

73

Appendix	A:	Command	Reference	

Python Commands and Syntax
I am a comment; Python ignores me. Comments
"""I am also ignored.
Me too!
"""

Block comments (doc strings)

i = 1 # (After the # is ignored.)
first_name = "Bob"
j = 1.0
i_am_a_boolean = True
i_am_an_integer = not i_am_a_boolean
k = first_name

Simple variable assignments (Python is case
sensitive.)

tuple = (1, 2, 3)
list = [15, 'X', -1.5, "lion"]
2_D_list[[1, 0], [0, 1]]
dict = {"apple": "sour", "days": 24}

Assignment to various sequences (tuples, lists, and
dictionaries)

print i + 2, 3/2, float(3)/2,

3.0/2.0, 2*j, (i + 3)**2
Outputs 3 1 1.5 1.5 2.0 16 to the screen.
(Python returns the floor of integer-only calcu-
lations, so convert at least one to a float if needed.)

print k + " thinks " + str(i) +
" = 0."

Outputs Bob thinks 1 = 0. (Python will not
concatenate objects of different types, so a function
must be used to convert an integer to a string.)

print list[1], tuple[1:2], k[0:2],
dict["days"],
2_d_list[0][1]

Outputs 15 (2, 3) Bo 24 0. (Lists, strings,
etc., are indexed starting with 0.)

i += 1
j -= 1
print i, j

Increment and decrement operators.
Outputs 2 0.0

tuple[2] = 4
first_name[0] = 'R'

Raise errors; tuples and strings are immutable.

list[3] = "tiger"
dict["apple"] = "sweet"

Lists and dictionaries are mutable.

list.append(False)
dict["new entry"] = 'Z'
print list, dict

Outputs [15, 'X', -1.5, "tiger", False]
{"apple": "sweet", "days": 24, "new
entry", 'Z'}

for i in range(1, 10):
 print i

The newly defined variable i ranges from 1 up to
but not including 10, and the command print i
is executed for each value.

for j in ("cats", "dogs", "fish"):
 print j

Outputs:
cats
dogs
fish

if x < 0:
 print "negative"
elif x == 0:
 print "zero"
else:
 print "positive"

Conditional statement that executes lines only if
Boolean statements are true.
elif means “or else, check if”.
Do not mix up = and ==!
Use indenting to indicate blocks of code executed
together under the conditional.

74 | Appendix B: Residue Parameter Files

if i_am_a_boolean:
 print "Yes!"
if not i_am_an_integer:
 print "No!"

Outputs:
Yes!
No!

a, b = 1, 1
print a is b
print a == b

Outputs:
False
True
(a and b contain the same value, but are not two
names for the same object!)

while len(list) <= 7:
 list.append("blah")
print list

Outputs:
[15, 'X', -1.5, "tiger", False,
"blah", "blah", "blah"]

def my_func(a, b):
 c = a + b
 d = b + c
 e = c + d
 return c, d, e

Defines a function (returns a value) or subroutine
(does not). If a and b were 1 and 2, this function
would return (3, 5, 8)

returned_values = my_func(1, 2)
value_of_c = returned_values[0]
value_of_d = returned_values[1]
value_of_e = returned_values[2]

Syntax for using multiple values returned by a
function, e.g., value_of_c is 3.

class MyCircle:
 """This is a MyCircle class."""
 def __init__():
 #Code to run when a Circle

object is instantiated
goes here.

 self.radius = 1.0 # Sets
default value for radius

 def draw(self, color=0):
 #Code to draw the circle

goes here.
 Pass

Defines a class with two methods

circle = MyCircle()
circle.draw()
circle.radius = 1.5
circle.draw(1)

Constructs a MyCircle object, draws a circle in
color 0, and then draws a circle in color 1

file = open("out.txt", 'w')
file.write("hello")
file.close()

Opens a new file named out.txt for writing and
outputs hello to the file. (Be sure to close your
files when finished with them.)

import module Imports and runs the module module.py so that its

functions can be called with
module.function().

from module import function Imports the specific function function so that it
can be called with simply function().

from module import * Imports all of the (public) functions from
module.py.

