms from the Rosetta Energy Function 2015 (REF15)[21] as

the ground truth.

Geometric Graph Neural Networks (GNN) are particularly effective in terms of molec-

ular representations, [22], and many models mentioned above leverage GNN architec-

tures. To enhance the accuracy of my energy calculations, I selected an Equivariant

3



Chapter 1. Introduction

Graph Neural Network (EGNN)[23] as my foundational model. This choice was moti-

vated by the EGNN’s ability to maintain equivariance across rotations, translations,

reflections, and permutations. For practical implementation, I trained the network to

approximate the Rosetta energy terms accurately. These terms were calculated us-

ing PyRosetta[24], and the term meanings are detailed in Tables 1.1 and 1.2. While

I included most energy terms from the REF15, I omitted three terms pro_close,

yhh_planarity and dslf_fa13, because they are used in Rosetta to correct fine details

(like the closing of the proline group), that are not needed in DL structure predictions

like IgFold. The exclusion of pro_close and yhh_planarity is based on the premise

that their associated penalty terms can be implicitly learned by the neural network.

The term dslf_fa13 was excluded because it is not directly calculated by PyRosetta

and does not correlate with the other energy terms.

One-body energy refers to the energy intrinsic to a single residue, which depends only

on its residue type and coordinates. Two-body energy arises from interactions between

two amino acids, and depends on amino acid types and coordinates of both. Rosetta

energy terms are typically sums over atom-atom pairs, but here I seek to estimate

the total for the residue or residue pair. Since I’m not utilizing the all-atom models,

I have to figure out a way to represent residues using Cα coordinates and orientations

just like AlphaFold and IgFold [1, 4], and the model must infer multibody interactions

over all residues and pairs to suit the energetic conformations this way.

4



Chapter 1. Introduction

Table 1.1: One-Body Energies, adapted from [21]

Energy term Description

fa_dun probability that a chosen rotamer is native-like given back-
bone ϕ, ψ torsion angles

fa_intra_rep repulsive energy between atoms within the same residue

fa_intra_sol_xover4 Gaussian exclusion implicit solvation energy between atoms
in the same residue

ref reference energies for amino acid types (for design)

p_aa_pp probability of amino acid identity given backbone ϕ, ψ tor-
sion angles

rama_prepro probability of backbone ϕ, ψ torsion angles given the amino
acid type (inbody correctness for adjcent proline)

omega backbone-dependent penalty for cis ω dihedrals that deviate
from 0° and trans ω dihedrals that deviate from 180°

total_score_1b A linear combination of one-body energy terms
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Chapter 1. Introduction

Table 1.2: Two-Body Energies, adapted from [21]

Energy term Description

fa_atr attractive van der waals energy between two atoms on dif-
ferent residues

fa_rep repulsive van der waals energy between two atoms on dif-
ferent residues

fa_sol Gaussian exclusion implicit solvation energy between pro-
tein atoms in different residues

fa_elec energy of interaction between two nonbonded charged atoms

lk_ball_wtd orientation-dependent solvation of polar atoms assuming
ideal water geometry

hbond_sc energy of side-chain-side-chain hydrogen bonds

hbond_bb_sc energy of backbone-side-chain hydrogen bonds

hbond_sr_bb energy of short-range backbone-backbone hydrogen bonds

hbond_lr_bb energy of long-range backbone-backbone hydrogen bonds

total_score_2b A linear combination of two-body energy terms

Table 1.3: Ignored energy terms

Energy term Description

pro_close penalty for an open proline ring and proline ω bonding en-
ergy

yhh_planarity sinusoidal penalty for nonplanar tyrosine χ3 dihedral angle

dslf_fa13 energy of disulfide bridges

6



Chapter 2

One-body and two-body residue-based energy Dataset

2.1 Energy data

I chose the AlphaFold DataBase (AFDB) [25] as my data source for structures be-

cause it contains over 200 million high confidence protein structures. Barrio et al.[26]

clustered these structures within AFDB and identifies representative ones, facilitating

the filtration process based on characteristics such as representative structure, length,

and predicted Local Distance Difference Test (pLDDT). The pLDDT score serves as

an indicator of local accuracy.

