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Workshop	#2:	PyRosetta	

Rosetta is a suite of algorithms for biomolecular structure prediction and design. Rosetta is 
written in C++ and is available from www.rosettacommons.org. PyRosetta is a toolkit in the 
programming language Python, which encapsulates the Rosetta functionality by using the 
compiled C++ libraries. Python is an easy language to learn and includes modern programming 
approaches such as objects. It can be used via scripts and interactively as a command-line 
program, similar to MATLAB®. 

The goals of this first workshop are (1) to have you learn to use PyRosetta both interactively 
and by writing programs and (2) to have you learn the PyRosetta functions to access and 
manipulate properties of protein structure. 

Basic Elements 

You will need a few basic tools to work on PyRosetta. 

• You need a text editor to edit scripts. A good editor will “markup” your code in color 
and make sure your code is indented properly, and it can offer search tools across 
multiple files and sometimes support for running and debugging your program. One 
current favorite editor is jEdit (www.jedit.org). A popular editor on the Mac is 
Aquamacs, based on the program Emacs. IDLE is an “integrated development 
environment” (IDE) that is packaged with Python and includes pop-up function 
signatures while you are writing code. A text-only (no mouse) program is vi or Vim 
(www.vim.org), popular among *nix hackers. jEdit, Emacs, and vi are available for 
Windows and Linux platforms. There is a built in Mac editor called TextEdit, similar 
to Notepad or WordPad on a PC. These will not have the color markup and other 
tools, but they will allow you to edit your files. Choose one of these programs and learn 
to access it on your computer. 

• You need a command-line interface (CLI) or terminal. On a Windows PC, typing 
cmd under the Start menu will launch a Command Prompt which will support standard 
DOS commands: dir, cd, copy, type, more, etc. On the Mac, you can find a terminal 
in the menu on the bottom of the screen or by searching for xterm. The Mac terminal 
will support standard UNIX/Linux shell commands: ls, cd, less, cp, mkdir, rm, 
grep, awk, sed, gnuplot, etc. Search the Internet if you are not familiar with Linux 
shell or DOS commands. 

• You can access Python using the command ipython or python ipython.py from 
the terminal. We use IPython (rather than Python) since it supports tab-completion, 
which will help us find PyRosetta functions. On Windows, your install may include a 
desktop shortcut for iPython PyRosetta Shell: this shortcut will open a terminal 
and start IPython for you. 
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Basic Python 

Basic Python programming will be useful but is beyond the scope of this workshop. Excellent 
introductory and reference material on the Python language is available at docs.python.org. A 
very brief reference is also found in Appendix A. 

Basic PyRosetta 

1. Open a terminal and start IPython. To load the PyRosetta library, type 

from pyrosetta import * 
init() 

The first line loads the Rosetta commands for use in the Python shell, and the second 
command loads the Rosetta database files. The first line may require a few seconds to 
load. 

2. Many pdb files, like the one you opened in Workshop #1, have extraneous information 
and often do not conform to file standards. You may have to “clean” your pdb file 
before loading it into PyRosetta. You can do this through the command line interface 
(not from within IPython) by using either the grep command (UNIX) or the findstr 
command (DOS) to remove all lines that do not begin with ATOM in the pdb file. 
Alternatively, a method from the PyRosetta toolbox namespace, cleanATOM can be 
used to create “clean” pdb files:  

from pyrosetta.toolbox import cleanATOM 
cleanATOM("1YY8.pdb") 

(This method will create a cleaned 1YY8.clean.pdb file for you.) 

See Appendix C for details on these methods and specific examples of how to clean 
pdb files. 

3. Load a protein from a “clean” pdb file. Use the 1YY8.pdb file of the antibody you 
looked at in Workshop #1. Put the file in your working directory or change to the 
directory in which the file is located using cd from within IPython. Load the file as 
follows: 

pose = pose_from_pdb("1YY8.clean.pdb") 

This creates a Pose object that you can now work with using a variety of methods. 