Appendix B: Residue Parameter Files 75

Python Math
math.exp(5) Returns the value of e5
math.pi Returns the value of π
math.sin(theta) Returns the value of sin θ, where θ is in radians

math.acos(x) Returns the value of arcos x in radians
math.degrees(rad) Converts radians to degrees
meth.radians(deg) Converts degrees to radians
random.random() Returns a random floating point number between 0.0 and 1.0
random.randint(5, 10) Returns a random integer between 5 and 10 (inclusive)
random.gauss(10, 2) Returns a random number from a Gaussian distribution with a

mean of 10 and a standard deviation of 2

Rosetta: Vector Calculus
v = numeric.xyzVector_float(x, y, z) Creates a displacement vector with floating point

precision from Cartesian coordinates
print v
print v.x, v.y, v.z

Outputs v and its elements

v – v2 Returns the displacement vector between v and v2
v.norm Returns the vector norm of v
v.dot(v2) Returns the dot product of v and v2
v.cross(v2) Returns the cross product of v and v2

Rosetta: Toolbox Methods
cleanATOM("1YY8.pdb") Creates a “cleaned” pdb file with all non-ATOM

lines of a pdb file removed
cleanCRYS("1YY8.pdb", 2) Creates a “cleaned” crystal structure that

removes redundant crystal contacts and isolates
a monomer.

pose = pose_from_rcsb("1YY8") Loads pdb 1YY8 from the Internet
generate_resfile_from_pdb("input.pdb",

"output.resfile")
generate_resfile_from_pose(pose,

"output.resfile")

Generate a resfile from a pdb file or a pose,
respectively

mutate_residue(pose, 49, 'E') Replaces residue 49 of pose with a glutamate (E)
residue (does not optimize rotamers)

get_secstruct(pose) Assigns secondary structure information to pose
and outputs it to the screen

hbond_set = get_hbonds(pose) Instantiates and fills an H-bond set with
hydrogen-bonding data

76 | Appendix B: Residue Parameter Files

Rosetta: Pose Object
pose = Pose() Instantiates an empty pose object from the

Pose class
pose = pose_from_pdb("input_file.pdb") Loads a pdb file from the working directory into a

new pose object
pose = pose_from_rcsb("1YY8") Loads pdb 1YY8 from the Internet
pose = pose_from_sequence("AAAAAA",

"fa_standard")
Creates a new pose from the given sequence
using standard, full-atom residue type templates

print pose Displays information about the pose object: pdb
filename, sequence, and fold tree

pose.sequence() Returns the sequence of the pose structure
get_secstruct(pose) Assigns secondary structure information to

pose and outputs it to the screen
pose.assign(other_pose) Copies other_pose onto pose. You cannot

simply type pose = other_pose, as that will
only point pose to other_pose and not
actually copy it.

pose.dump_pdb("output_file.pdb") Creates a pdb file named output_file.pdb
in the working directory using information from
pose object.

pose.is_fullatom() Returns True if the pose contains a full-atom
representation of a structure

pose.total_residue() Returns total number of residues in the pose
pose.phi(5)
pose.psi(5)
pose.omega(5)
pose.chi(2, 5)

Returns the φ, ψ, ω, or χ2 angles (in degrees) of
the 5th residue in the pose

pose.set_phi(5, 60.0)
pose.set_psi(5, 60.0)
pose.set_omega(5, 60.0)
pose.set_chi(2, 5, 60.0)

Sets the φ, ψ, ω, or χ2 angles of the 5th residue in
the pose to 60.0°

print pose.residue(5) Outputs the amino acid details of residue 5
pose.residue(5).name() Returns the 3-letter residue name for residue 5
pose.residue(5).is_polar()
pose.residue(5).is_aromatic()
pose.residue(5).is_charged()

Return True if the 5th residue is of the queried
type

pose.residue(5).xyz("CA")
pose.residue(5).xyz(2)