My collaborator, Laurent Ludwig, downloaded and filtered 10,000 structures from the

AlphaFold Database, selecting those with a pLDDT greater than 90 and a length of

less than 500 amino acids. I selected these thresholds because a pLDDT score above

90 is considered to reflect very high confidence[1] and the length is feasible with the

computational resources available to us. I randomly split this whole dataset into

trainset (80%) and testset(20%). Since each structure represents a cluster center of

Barrio et al, we can expect the test set to be independent of the training set.

Figure 2.1 illustrates the distribution of protein lengths within the dataset of 10,000

structures. This dataset includes 1,555,172 residues and 334,179,740 residue pairs.

As mentioned ealier, Rosetta energies were calculated using PyRosetta[24]. Each one-

7



Chapter 2. One-body and two-body residue-based energy Dataset

Figure 2.1: Distribution of Protein Lengths

body energy term is represented as a vector of length N , where N is the length of

the protein sequence. Each two-body energy term can be represented as a symmetric

matrix of shape N × N . Since the upper triangular part contains all the necessary

information, we transform it into a vector of length N × (N − 1)/2.

2.2 Data Distributions

To enhance my understanding of their relationships, I first created box plots of the

one-body energy terms against each amino acid type to enhance my understanding

of their relationships. As shown in figure 2.2, most of the one-body energy values are

concentrated in a small range, but there are many outliers. The amino acid reference

energy (ref, Figure 2.2d) is constant for each residue type, making it the easiest to
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Chapter 2. One-body and two-body residue-based energy Dataset

learn.

From the scatter plots of two-body energy versus residue-residue Cα −Cα distance, we

can recognize patterns for fa_atr, fa_sol, fa_elec, hbond_sr_bb and hbond_lr_bb.

However, identifying patterns for fa_rep, hbond_sc, hbond_bb_sc presents more

challenges, suggesting these may be more difficult to learn. For all of these terms,

the presence of multiple values for a given distance (due to hidden information about

side chain positions) complicates the data distribution. Consequently, it is unclear

whether a neural network will be able to accurately approximate these terms.
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Chapter 2. One-body and two-body residue-based energy Dataset

(a) fa_dun (b) fa_intra_rep

(c) fa_intra_sol (d) ref

(e) p_aa_pp (f) rama_prepro

(g) omega (h) total_score_1b

Figure 2.2: One-Body Energies vs Amino Acid Type, for the various score terms defined
in Table 1.1.
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Chapter 2. One-body and two-body residue-based energy Dataset

(a) fa_atr (b) fa_rep (c) fa_sol

(d) fa_elec (e) hbond_sc (f) hbond_bb_sc

(g) hbond_sr_bb (h) hbond_lr_bb (i) lk_ball_wtd

(j) total_score_2b

Figure 2.3: Two-Body Energies vs Distance of Alpha Carbon(zero values are ignored)
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Chapter 3

Deep Learning Methods

3.1 Data Representation

In my approach, I employ a 20-dimensional one-hot encoding for the protein sequence

and use Cα coordinates as input. Furthermore, I calculate the orientations as follows:

v⃗1 = x⃗3 − x⃗2

v⃗2 = x⃗1 − x⃗2

e⃗1 = v⃗1/∥v⃗1∥

u⃗2 = v⃗2 − e⃗1(e⃗T
1 v⃗2)

e⃗2 = u⃗2/∥u⃗2∥

e⃗3 = e⃗1 × e⃗2

R = concat(e⃗1, e⃗2, e⃗3)

(3.1)

Here, N is denoted as x⃗1, Cα as x⃗2, and C as x⃗3. The frames, centered at x⃗2 and

using orientations, are depicted in Figure 3.1.

