

17

Workshop	#3:	Scoring		

Scoring Poses

A basic function of Rosetta is calculating the energy or score of a biomolecule. Rosetta has a
standard energy function for all-atom calculations as well as several scoring functions for low-
resolution protein representations. In addition, you can tailor an energy function by including
scoring terms of your choice with custom weights.

For these exercises, use the protein Ras (PDB ID 6Q21) and load it into a pose called ras. Be
sure to clean the PDB file and use only one chain.

1. To score a protein, you must first define a scoring function:

from pyrosetta.teaching import *
scorefxn = get_fa_scorefxn()

(Note that, beginning in this chapter, we will instruct you to import from the
pyrosetta.teaching namespace. This is to save time. Best programming practice,
however, would be to only import those specific keywords required by one’s script
from the appropriate namespaces.)

The method get_fa_scorefxn tells Rosetta to load the default full-atom energy
terms. To see these terms, you can print the score function:

print scorefxn

What terms are in the score function, and what are their relative weights?

(Appendix A includes a list of Rosetta scoring function terms, which you may wish to
reference.)

18 | Workshop #3: Scoring

2. Set up your own custom score function that includes just van der Waals, solvation, and
hydrogen bonding terms, all with weights of 1.0. Use the following to start:

scorefxn2 = ScoreFunction()
scorefxn2.set_weight(fa_atr, 1.0)
scorefxn2.set_weight(fa_rep, 1.0)

(The first line declares the object scorefxn2 as part of the ScoreFunction class.)
Enter the other weights and then confirm that the weights are set correctly.

3. Evaluate the energy of Ras with the standard score function:

print scorefxn(ras)

What is the total energy of Ras? __________

Break the energy down into its individual pieces with the show method:

scorefxn.show(ras)

Which are the three most dominant contributions, and what are their values? Is this
what you would have expected? Why?

4. Unweighted, individual component energies of each residue in a structure are stored in
the Pose object and can be accessed by its energies() object. For example, to break
the energy down into each residue’s contribution use:

print ras.energies().show(<n>)

where <n> is the residue number.

What are the total van der Waals, solvation, and hydrogen-bonding contributions of
residue 24? (Note that the backbone hydrogen-bonding terms for each residue are not
available from the Energies object.)

Workshop #3: Scoring | 19

5. The van der Waals and solvation terms are atom–atom pairwise energies calculated
from a pre-tabulated lookup table, dependent on the distance between the two atoms
and their types. You can access the lookup table (etable) directly to check these
energy calculations on an atom-by-atom basis:

r1 = ras.residue(24)
r2 = ras.residue(20)
a1 = r1.atom("N")
a2 = r2.atom("O")
etable_atom_pair_energies(a1, a2, scorefxn)

(Note that the etable_atom_pair_energies() function requires Atom objects, not
the AtomID objects we saw in Workshop #2.)

What are the attractive, repulsive, and solvation components between the nitrogen of
residue 24 and the oxygen of residue 20?

How does Rosetta separate the “attractive” and “repulsive” van der Waals components?
(Hint: it is not the 𝑟"# and 𝑟"$% parts of the Lennard-Jones equation.)

6. The hydrogen-bonding score component requires identification of acceptor
hybridization state and calculation of geometric parameters including distance, acceptor
bond angle, proton bond angle, and a torsion angle. The hydrogen-bonding energies are
stored in an HBondSet object. You can access the list of hydrogen bonds by creating
an HBondSet object, filling the set from the pose (after making sure the pose has had
its Energies object updated based on neighboring residues within the pose), and then
using the HBondSet.show() command:

from rosetta.core.scoring.hbonds import HBondSet
hbond_set = hbonds.HBondSet()
ras.update_residue_neighbors()
hbonds.fill_hbond_set(ras, False, hbond_set)
hbond_set.show(ras)

(Note that some functions and classes, such as HBondSet, must be referenced with
their proper “namespace”, such as the namespace hbonds here.)

The above steps have been combined in the PyRosetta toolbox method
get_hbonds(), so that we can also simply type:

from pyrosetta.toolbox import get_hbonds
hbond_set = get_hbonds(ras)
hbond_set.show(ras)

20 | Workshop #3: Scoring

An individual residue’s hydrogen bonds can be looked up from the set using its residue
number:

hbond_set.show(ras, 24)

How many hydrogen bonds does residue 24 make? _______

Using the parameters from the show function, sketch a picture of this hydrogen bond.
Label all possible atoms, distances, and angles.