Return the displacement vector of the α carbon
(CA) of residue 5, which is the 2nd atom listed for
that residue in the pose and a standard pdb file

pose.residue(5).atom_index("CA") Returns 2
for i in range (1, pose.total_residue()

+ 1):
 print pose.residue(i).name()

Loops through all residues in the pose and
outputs the 3-letter name of each (Unlike Python,
Rosetta indexes residues starting with 1.)

atom = pose.residue(5).atom("CA") Constructs an atom object for the α carbon (CA)
of residue 5

atom1 = AtomID(1, 5)
atom2 = AtomID(2, 5)
atom3 = AtomID(3, 5)

Construct unique atom identifier objects for the
1st, 2nd, and 3rd, atoms of any residue 5,
respectively (This is not the same as the above
command!)

Appendix B: Residue Parameter Files 77

pose.conformation().bond_length(atom1,
atom2)

Returns the bond length (if stored in the
conformation object) between atom1 and
atom2

pose.conformation().bond_angle(atom1,
atom2, atom3)

Returns the bond angle in radians (if stored in
the conformation object) of atom1, atom2,
and atom3

pose.conformation().set_bond_length(
atom1, atom2, 1.5)

Sets the bond length between atom1 and atom2
to 1.5 Å

pose.conformation().set_bond_angle(
 atom1, atom2, atom3, 0.66666 * math.pi)

Sets the bond angle of atom1, atom2, and
atom3 to ~120º

print pose.pdb_info() Displays a table comparing the sequence

numbering range in the pose with that of the pdb
file from which the pose was generated

pose.pdb_info().name() Returns the filename of the pdb file from which
the pose was generated

pose.pdb_info().number(5) Returns the pdb number of pose residue 5
pose.pdb_info().chain(5) Returns the pdb chain label of pose residue 5
pose.pdb_info().pdb2pose("A", 100) Returns which residue in the pose corresponds

to residue 100 of chain A in the pdb file
pose.pdb_info().pose2pdb(25) Returns a string containing the residue and chain

label in the pdb file corresponding to residue 25
of the pose

CA_rmsd(pose1, pose2) Returns the root-mean-squared deviation of the

location of Cα atoms between the two poses

Rosetta Scoring Terms
fa_atr FA van der Waals net attractive energy
fa_rep FA van der Waals net repulsive energy
hbond_sr_bb, hbond_lr_bb FA/CEN Hydrogen-bonding energies, short and long-range,

backbone–backbone
hbond_bb_sc, hbond_sc FA Hydrogen-bonding energies, backbone–side-chain and

side-chain–side-chain
fa_sol FA Solvation energies (Lazaridis–Karplus)
fa_dun FA Dunbrack rotamer probability
fa_pair FA Statistical residue–residue pair potential
fa_intra_rep FA Intraresidue repulsive Van der Waals energy
fa_elec FA Distance-dependent dielectric electrostatics
pro_close FA Proline ring closing energy
dslf_ss_dst, dslf_cs_ang,
dslf_ss_dih, dslf_ca_dih

FA Disulfide statistical energies (S–S distance, etc.)

Ref FA/CEN Amino acid reference energy of unfolded state
p_aa_pp FA/CEN Propensity of amino acid in (φ,ψ) bin, P(aa|φ,ψ)
Rama FA/CEN Ramachandran propensities
Vdw CEN van der Waals “bumps” (repulsive only)
Env CEN Residue environment score (statistical)
Pair CEN Residue–residue pair score (statistical)
Cbeta CEN β-carbon score

78 | Appendix B: Residue Parameter Files

Rosetta: Scoring
sf = ScoreFunction() Instantiates an empty scorefxn object

from the ScoreFunction class
sf = get_fa_scorefxn() Constructs a score function with the default