3.2 Model Architecture

In this study, I selected the Equivariant Graph Neural Network (EGNN)[23] as the

foundational model. EGNN is designed to maintain equivariance under rotations,

translations, reflections, and permutations. The natural aptitude of graph-based mod-
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Chapter 3. Deep Learning Methods

Figure 3.1: Illustration of the frame from the AlphaFold paper[1].
The blue triangles are the representation of each residue as one free-floating rigid

body for the backbone. The corresponding atomic structure is shown below.

els to represent molecular structures, coupled with the inherent properties of EGNN,

renders it highly appropriate for my research context. This equivariant property is

ensured by these layer propogation equations:

mij = ϕe(hl
i,hl

j, ∥xl
i − xl

j∥2, aij)

xl+1
i = xl

i + C
∑︂
j ̸=i

(xl
i − xl

j)ϕx(mij)

mi =
∑︂
j ̸=i

mij

hl+1
i = ϕh(hl

i,mi)

(3.2)

Here, hl = {hl
0, . . . ,hl

M−1} are node embeddings, xl = {xl
0, . . . ,xl

M−1} are coordinate

embeddings and a are edge attributes. ϕe, ϕx and ϕh are the edge, coordinate and node

operations respectively which are commonly approximated by Multilayer Perceptrons

(MLPs).
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Chapter 3. Deep Learning Methods

Additionally, the computational demands of EGNN are reasonable compared to other

models. I conducted comparative evaluations with alternative architectures, including

Graph Convolutional Networks (GCN) [27], Graph Isomorphism Network (GIN) [28],

and the a Transformer model [29]. In my earlier test, EGNN demonstrated superior

performance with few modifications, further substantiating its suitability for the task

at hand.

The architecture of the model is illustrated in Figure 3.2. Four EGNN layers are

employed to derive node attributes. These attributes are subsequently fed into six

linear layers to calculate one-body energies, followed by two additional linear layers

to obtain the total one-body score. For the computation of two-body energies, I

concatenate the node attributes of i and j along with their pairwise distance. Early

experiments indicated that this method yields superior performance compared to

techniques such as outer concatenation and outer sum[30].

3.3 Loss Functions

3.3.1 Weighted MSE Loss

During the experiment, I observed that for poorly performing energy terms such as

omega (Figure 2.2g), the majority of values were zero. To address this, a Weighted

MSE Loss was designed to assign lower weight to these zero values when calculating

the loss. The function is presented in Equation 3.3.

WeightedMSELoss(X, Y ) =
∑︂

(x,y)∈(X,Y )

(︂
1{y ̸=0} · (1 − ϵ) + ϵ

)︂
· MSELoss(x, y) (3.3)

14



Chapter 3. Deep Learning Methods

Figure 3.2: The architecture of the Energy Approximation Network.
Schematic representation of the neural network architecture for energy prediction in
protein structures. The protein length is denoted by N. Initially, the Cα coordinates,
orientations and one-hot encoding of the sequence are inputs. These coordinates and

orientations are concatenated and then fed into four Equivariant Graph Neural
Network (EGNN) layers. Subsequent to the EGNN layers, node attributes are
processed to compute the energy. One-body energies are derived from six linear

layers, whereas two-body energies are determined via eight linear layers. Finally,
two linear layers are employed to calculate the total scores for one-body (1b) and

two-body (2b) energies.

For a specific energy term, X represents the predicted energy, Y denotes the ground

truth energy, ϵ is the weight parameter I chose, and MSELoss is the normal Mean

Squared Error Loss. In this paper, I use ϵ = 0.1.

3.3.2 Correlation Loss

To improve the correlation of predicted energies to Rosetta energies, I introduced a

correlation loss by substracting the sum of the Pearson correlation coefficient from

the number of predicted energy terms:

CorrelationLoss(X, Y ) = 1 − ρX,Y = 1 − cov(X, Y )
σXσY

(3.4)

15



Chapter 3. Deep Learning Methods

For a specific energy term, X represents the predicted energy while Y denotes the

ground truth energy, and ρX,Y is the Pearson correlation of X and Y .

