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Workshop	#9:	Custom	Movers	&	Energy	Methods	

You may have noticed that every “mover” we have introduced in the preceding chapters has 
shared an apply() method, which takes a pose as its argument. One of the benefits of object-
oriented programming is the ability to design a group of objects, such as movers, that are all 
related to each other. More complicated objects are said to inherit methods and/or data from 
simpler objects, known as base classes. Rosetta 3 has been carefully designed in an organized 
way with countless derived classes inheriting code from higher up in the inheritance tree. 

Suppose you wish to create your own movers or score function scoring components for a 
specific project. PyRosetta allows you to make your own custom movers and energy methods 
that inherit from Rosetta’s Mover and EnergyMethod base classes just as movers like 
SmallMover and MinMover do. This workshop will provide a quick overview of classes and 
inheritance in Python and demonstrate how to customize movers and energy methods. 

Suggested Reading 

4. Python help on classes available at http://docs.python.org/tutorial/classes.html 
5. A. Leaver-Fay, et al., “ROSETTA3: An object-oriented software suite for the simulation 

and design of macromolecules,” Methods Enzymol. 487, 545–574 (2011). 

Classes in Python 

Python is more than just a scripting language; it is designed for object-oriented programming, 
including class definitions, inheritance, instantiation, class properties, and class methods. A full 
description of object-oriented programming in Python will not be covered here, but we will 
provide a quick overview, using a simple example. 

Let’s say we wish to create two objects in Python that contain properties and methods for 
drawing shapes on the screen — one for drawing a circle and another for drawing a square. 
Since a circle and a square are both shapes, they share a lot in common. It is a good 
programming practice to first create a “base class” MyShape, which will contain properties and 
methods that MyCircle and MySquare will “inherit”. 

The class statement is used to declare a class; the properties and methods for the class are 
defined indented underneath the class declaration in the class statement block: 

class MyShape: 
    """A base class for a generic shape.""" 
    def __init__(self): 
        self.color = "black"  # default value for color 
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The __init__() method of any class — known as the “constructor” — is called whenever a 
new object is instantiated as part of that class. If we were to create a new MyShape() object 
using shape = MyShape(), the code below def __init__(self): would be run. 

Note the use of the variable name self in the method declaration for __init__(). The 
keyword self refers to the particular instance of MyShape that is running the code. Whenever 
one calls any class method in Python, the first argument for the method is always the instance 
of the class calling the method. (For example, when we type pose.total_residue(), we 
are running a function within the Pose class and passing the variable pose as the first 
argument of total_residue().) In the example above, the variable color stored within 
whichever object called __init__() is set to the value "black". Such a variable stored 
within an object is called a “property”. 

Another common method for a class is __str__(). The function __str__() returns a string 
version of the object; that is, it will code for what happens if one tries to print the object: 

    def __str__(self): 
        return self.__doc__ 

The keyword __doc__ is a predefined variable in Python that stores the value of the 
“docstring” of its object. Any block comments after a declaration between a pair of three 
double quotes (""") become the docstring for that class or method. If one were to type print 
shape, Python would return, in this case, A base class for a generic shape. 

For our example class, we could code for a method that returns the area of the shape: 

    def area(self): 
        """Return the area of the shape.""" 
        return # Code to calculate the area goes here. 

Because MyShape is a base class and every shape has a different method for calculating its 
area, we simply return nothing here. This is a way to inform other programmers (or ourselves) 
that any shape objects created later should include and fully implement this method for that 
particular shape. 

We could also include a method for outputting the shape on the screen. We will provide a 
default value for this method also. This allows one to call either MyShape.draw() or 
MyShape.draw(<some_integer>), and either one will work. 

    def draw(self, line_width=1): 
        """Draw the shape on the screen.""" 
        pass  # Code to draw the shape goes here. 
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Now we will code for a derived class, MyCircle. In our declaration line for MyCircle, we 
will include in parentheses the base class MyShape. This will cause MyCircle to “inherit” 
from MyShape all of its methods so we do not have to code them again. However, we will 
recode the __init__() and  area()methods, because those are unique for a circle. 