Rosetta full-atom energy terms and weights
sf = create_score_function("my_fxn") Constructs a score function with terms and

weights from the my_fxn weights file
sf = create_score_function_ws_patch(

"my_fxn", "docking")
Constructs a score function from the
my_fxn weights file with a patch for
docking simulations

sf.set_weight(fa_atr, 1.0) Sets the weight of the fa_atr term of the
scoring function

sf.get_weight(fa_atr) Gets the weight of the fa_atr term of the
scoring function

print sf Shows score function weights and details
sf(pose) Returns the score of pose with the defined

function scorefxn and stores the results
in the energies object within pose

sf.show(pose) Returns a table of weights and raw &
weighted scores broken down by term

pose.energies().show() Shows the breakdown of all energies

(except backbone hydrogen-bonding
energies) in the pose by residue

pose.energies().show(5) Shows the breakdown of all energy
contributions (except backbone hydrogen-
bonding energies) from residue 5

etable_atom_pair_energies(atom1, atom2,
scorefxn)

Returns a tuple of the attractive, repulsive,
and solvation score components of a pair of
Atom obects (not AtomIDs!)

pose.energies().total_energies()[fa_atr] Returns the fa_atr contribution to the
total energy

pose.energies().residue_total_energies(5)
[fa_atr]

Returns the fa_atr contributions from
residue 5

hbond_set = hbonds.HBondSet() Instantiates an empty set for storing

hydrogen-bonding energies and information
pose.update_residue_neighbors()
hbonds.fill_hbond_set(pose, False,

hbond_set)

Updates the Energies object within pose
based on neighboring residues and fills
hbond_set with this data (The option
False is to forgo calculating a derivative.)

hbond_set = get_hbonds(pose) Combines the steps above to instantiate
and fill a set with hydrogen-bonding data

hbond_set.show(pose) Shows a listing of all hydrogen bonds and
their energies in a given pose

hbond_set.show(pose, 5) Shows a listing of the hydrogen bonds and
their energies from residue 5 of pose

emap = EMapVector() Instantiates an energy map object to store a

vector of scores
scorefxn.eval_ci_2b(5, 6, pose, emap) Evaluates context-independent two-body

energies between pose residues 5 and 6
and stores the energies in the energy map

emap[fa_atr] Returns the fa_atr term from the map

Appendix B: Residue Parameter Files 79

PyMOL Mover
pmm = PyMOLMover() Instantiates the PyMOL mover
pmm.apply(pose) Sends the pose coordinates to PyMOL for viewing
pmm.send_energy(pose) Instructs PyMOL to color the pose by its total energy
pmm.send_energy(pose,

label=True)
Instructs PyMOL to color the pose by its total energy and
label each Cα with the value.

pmm.send_energy(pose, "fa_atr") Instructs PyMOL to color the pose by its fa_atr
contribution

pmm.label_energy(pose) Instructs PyMOL to label each Cα with the value of its
total energy contribution

pmm.energy_type(fa_atr)
pmm.update_energy(True)

Sets the PyMOL mover to color by fa_atr every time the
pose is updated with pmm.apply(pose)

pmm.keep_history(True) Instructs PyMOL to store all pose conformations in
separate frames

colors = {1:"red", 2:"blue"}
pmm.send_colors(pose, colors,

"gray")

Instructs PyMOL to color residue 1 red, 2 blue, and all
others gray

pmm.send_hbonds(pose) Instructs PyMOL to display distance lines for every
hydrogen bond

pmm.send_ss(pose) Uses DSSP to reassign secondary-structure and instructs
PyMOL to display it as a cartoon

pmm.send_polars(pose) Instructs PyMOL to color polar residues red and nonpolar
residues blue

pmm.send_movemap(pose, mm) Instructs PyMOL to color movable regions of the pose
green and non-movable regions red

pmm.send_foldtree(pose) Instructs PyMOL to color cutpoints red, jump points
orange, and loop regions a unique color

observer =
AddPyMOLObserver(pose,
TRUE)

Updates PyMOL anytime a change is made to pose and
keeps a history

Residue Type Set Movers
switch = SwitchResidueTypeSetMover("centroid") Instantiates a mover object that will

change poses to the centroid
residue type set
("fa_standard" is also
available.)