3.4 Optimizer

I use the AdamW Optimizer[31] instead of Adam[32], Stochastic Gradient Descent,

or Adam optimizer with warm up[29]. A detailed comparison can be found in Table

4.3 and 4.4.

3.5 Energy Clamp and Mask

3.5.1 Clamp One-Body Energy

Due to the presence of many outliers of the one-body energies (Figure 2.2), I apply

clamping. One-body energy is constrained to 0% and 95%. Any values above 95%

are set to 95%. The resulting one-body energy data distribution is shown in Figure

3.3. A comparison with Figure 2.2 reveals the changes. After clamping, many outliers

were removed, resulting in a clearer distribution.

I did not clamp the two-body energies because there are few extreme outliers and

clamp would remove implicitly patterns in the energy distribution like shown in Figure

3.4, which could negatively impact my model.

An exception is the fa_rep term, which can become very large when atoms clash.

Thus, I clamp the fa_rep term maximum at 10.

16
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3.5.2 Distance Mask for Two-Body Energy

Figure 2.3 reveals that Rosetta pairwise energies are zero beyond a certain distance.

Therefore, I have applied a mask to all residue pairs that are farther than 15 Å.

17
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(a) fa_dun (b) fa_intra_rep

(c) fa_intra_sol (d) ref

(e) p_aa_pp (f) rama_prepro

(g) omega (h) total_score_1b

Figure 3.3: One-Body Energy Term Clamped at 5% ∼ 95% vs Amino Acid Type

18
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(a) fa_atr (b) fa_rep (c) fa_sol

(d) fa_elec (e) hbond_sc (f) hbond_bb_sc

(g) hbond_sr_bb (h) hbond_lr_bb (i) lk_ball_wtd

(j) total_score_2b

Figure 3.4: Clamped Two-Body Energy Term vs Distance of Alpha Carbon (zero values
are ignored)

19



Chapter 4

Results

4.1 Training is stable

As Figure 4.1 shows, the training is quite stable.

Figure 4.1: Loss Plot

20



Chapter 4. Results

4.2 Energy Approximation Network captures Rosetta en-

ergy

To evaluate the model performance, I calculated the Pearson correlation and Mean

Squared Error (MSE) between predicted energy and ground truth energy (Table 4.1).

To illustrate the efficiency, I also compared the computing time.

The model obtains energy from a pdb in 40ms, compared to 900ms for PyRosetta,

which is more than 22 times faster. I achieved a high correlation (>0.7) for most

energy terms.

4.3 Visualization

To better interpret these correlation and MSE numbers, I plot predicted energy versus

ground truth energy in the testset (Figure 4.2 and 4.3). In each plot the red line

represents the ideal y = x relationship, while the green line shows the best fit derived

from all data points within the plot. The accompanying marginal density plots reveal

the distribution of these points.1

1The correlation and MSE values displayed in each plot may slightly diverge from those listed in
the tables. The discrepancy arises because the plot values are computed across the entire test set,
whereas the table values represent an average computed for each protein within the test set.
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(a) fa_dun (b) fa_intra_rep (c) fa_intra_sol

(d) ref (e) p_aa_pp (f) rama_prepro

(g) omega (h) total_score_1b

Figure 4.2: One-Body Comparison: Predicted Energy vs Rosetta Energy

In the one-body energy comparisons, a strong correlation is evident for terms like

fa_dun, fa_intra_rep, fa_intra_sol, total_score_1b, and ref. An interesting obser-
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vation for the ref energy term is that despite a high correlation score, there exists

a variation in predicted energy for a specific Rosetta energy value, suggesting that

factors beyond residue type are influencing this estimate. The effect of clamping is

noticeable in terms like p_aa_pp. For energy terms that initially performed poorly,

such as rama_prepro and omega, the small MSE did not translate into strong cor-

relation, indicating a need for alternative loss functions. Indeed, after switching to

WeightedMSE, I improved these terms.
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(a) fa_atr (b) fa_rep (c) fa_sol