If you have not already downloaded the pdb file, you can create a pose directly from the 
protein database if you have a connection to the Internet: 

from pyrosetta.toolbox import pose_from_rcsb 
pose = pose_from_rcsb("1YY8") 
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(This method will also create 1YY8.pdb and 1YY8.clean.pdb files for you) 

4. Examine the protein using a variety of query functions: 

print pose 
print pose.sequence() 
print "Protein has", pose.total_residue(), "residues." 
print pose.residue(500).name() 

What type of residue is residue 500? _____ 

Note that the 500th residue in the pdb file is not necessarily “residue number 500” in the 
protein. Many pdb files have multiple peptide chains. Sometimes the residue numbering 
follows a convention from a family of homologous proteins, and often several residues 
of the N-terminus do not show up in a crystal structure. Find out the chain and pdb 
residue number of residue 500: ________ 

print pose.pdb_info().chain(500) 
print pose.pdb_info().number(500) 

Lookup the Rosetta internal number for residue 100 of chain A: 

print pose.pdb_info().pdb2pose('A', 100) 

The converse command is: 

print pose.pdb_info().pose2pdb(25) 

Get and display the secondary structure of the pose using a toolbox method: 

from pyrosetta.toolbox import get_secstruct 
get_secstruct(pose) 

To demonstrate IPython’s tab-completion feature, type in print pose.seq and hit 
the tab key. IPython should complete the keyword sequence for you. Type pose. and 
hit the tab key, and you should see a list of functions available for Pose objects. 

While we are examining the advantages of IPython, try out the built-in help features by 
typing any one of the following: 

Pose? 
?Pose 
help(Pose) 

Each of these will give a brief description of the Pose class and its purpose. The last 
form will also give a list of function signatures for all the available functions within the 
class. These methods of accessing help should work on many of the PyRosetta objects. 
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Protein Geometry 

5. Find the φ, ψ, and χ1 dihedral	angles of residue 5: 

print pose.phi(5) 
print pose.psi(5) 
print pose.chi(1, 5) 

6. Find the N–Cα and Cα–C bond lengths of residue 5. There are at least a couple ways to 
do this. 

First, store the unique atom identifier codes in variables: 

R5N  = AtomID(1, 5) 
R5CA = AtomID(2, 5) 
R5C  = AtomID(3, 5)  

(This works because the atoms are listed in a consistent order in a pdb file.) Then, use 
these identifier codes to lookup bond lengths in the conformation object: 

print pose.conformation().bond_length(R5N, R5CA) 
print pose.conformation().bond_length(R5CA, R5C) 

For the second method, access the Cartesian coordinates and use the Vector class to 
find the norm of the displacement vector between the two atoms: 

N_xyz = pose.residue(5).xyz("N") 
CA_xyz = pose.residue(5).xyz("CA") 
N_CA_vector = CA_xyz – N_xyz 
print N_CA_vector.norm 

These bond lengths are actual, experimental bond lengths from the crystal structure. 
When Rosetta creates proteins de novo, it uses ideal values, similar to those from Engh 
& Huber (1991). Let’s check how the actual bond lengths compare to Rosetta’s ideal 
values. Find the Rosetta database directory on your computer (e.g., 
/usr/local/PyRosetta/rosetta_database). Enter the subdirectory 
chemical/residue_type_sets/fa_standard/residue_types and, with your 
text editor, load the param file appropriate for residue 5. The ICOOR_INTERNAL lines 
give the internal coordinates for an ideal conformation, including the torsion angle, 
bond angle, and bond length needed to build each subsequent atom in the group. 

7. Can you identify the N–Cα and Cα–C bond lengths? How do they compare? Bonus: how 
do they compare to Engh & Huber’s numbers? If they differ, why? 
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8. Find the N–Cα–C bond angle in radians: 

print pose.conformation().bond_angle(R5N, R5CA, R5C) 

What is this angle in degrees? _______ 

Again, compare with the Rosetta database ideal value. What is the hybridization of the 
Cα atom? _____ What is the standard bond angle for such a hybridization? _______ 

Be aware that not all bond lengths and angles are accessible through the conformation object. 
The conformation object only contains a minimal subset of bond lengths and angles used in 
generating Cartesian coordinates. The vector objects provide a general way to measure angles, 
distances, and torsions between arbitrary atoms.  