switch.apply(pose) Changes pose to the centroid
residue type set

recover_sidechains =
ReturnSidechainMover(initial_fa_pose)

Instantiates a mover object that will
return the side chains and rotamers
from an initial full-atom pose to a
centroid version of the same
peptide

recover_sidechains.apply(pose) Changes pose to a full-atom type
set and sets the rotamers to those
found in initial_fa_pose

80 | Appendix B: Residue Parameter Files

MoveMap
movemap = MoveMap() Instantiates a movemap object from the MoveMap

class
movemap.show(5) Displays the movemap settings for residues 1 to 5
movemap.set_bb(True) Allows all backbone torsion angles to vary
movemap.set_chi(True) Allows all side-chain torsion angles (χ) to vary
movemap.set_bb(10, False)
movemap.set_chi(10, False)

Forbid the backbone and side-chain torsion angles of
residue 10 from varying

movemap.set_bb_true_range(10, 20)
movemap.set_chi_true_range(10, 20)

Allow backbone and side-chain torsion angles to vary
in residues 10 to 20, inclusive

movemap.set_jump(1, True) Allows jump #1 to be flexible

Fragment Movers
fragset = ConstantLengthFragSet(3) Constructs a 3-mer fragment set object
fragset.read_fragment_file("fragfile") Loads data from the file fragfile into

fragset (A fragment file must be downloaded
from the Robetta server.)

mover_3mer =
ClassicFragmentMover(fragset,
movemap)

Constructs a fragment mover using the
fragment set and the movemap

mover_3mer.apply(pose) Replaces the angles in pose with those from a
random 3-mer fragment from fragset, only in
positions allowed by movemap

smoothmover =
SmoothFragmentMover(fragset,
movemap)

Constructs a “smooth” fragment mover
(Fragment “insertions” are followed by a
second, downstream fragment insertion chosen
to minimize global disruption.)

Small and Shear Movers
kT = 1.0 Variable simulating the product of the

Boltzmann constant and temperature (1.0
approximates room temperature.)

smallmover = SmallMover(movemap, kT, 5)
shearmover = ShearMover(movemap, kT, 5)

Constuct a small or shear mover with a
movemap, a temperature, and 5 moves

smallmover.angle_max("H", 15)
shearmover.angle_max("H", 15)

Set the maximum change in dihedral angle
within helix residues to 15º ("E" sets the max-
imum for sheet residues; "L" loop residues.)

smallmover.apply(pose)
shearmover.apply(pose)

Apply the movers

Appendix B: Residue Parameter Files 81

Minimize Mover
minmover = MinMover() Consructs a minimize mover with default

arguments
minmover = MinMover(movemap,

scorefxn, "linmin", 0.01,
True)

Construct a steepest descent minimize mover
with a particular MoveMap and
ScoreFunction and a score tolerance of 0.01

minmover.movemap(movemap) Sets a movemap
minmover.score_function(scorefxn) Sets a score function
minmover.min_type("linmin") Sets a the minimization type to a line minimization

(one direction in space), i.e., “steepest descent”
minmover.min_type("dfpmin") Sets a the minimization type to a David–Fletcher–

Powell minimization (multiple iterations of
"linmin" in conjugate directions)

minmover.tolerance(0.5) Sets the mover to iterate until within 0.5 score
points of the minimum

minmover.apply(pose) Minimizes the pose

Monte Carlo Object
mc = MonteCarlo(pose, scorefxn,

kT)
Constructs a MonteCarlo object for a given pose and
score function at a temperature of kT

mc.set_temperature(1.0) Sets the temperature in the MonteCarlo object
mc.boltzmann(pose) Accepts or rejects the current pose, compared to the

last pose, according to the standard Metropolis criterion
mc.show_scores()
mc.show_counters()
mc.show_state()

Shows stored scores, counts of moves
accepted/rejected, or both, respectively.

mc.recover_low(pose) Sets the pose to the lowest-energy configuration ever
encountered during the search

mc.reset(new_pose) Resets all counters and sets the lowest and last pose
stored to new_pose.