(d) fa_elec (e) hbond_sc (f) hbond_bb_sc

(g) hbond_sr_bb (h) hbond_lr_bb (i) lk_ball_wtd

(j) total_score_2b

Figure 4.3: Two-Body Comparison: Predicted Energy vs Rosetta Energy
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In the two-body energy comparisons, terms such as fa_atr, fa_sol, fa_elec, hbond_sr_bb,

hbond_lr_bb, and total_score_2b achieved good correlations (ρ > 0.7). The to-

tal_score_2b was impacted by outliers, which I suspect might be miscalculations

by Rosetta. Terms like fa_rep demonstrate weak learning, as indicated by sev-

eral vertical clusters suggesting inaccurate approximations. For the hbond terms,

the dominance of zero values—implying that most residue pairs do not form hydro-

gen bonds—signifies that the model struggles to learn this particular pattern. For

lk_ball_wtd, the broader distribution of Rosetta Energy compared to the predicted

energy’s narrower range is an anomaly that remains unexplained.

In summary, the model excels in capturing the trends of energy terms with distinct

distributions. However, for energy terms predominantly characterized by zeros, learn-

ing proves more challenging. For a more granular view, detailed plots for randomly

selected proteins are presented in Appendix Figures A.8 and A.9.

4.4 Ablation Studies

4.4.1 The input of my model

Initially, the model utilized only Cα coordinates; however, this approach yielded un-

satisfactory results due to the occurrence of multiple energy values corresponding to

a single distance. The integration of orientations into the model presented a chal-

lenge. After careful consideration, I adopted a method that involved reshaping and

concatenating the orientation data with the coordinates. This modification led to an

improvement in the model’s performance, as evidenced by the results displayed in

Figure A.1.
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4.4.2 Test on AFDB5000

Initially, I tested the model on a dataset comprising 5,000 structures from the Al-

phaFold Database (AFDB). Through these experimental trials, I discovered that im-

plementing a correlation loss and increasing the number of linear layers contributed

to enhanced performance (Table 4.2). Therefore, I established this configuration as

my baseline. Table 4.2 summaries performance of additional network variations that

I explored in my study.

In those early studies, I obtained the total_score_1b and total_score_2b directly,

alongside other energy terms, rather than calculating them through an MLP subse-

quent to deriving the other energy terms. Subsequent to conducting an ablation study,

I determined that setting the batch size to 2 was the only modification that enhanced

my model’s performance. Alternative configurations, such as employing Mean Abso-

lute Error (MAE) or Huber loss, utilizing stochastic gradient descent (SGD) or Adam

optimization with a warm-up phase, adjusting batch sizes, or modifying the settings

of the EGNN, or incorporating generated bad decoys of the same sequence, did not

yield any performance improvements. Here, I only show results of the total_score_1b

and total_score_2b. Certain energy terms may have different trends.

Table 4.2: Ablation Study on AFDB5000

Model total_score_1b total_score_2b

MSELoss 0.6806 0.5302

MSELoss+CorrLoss 0.6615 0.5732

MSE+Corr_deeper_EGNN 0.6334 -0.0008

MSE+Corr_deeper_linear 0.7402 0.7575
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Table 4.3: Ablation Study vs AFDB5000 Baseline

Model total_score_1b total_score_2b

baseline 0.7402 0.7575

Different Loss Functions

MAE+CorrLoss 0.7110 0.6364

Huber+CorrLoss 0.7029 0.6240

Different Optimizers

SGD 0.6858 0.6046

AdamwithWarmUp 0.6835 0.5864

Different Batch sizes

batchsize2 0.7396 0.7665

batchsize3 0.6922 0.6246

batchsize4 0.7315 0.7278

batchsize5 0.6441 0.4705

Different Settings of EGNN

batch2+nc 0.7396 0.7665

batch2+nf 0.7289 0.7345

batch2+nfnc 0.7289 0.7345

batch2+uc 0.6889 0.6739

batch2+ucnc 0.7357 0.7576

batch2+nfucnc 0.7297 0.7457

batch2+validRadius12 0.6888 0.6414

Add generated bad decoys of the same sequences

+1timeBadDecoys 0.6663 0.4097

+5timesBadDecoys 0.6246 0.2771

OnlyBadDecoys 0.7054 0.2784
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4.4.3 Test on AFDB10000