class MyCircle(MyShape): 
    """A subclass of MyShape for a circle.""" 
    def __init__(self): 
        # This overrides the __init__() method inherited 
        # from MyShape. 
        MyShape.__init__(self) 
        self.radius = 1.0  # default value 
 
    def area(self): 
        """Return the area of the circle.""" 
        # This overrides the area() method inherited from 
        # MyShape. 
        return math.pi * self.radius**2 

Notice how we call the __init__() method of the base class MyShape. Doing such will set 
the color property of the instance of MyCircle when it is initialized or constructed. In this 
way we can inherit a class’s method and then add additional things to it, such as the addition of 
the definition of the property radius here. 

One could make a similar class MySquare with different __init__() and area()methods. 

1. Create a single Python file (my_shapes.py) containing the above classes. In addition, 
create a class MySquare that initializes a property side_length and includes a 
mathematically appropriate area() method. Import the two derived classes into 
IPython using from my_shapes import MyCircle, MySquare, and then run the 
following lines of code: 

circle = MyCircle() 
square = MySquare() 
print circle 
print square 
print circle.color 
print square.color 
square.side_length = 2 
print square.area() 
circle.radius, circle.color = 1.5, "pink" 
print circle.area() 
circle.draw(2) 

After typing the above lines, what is the area of your square? ____ What is the area of 
your circle? ______ Assuming that you had put actual code for drawing a circle into the 
draw() method, what would the color of the drawn circle be? ______ What would be 
the line width of the drawn circle? ___ 
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Custom Mover Classes 

Now we have a foundation for creating our own mover classes in PyRosetta that are subclasses 
of a base class Mover.  

2. Create a Python file with the following lines of code. (Be sure to import rosetta at 
the top of the file, but you do not need to call init().) 

class PhiNByXDegreesMover(rosetta.protocols.moves.Mover): 
    """A mover that increments the phi angle of residue N 
    by X degrees. 
     
    Default values are residue 1 and 15 degrees. 
     
    """ 
    def __init__(self, N_in=1, X_in=15): 
        """Construct PhiNByXDegreesMover.""" 
        rosetta.protocols.moves.Mover.__init__(self) 
 
        self.N = N_in 
        self.X = X_in 
 
    def __str__(self): 
        return "residue: " + str(self.N) + \ 
               "  phi increment: " + str(self.X) + \ 
               " degrees" 

To function as a true Rosetta mover, we must do a few specific things. First, we must 
make our class inherit from rosetta.protocols.moves.Mover, a Rosetta base 
class. Furthermore, in the initialization code for our new mover object, we must run the 
__init__() constructor method of the Mover base class. One can also inherit from 
other Rosetta movers besides Mover. If this is done, simply call that particular mover’s 
constructor instead. (You can — and should — include other mover initializations, such 
as is done in the code above, e.g., self.N = N_in.) 

Now expand the above class with the following two methods: 

    def get_name(self): 
        """Return name of class.""" 
        return self.__class__.__name__ 
 
    def apply(self, pose): 
        """Applies move to pose.""" 
        pose = pose.get() 
        print "Incrementing phi of residue", self.N, "by", 
        print self.X, "degrees...." 
        pose.set_phi(self.N, pose.phi(self.N) + self.X) 
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All movers must include the above two methods, namely, get_name() and apply(). 
The get_name() method for every PyRosetta mover you make need only include the 
line return self.__class__.__name__, which will return the name of the class 
of the object, in this case, PhiNByXDegreesMover. 

The apply() method contains your custom code that alters the pose. Note that you 
must first call the get() method on pose as shown above. (The reason why this must 
be done is related to the underlying C++ access pointers and is unfortunately beyond 
the scope of this workshop.) 

3. Import the PhiNByXDegreesMover class from the Python file containing it. Construct 
two instances of the mover, one with N set to 1 and X set to 15, the other with N set to 
10 and X set to 45. (Note that properties of movers made in PyRosetta can be accessed 
and set directly — as you did for the properties in our shapes example — whereas, 
those from the Rosetta3 library must be accessed and set using getter and setter 
methods.) Load a test pose and apply both of your movers. Confirm that your movers 
behaved as expected using PyMOL. 