Trial Mover
smalltrial = TrialMover(smallmover,

mc)
Constructs a combination mover that will apply the
small mover, then call the MonteCarlo object
mc to accept or reject the new pose

smalltrial.num_accepts() Returns the number of times the move was
accepted

smalltrial.acceptance_rate() Returns the acceptance rate of the moves

82 | Appendix B: Residue Parameter Files

Sequence Movers and Repeat Movers
seqmover = SequenceMover()
seqmover.addmover(smallmover)
seqmover.addmover(shearmover)
seqmover.addmover(minmover)

Construct a combination mover that will call a
series of other movers in sequence

repeatmover = RepeatMover(fragmover, 10) Constructs a combination mover that will call
fragmover 10 times

randommover = RandomMover()
randmover.addmover(smallmover)
randmover.addmover(shearmover)
randmover.addmover(minmover)

Construct a combination mover that will
randomly apply one of a set of movers each
time it is applied

Classic Relax Protocol
relax = ClassicRelax() Instantiates an object that encompasses the entire

standard Rosetta refinement protocol as presented in
Bradley, Misura, & Baker 2005

relax.set_scorefxn(scorefxn) Sets the score function
relax.apply(pose) Applies the whole protocol

Packer Task Object
task = standard_packer_task(pose) Constructs a packer task object with

instructions to repack all residues in
pose using default rotamer library
options, without repacking disulfide bonds

task = TaskFactory.create_packer_task(pose) Constructs a default packer task object
without any extra rotamer options

task.restrict_to_repacking() Restricts all residues to repacking only
(no design/”mutations”)

task.temporarily_fix_everything() Fixes/locks all residues’ rotamers (no
repacking)

task.temporarily_set_pack_residue(5, True) Sets residue 5 to allow repacking

generate_resfile_from_pdb("input.pdb",

"output.resfile")
generate_resfile_from_pose(pose,

"output.resfile")

Generate a resfile from a pdb file or a
pose, respectively

parse_resfile(pose, task, "file.resfile") Sets packer task for pose based on
instructions in resfile

Resfile Codes
NATRO Use the native amino acid residue and native rotamer (do not repack)
NATAA Use the native amino acid residue but allow repacking to other rotamers
PIKAA ILV Pick from amino acid residues Ile, Leu, and Val and allow repacking
ALLAA Use all amino acid residues and allow repacking

Appendix B: Residue Parameter Files 83

Side Chain Packing Mover
pack_mover =

PackRotamersMover(scorefxn,
task)

Constructs a mover that will use instructions
from the packer task to optimize or “mutate”
side chain conformations in the pose

Simple Point Mutation
mutate_residue(pose, 49, 'E') Replaces residue 49 of pose with a glutamate

(E) residue (does not optimize rotamers)

Fold Tree
ft = FoldTree() Constructs an empty fold tree
ft = pose.fold_tree() Extracts the current fold tree from the pose
pose.fold_tree(ft) Attaches the fold tree ft to the pose
ft.add_edge(1, 30, -1) Creates a peptide edge (code -1) from residues 1 to 30

(This edge will build N-to-C)
ft.add_edge(100, 31, -1) Creates a peptide edge from residues 100 to 31 (This edge

will build C-to-N.)
ft.add_edge(30, 100, 1) Creates a jump (rigid-body connection) between residues

30 and 100 (The jump number is 1; each jump needs a
unique, sequential jump number.)

ft.check_fold_tree() Returns True only for valid trees
print ft Prints the fold tree
ft.simple_tree(100) Creates a single-peptide-edge tree for a 100-residue

protein
ft.new_jump(40, 60, 50) Creates a jump from residue 40 to 60, a cutpoint between

50 and 51, and splits up the original edges to finish the tree
ft.clear() Deletes all edges in the fold tree
setup_foldtree(pose, "A_B",

Vector1([1])
Creates a fold tree for pose with jump #1 between the
centers of mass of chains A and B

set_single_loop_fold_tree(pose,
loop)

Creates a fold tree for pose with jump points and a
cutpoint defined by a Loop object, and splits up the original
edges to finish the tree (See below for the Loop object.)