Upon expanding my dataset to 10,000 entries and incorporating previously omitted

energy terms such as rama_prepro, hbond_sr_bb, and hbond_lr_bb, I observed

significant improvements. The inclusion of additional Rosetta energy terms, the

application of Weighted Mean Squared Error Loss (WeightedMSELoss), the use of

AdamW optimization, the independent calculation of total energy, clamping of one-

body energy, and the utilization of a distance mask were all beneficial strategies that

contributed to the enhanced performance of my model (Table 4.4).
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Table 4.4: Ablation Study on AFDB10000(The model highlighted in bold is the baseline
used by next part, values greater than baseline is shown in bold)

Model total_score_1b total_score_2b

10000 0.6922 0.6246

10000_Addrama_srlrhbond 0.7484 0.8117

AdamW 0.7494 0.8171

dropout0.1 0.7183 0.6946

Add1timeBadDecoys 0.7088 0.3424

Add1timeBadDecoys_sameTestset 0.8258 0.3456

RosettaRelaxedStructures 0.8904 0.8123

clamp1b 0.8074 0.7845

clampAll 0.8251 nan

maskDist15 0.7415 0.7952

maskDistandClamp 0.8226 0.8226

WeightedMSE 0.7508 0.8196

WeightedMSE+Mask 0.7536 0.8211

WeightedMSE+Mask+Clamp1b 0.8232 0.8272

SmallerWeightedMSE+Mask+Clamp1b 0.8229 0.8271

separateCalculateOneandTwo 0.6990 0.7123

separateCalculateTotal 0.8257 0.8326

separateCalculateTotal_smallerWeightedMSE 0.8297 0.8326
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Table 4.1: Energy Approximation Network performance on one-body (top) and two-body
(bottom) energy prediction

Energy term Correlation MSE

fa_dun 0.8546 1.0033

fa_intra_rep 0.9765 0.0766

fa_intra_sol_xover4 0.8918 0.0078

ref 0.9984 0.0087

p_aa_pp 0.8074 0.1077

rama_prepro 0.6909 0.3417

omega 0.4984 0.3921

total_score_1b 0.8257 0.7144

fa_atr 0.9092 0.0218

fa_rep 0.4926 0.0342

fa_sol 0.8822 0.0194

fa_elec 0.8156 0.0201

lk_ball_wtd 0.6563 0.0050

hbond_sc 0.4250 0.0107

hbond_bb_sc 0.6218 0.0056

hbond_sr_bb 0.9058 0.0024

hbond_lr_bb 0.7911 0.0049

total_score_2b 0.8326 0.0671

30



Chapter 5

Discussion

This thesis introduces a model based on Equivariant Graph Neural Network (EGNN)

that effectively approximates Rosetta Energy with high accuracy, with 12 out of 18

energy terms achieving Pearson correlation coefficients above 0.7. Compared with the

methods mentioned in the introductory chapter (Chapter 1), this method is fast and

offers intricate details about residue energies by breaking out various physics-based

terms. Such granular information holds the potential to enhance protein structure

prediction models, enabling targeted focus on specific energy terms or residues.

Nevertheless, the model exhibits suboptimal performance for certain energy terms,

such as omega and hbond, where a predominant number of values are zeros. To rectify

this, I recommend refining the loss function parameters and exploring alternative data

representations.

Extensive experimentation with various configurations revealed that certain approaches,

such as the inclusion of orientation information, the use of Weighted Mean Squared

Error Loss, Correlation Loss, AdamW optimizer, and strategies like clamping one-

body energy, applying a distance mask for two-body energy, optimizing batch size,

adding more linear layers, and separating total score calculation, were advantageous.