7. Analyze the energy between residues Y102 and Q408 in cetuximab (1YY9). (You’ll
need to load that structure into a new Pose object.

a. As explained in Workshop #2, internally, a Pose object has a list of residues,
numbered starting from 1. To find the residue numbers of Y102 of chain D and
Q408 of chain A, use the residue chain identifier and the PDB residue number
to convert to the pose numbering:

print pose.pdb_info().pdb2pose('A', 102)

D:Y102: _____ A:Q408: _____

b. Score the pose and determine the Van der Waals energies and solvation energy
between these two residues. Use the following commands to isolate
contributions from particular pairs of residues, where rsd1 and rsd2 are the
two residue objects of interest (not the residue number — use
pose.residue(res_num) to access the objects):

emap = EMapVector()
scorefxn.eval_ci_2b(rsd1, rsd2, pose, emap)
print emap[fa_atr]
print emap[fa_rep]
print emap[fa_sol]

c. How do Rosetta’s calculations compare to what you might calculate by hand?
(See references.)

Workshop #3: Scoring | 21

d. Create a new PDB file containing coordinates for just the two residues Y102
and Q408. Repeat the above calculations. Which energies change? Why?

Energies and the PyMOL Mover

The PyMOLMover class contains a method for sending score function information to PyMOL,
which will then color the structure based on relative residue energies.

8. Instantiate a PyMOLMover and then use pymol.send_energy(pose) to send the
coloring command to PyMOL after scoring ras with scorefxn.
What color is residue Pro34? ______
What color is residue Ala66? ______
Which residue has a lower energy? _______

9. pymol.send_energy(pose, fa_atr) will have PyMOL color only by the
attractive van der Waals energy component. What color is residue 34 if colored by
solvation energy? ______

If its update_energy option is true, the PyMOL mover will update the colors by energy
every time the mover is applied to the pose:

pymol.update_energy(True)
pymol.energy_type(fa_atr)
pymol.apply(pose)

You can also have PyMOL label each Cα with the value of its residue’s energy:

pymol.label_energy(pose, fa_rep)

Finally, if you have scored the pose first, you can have PyMOL display all of the calculated
hydrogen bonds for the structure:

pymol.send_hbonds(pose)

Programming Exercises

1. Interface energy. Write a program that can calculate the binding energy of EGFR to
cetuximab. You will need to make separate PDB files for the antigen, antibody, and
complex. In PyMOL, select one of these peptides, then use File→Save	Molecule.

Use the following formula for binding energy:

Ebinding = Ecomplex – Eantibody – Eantigen

22 | Workshop #3: Scoring

Submit your script along with its output, which should include values for the total
binding energy, along with the weighted contributions to the binding energy from Van
der Waals, hydrogen bonding, and solvation. What does your result suggest about these
two proteins in vitro? What are some inaccuracies in the way you’ve calculated the
binding energy?

2. Statistical energy functions. Write a program to output a file of data of the C–N bond
lengths observed in a set of ten high-resolution X-ray protein structures. (One source of
curated structures is the WHATIF sets at http://swift.cmbi.ru.nl/swift/whatif/select/.)

a. Import the file into a spreadsheet, and plot the data as a histogram of probability
versus bond length and as a statistical energy (𝐸 = −𝑘𝑇 ln𝑃, where P is
probability and kT is set to 0.6 kcal/mol.) versus bond length. Try a bin size of
0.01 Å.

b. Look up the CHARMm parameters for this bond stretch, and plot a curve over
the statistical energy vs. bond length figure to show the CHARMm model for
this motion.

c. Do the statistics match what would be produced by a harmonic oscillator under
the CHARMm potential? Specifically, are the average bond length and the
CHARMm spring constant K correct? If not, what should it be? You may need
to fit a parabola to your data to find the average bond length and the spring
constant K.

3. Write a program to loop over all pairs of atoms in two residues to confirm that the sum
of the individual atom–atom pair energies (calculated using the Etable lookup) is the
same as the total residue-residue pair energy.

References

1. E. Neria, S. Fischer & M. Karplus, “Simulation of activation free energies in molecular
systems,” J. Chem. Phys. 105, 1902-1921 (1996).

2. T. Kortemme, A. V. Morozov & D. Baker, “An orientation-dependent hydrogen
bonding potential improves prediction of specificity and structure for proteins and
protein-protein complexes,” J. Mol. Biol. 326, 1239-1259 (2003).

3. D. Eisenberg & A. D. McLachlan, “Solvation energy in protein folding and binding,”
Nature 319, 199-203 (1986).

4. T. Lazaridis & M. Karplus, “Effective energy function for proteins in solution,”
Proteins 35, 133-152 (1999).