Jump Object
pose.jump(1).get_rotation() Returns the rotation matrix for the jump
pose.jump(1).get_translation() Returns the translation vector for the jump

84 | Appendix B: Residue Parameter Files

Rigid Body Movers
pert_mover = RigidBodyPerturbMover(1, 8,

3)
Constructs a mover that will make a random
rigid-body move of the downstream partner
across jump #1 (Rotations and translations
are chosen from a Gaussian with a mean of
8° and 3 Å, respectively.)

trans_mover = RigidBodyTransMover(pose,
jump_num)

trans_mover.trans_axis(a)
trans_mover.step_size(5)

Constructs a mover that will translate two
partners, defined by jump_num, along an axis
defined by vector a by 5 Å

spin_mover =
RigidBodySpinMover(jump_num)

spin_mover.spin_axis(axis)
spin_mover.rot_center(center)
spin_mover.angle_size(45)

Constructs a mover that will spin the chain
downstream of jump_num around a spin axis
and rotation center by 45° (No specified
angle size randomizes the spin.)

random_mover =
RigidBodyRandomizeMover(pose,
1, partner_upstream)

random_mover =
RigidBodyRandomizeMover(pose,
1, partner_downstream)

Construct a mover that will rotate one of the
partners across jump #1 randomly about its
geometric center (partner_upstream
and partner_downstream are
predefined constants, not variables.)

slide = DockingSlideIntoContact(1)
slide = FADockingSlideIntoContact(1)

Construct movers to translate two centroid or
full-atom chains across jump #1 into contact,
respectively

Docking Protocols
dock_lowres = DockingLowRes(scorefxn_low,

jump_num)
Constructs a low-resolution, centroid-
based Monte Carlo search protocol (50
rigid-body perturbations with adaptable
step sizes)

dock_hires = DockMCMProtocol(scorefxn_high,
jump_num)

Constructs a high-resolution, full-atom–
based Monte Carlo search protocol with
rigid-body moves, side-chain packing, and
minimization

Loop Objects
loop = Loop(15, 24, 20) Defines a loop with stems at residues 15 and 24,

and a cutpoint at residue 20
loops = Loops() Constructs an object to contain a set of loops
loops.add_loop(loop1) Adds a Loop object to loops

Appendix B: Residue Parameter Files 85

Loop Movers
ccd = CCDLoopClosureMover(loop1,

movemap)
Creates a mover which performs Canutescu &
Dunbrack’s cyclic coordinate descent loop closure
algorithm

loop_refine =
LoopMover_Refine_CCD(loops)

Creates a high-resolution refinement protocol
consisting of cycles of small and shear moves,
side-chain packing, CCD loop closure, and
minimization.

RMSD-Calculating Functions
CA_rmsd(pose1, pose2) Returns the RMSD between the Cα atoms of

pose1 and pose2
calc_Lrmsd(pose1, pose2, Vector([1])) Return the ligand RMSD between pose1 and

pose2
loop_rmsd(pose, ref_pose, loops,

True)
Returns the RMSD of all loops in the reference
frame of the fixed protein structure

Job Distributor
jd = PyJobDistributor("output", 10,

scorefxn)
Constructs a job distributor that will create 10
model structures named output_1.pdb to
output_9.pdb and a file containing a table of
scores

jd.native_pose = native_pose Sets the native pose for RMSD comparisons
jd.job_complete Returns True if all decoys have been output
jd.output_decoy(pose) Outputs pose to a file and increments the decoy

number
while not jd.job_complete:
 # Code for creating decoys
 jd.output_decoy(pose)

Loop to create decoys until all have been output

jd.additional_decoy_info = "Created by
Andy"

Sets a string to be output to the pdb files