4. Create a mover that decrements the psi angle of every even residue in a pose by a value 
passed during initialization. Bonus: See if you can do this by using a single instance of 
PhiNByXDegreesMover called from within a for loop in your new mover. 

5. Create a TrialMover containing PhiNByXDegreesMover and one containing a 
similar PsiNByXDegreesMover. Write a script that runs a Monte Carlo algorithm 
using these TrialMovers to fold a small protein. 

Decorators in Python 

Setting up a custom energy method with a corresponding scoring component is more 
complicated than creating a new mover. Fortunately, to assist us with this process, we can use a 
“decorator”, which helps us to prepare all of the required class methods. 

Decorators are a high-level coding feature available in Python. A decorator is a function that 
takes a class, object, or method as input and returns a modified, or decorated, version of that 
class, object, or method. For example, suppose we have a class, MyCircle. We could define a 
decorator function such as the following: 

def hollow(shape_in): 
    """Modify the draw() method of an input shape class to 
    output a hollow shape.""" 
    # Code to modify the draw() method goes here. 
    return shape_out 
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We can now pass an instance (an object) of MyCircle to our decorator to get a modified 
version of the object: 

circle = MyCircle() 
circle.draw()  # Draws a filled circle. 
hollow_circle = hollow(circle) 
hollow_circle.draw()  # Draws a hollow circle. 

We can also pass the class itself to our decorator function. In this example, we will overwrite 
our old MyCircle class with the new, decorated, hollow one: 

MyCircle = hollow(MyCircle) 
hollow_circle = MyCircle() 

Python provides an alternate “wrapper” syntax, in which the entire class definition block of 
code is passed to the decorator function: 

@hollow 
class MyCircle(MyShape): 
    # The rest of the class definition would go here. 

If the MyCircle class definition is decorated like this by @hollow, then every MyCircle 
object will have a “hollow” draw() method. 

Custom Energy Methods 

It is unlikely that you will need to write your own decorator functions for structure prediction 
or design applications. However, there is a decorator in the PyRosetta library already written 
for you that will modify any custom energy method classes you write so that your custom 
classes will contain most of the required methods automatically. For example, here is how we 
can create a custom context-independent, one-body scoring method that will score a pose based 
solely on the number of residues. We will call our new class LengthScoreMethod. First, we 
must import the proper parent class method from Rosetta: 

from rosetta.core.scoring.methods import 
ContextIndependentOneBodyEnergy 
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Now, we will define our class: 

@rosetta.EnergyMethod() 
class LengthScoreMethod(ContextIndependentOneBodyEnergy): 
    """A scoring method that favors longer peptides by 
    assigning negative one Rosetta energy unit per 
    residue. 
     
    """ 
    def __init__(self): 
        """Construct LengthScoreMethod.""" 
        ContextIndependentOneBodyEnergy.__init__(self, 
                                           self.creator()) 
 
    def residue_energy(self, res, pose, emap): 
        """Calculate energy of res of pose and set emap""" 
        # 1 energy unit per residue 
        emap.get().set(self.scoreType, -1.0) 

And that’s it! We should point out a few things. First, like when we inherited from Mover, we 
need to call the parent energy method class’s __init__() constructor. An energy method 
constructor requires an additional argument, a “creator” function; where did this argument 
self.creator() come from? We did not explicitly define a method creator() to pass to 
ContextIndependentOneBodyEnergy’s constructor. The decorator, EnergyMethod(), 
(which is a callable class just like ScoreFunction(),) does that for us. EnergyMethod() 
also makes life easier by defining several other required methods for us. 

Before we explain how this new energy method works, let’s demonstrate how we can use it. 

6. Create a Python file with the LengthScoreMethod code. (Include the proper 
imports.) Import Rosetta, import the new energy method, create a pose from the 
sequence “ACDEFGHIKLMNPQRSTVWY”, and construct an empty 
ScoreFunction() with sf = ScoreFunction(). What is the score of your pose? 
____ 

Create a variable to hold the score type for your custom energy: 

len_score = LengthScoreMethod.scoreType 

(Note that we do not have to instantiate a LengthScoreMethod object; we simply can 
extract the score type directly from the class.) 