On the other hand, some tactics did not yield positive results, such as clamping

two-body energy or normalizing features within EGNN layers. Fine-tuning of pa-

rameters—including dropout rate, layer count, WeightedMSELoss weighting, learning
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rate, hidden dimension, and the strategic inclusion of ’bad’ decoys—is likely required.

As an alternative to one-hot encoding, future work could explore the use of protein

language model embedding such as from Evolutionary Scale Modeling (ESM) [33]

to potentially boost model performance. Incorporating edge updates analogous to

those used in ProteinMPNN [2] and adopting a protein representation that includes

distance, direction, and orientation [20] could also prove beneficial. Additionally,

I suggest a weight decay strategy for the combined use of WeightedMSELoss and

CorrelationLoss, with an initial focus on the former, gradually shifting towards the

latter, as described by the following equations:

ωepoch = max(ω0 × (1 − rdecay)epoch, 0) (5.1)

CombinedLoss = ωepoch × WeightedMSELoss + (1 − ωepoch) × CorrelationLoss

The trajectory of this weight change is graphically depicted in Figure 5.1.

Having established the Energy Approximation Network, the next logical step is to

integrate it with the IgFold system to demonstrate its utility. The network may

serve not only as a specialized loss function but also as a feature in the training of

other machine learning models related to proteins. By embedding knowledge from the

energy domain, it holds the promise of refining the performance and generalizability

of these models.
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Figure 5.1: Loss Weight Decay Plot
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Appendix A

Result Mining

A.1 Before and after incorporate orientation

Figure A.1: Result example w/o and w orientation.
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A.2 Energy Difference vs Amino Acid Type or Distance

(a) fa_dun (b) fa_intra_rep (c) fa_intra_sol

(d) ref (e) p_aa_pp (f) rama_prepro

(g) omega (h) total_score_1b

Figure A.2: One-Body Energy Difference vs Amino Acid Type
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(a) fa_atr (b) fa_rep (c) fa_sol

(d) fa_elec (e) hbond_sc (f) hbond_bb_sc

(g) hbond_sr_bb (h) hbond_lr_bb (i) lk_ball_wtd

(j) total_score_2b

Figure A.3: Two-Body Energy Prediction Difference vs Cα − Cα Distance.
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A.3 Error vs residue length

(a) fa_dun (b) fa_intra_rep (c) fa_intra_sol (d) ref

(e) p_aa_pp (f) rama_prepro (g) omega (h) total_score_1b

Figure A.4: One-Body Energy Correlation vs Sequence Length

(a) fa_atr (b) fa_rep (c) fa_sol (d) fa_elec

(e) hbond_sc (f) hbond_bb_sc (g) hbond_sr_bb (h) hbond_lr_bb

(i) lk_ball_wtd (j) total_score_2b

Figure A.5: Two-Body Energy Correlation vs Sequence Length
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(a) fa_dun (b) fa_intra_rep (c) fa_intra_sol (d) ref

(e) p_aa_pp (f) rama_prepro (g) omega (h) total_score_1b

Figure A.6: One-Body Energy MSE vs Sequence Length

(a) fa_atr (b) fa_rep (c) fa_sol (d) fa_elec

(e) hbond_sc (f) hbond_bb_sc (g) hbond_sr_bb (h) hbond_lr_bb

(i) lk_ball_wtd (j) total_score_2b

Figure A.7: Two-Body Energy MSE vs Sequence Length
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A.4 Predicted energy vs Rosetta energy of 16 randomly se-

lected test files

(a) fa_dun (b) fa_intra_rep (c) fa_intra_sol

(d) ref (e) p_aa_pp (f) rama_prepro

(g) omega (h) total_score_1b

Figure A.8: Predicted One-Body Energy vs Rosetta Energy of 16 randomly selected test
files
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(a) fa_atr (b) fa_rep (c) fa_sol

(d) fa_elec (e) hbond_sc (f) hbond_bb_sc

(g) hbond_sr_bb (h) hbond_lr_bb (i) lk_ball_wtd

(j) total_score_2b

Figure A.9: Predicted two-body Energy vs Rosetta Energy of 16 randomly selected test
files
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