Now set the weight for the len_score scoring component to 1, just as we would for 
any other scoring component, such as fa_atr: 

sf.set_weight(len_score, 1.0) 

Score the pose. What is the score for the pose now? ____ 
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Let’s return to the code for our new energy method to understand how it works. 

For one-body energy methods, whenever one scores a pose, the ScoreFunction() loops 
through each residue in the pose and calls the residue_energy() method of the energy 
method class associated with each score type. The residue_energy() method uses the 
residue and pose objects passed as arguments to calculate an energy score and sets the 
corresponding score type in the passed energy map. In our example above, we assign -1 energy 
unit per residue, independent of the context (e.g., what type of residue it is), so we did not need 
to do anything with the arguments res or pose; we simply had to set self.scoreType in 
emap to -1.0. 

Note that, as with custom mover apply() methods, because the residue_energy() method 
is called by a Rosetta function (written in C++, not a Python), we need to “get()” emap or 
any other passed object before we can use it. 

7. Create an energy method that gives a favorable (-1.0) score for each aromatic residue in 
a pose. (Remember to call res.get().) Repeat programming exercise 3c and d of 
Workshop 6, except add your aromatic-favoring energy method score type to the full 
atom standard score function to bias the design. How do your results change? How 
much do you have to adapt the weight of your score type before all of the designed 
residues are aromatic? 
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The procedure for making a custom two-body energy method is similar, but there are a few 
additional required methods and residue_energy() is replaced by 
residue_pair_energy(). Below is a template one can use for creating a context-
independent, two body score type: 

from rosetta.core.scoring.methods import 
ContextIndependentTwoBodyEnergy 

 
 
@rosetta.EnergyMethod() 
class CI2BScoreMethod(ContextIndependentTwoBodyEnergy): 
    """A scoring method that depends on pairs of residues. 
    """ 
    def __init__(self): 
        """Construct CI2BScoreMethod.""" 
        ContextIndependentTwoBodyEnergy.__init__(self, 
                                           self.creator()) 
 
    def residue_pair_energy(self, res1, res2, pose, sf, 
                            emap): 
        """Calculate energy of each pair of res1 and res2 
        of pose and set emap.""" 
        # A real method would calculate a value for score 
        # from res1 and res2. 
        score = 1.0 
        emap.get().set(self.scoreType, score) 
 
    def atomic_interaction_cutoff(self): 
        """Get the cutoff.""" 
        return 0.0  # Change this value to set the cutoff. 
 
    def defines_intrares_energy(self, weights): 
        """Return True if intra-residue energy is 
        Defined.""" 
        return True 
 
    def eval_intrares_energy(self, res, pose, sf, emap): 
        """Calculate intra-residue energy if defined.""" 
        pass 

The template for a context-dependent, two-body method is identical, except that it inherits 
from and initializes ContextDependentTwoBodyEnergy instead. 
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Programming Exercises 

1. Pick a small protein and use the toolbox method get_secstruct(pose) to 
determine the secondary structure, store that information in the pose, and output the 
results. Using the method Pose.sectruct(resnum), and PhiNByXDegreesMover, 
loop through all residues that are a part of loops, set X between 1 and 15 stepping by 1 
each time, apply for each case, and record the change in score. Reset the pose after each 
move. Plot the average change in score vs. X. Repeat this process for helix and strand 
residues, and then do the same three plots using PsiNByXDegreesMover instead. Do 
the sets of plots look similar for phi and psi? Does secondary structure appear to have 
an effect on how large X can be before the score is severely penalized? Do the default 
angle_max values of 0°, 5°, and 6° for helix, sheet, and loop, respectively, make sense 
based on your plots? 

2. Create a context-dependent, two-body energy method to reward structures containing 
salt bridges. The energy method should give a bonus for each pair of acid and base side 
chains within 6 Å of each other. Find a small protein with several salt bridges. Run a de 
novo folding algorithm with and without your new scoring method. Does scoring for 
salt bridges give better results, that is, are the RMSDs from the native structure lower? 