9. How could you also find the N–Cα–C bond angle using the vector dot product function, 
v3 = v1.dot(v2)? (Recall from vector calculus that the angle between any two 

displacement vectors BA and BC is arccos BA∙BC
BA BC

.) 

 

 

Manipulating Protein Geometry 

10. We can also alter the geometry of the protein. Perform each of the following 
manipulations, and give the coordinates of the N atom of residue 6 afterward. 

pose.set_phi(5, -60) 
pose.set_psi(5, -43) 
pose.set_chi(1, 5, 180) 
 
pose.conformation().set_bond_length(R5N, R5CA, 1.5) 
pose.conformation().set_bond_angle(R5N, R5CA, R5C, 

110./180.*3.14159) 

New coordinates of N atom of residue 6: (_____, _____, _____) 

Remember that only some bond lengths and angles are available through the conformation 
object. Note that even though dihedral angles are set in degrees, the bond angle is set in 
radians! (To make the conversion between degrees and radians easier, you 
may wish to import Python’s math module. See Appendix A for more 
information.) 
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Visualization and the PyMOL Mover 

What if we wish to view the changes to geometry that we have made? We can “dump” the 
information in a pose object into a new pdb file with the method 
pose.dump_pdb("filename.pdb") and then open this pdb file in our favorite visualization 
software. However, constantly dumping output and loading new files into a visualizer can be 
cumbersome; thus, the visualization process was streamlined with the PyMOLMover, which 
provides a means for observing structural changes almost instantaneously in PyMOL as they 
are made in PyRosetta. 

First, we must open PyMOL and run a script that will cause PyMOL to listen for instructions 
from the PyMOL mover. (Certain Windows installations will use a shortcut that automatically 
does this for you, or you can create a .pymolrc file in your home directory in Linux or Mac 
that runs the code for you): 

cd <your_PyRosetta_install_path> 
run PyMOL-RosettaServer.py 

Then, with PyRosetta, we must instantiate a PyMOLMover and then apply it to a pose any time 
we make a change: 

from pyrosetta import PyMOLMover 
pymol = PyMOLMover() 
pymol.apply(pose) 

11. Make some changes to the dihedral angles of a pose and apply the PyMOL mover to 
watch the effect of the new angles on the structure. 

For more advanced PyMOL mover options, visit www.pyrosetta.org/pymol_mover-tutorial, or 
see Appendix A. 

Programming 

12. You can write programs in Python to accomplish more complicated tasks. Using your 
text editor, open a new file with extension .py (e.g., rama.py). You can write your 
entire program here and then run it either from the command line by typing 

[linux]> python rama.py 

or from inside a Python shell by typing 

In [1]: run rama.py 
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Here is a sample program: 

from pyrosetta import * 
init() 
p = pose_from_pdb("1ABC.pdb") 
 
for i in range(1, p.total_residue() + 1): 
    print i, "phi =", p.phi(i), "psi =", p.psi(i) 

Note that we must always first import the Rosetta modules with the import command 
and initialize Rosetta with the init() command before loading a pose. (Appendix A 
contains a list of common Python commands and syntax.) Test that you can write and 
run a simple program from a file. 

Programming Exercises 

Submit your script file and your output. 

1. Torsion angle. Use the vector objects to write a script to calculate torsion angles 
between four arbitrary atoms. This will require knowledge of vector calculus. Hint: 
You will need to calculate the normal vectors of the two planes of the dihedral angle. 

2. Ideal helix. Write a program to create a 20-residue ideal helix by setting the φ and ψ 
angles to the typical values for an α-helix. To start, use pose = 
pose_from_sequence("AAA", "fa_standard") to create a new pose, except 
using 20 “A”s in the argument to create a 20-residue poly-
alanine. Output your structure using pose.dump_pdb("helix.pdb"). 

View your new file in PyMOL to check your work. How can you be sure your structure 
is a proper α-helix? List three distinct structural characteristics that you can check. 

3. Ideal strand. Write a program to create a 20-residue ideal β-strand by setting the φ and 
ψ angles to values in the middle of the β region of the Ramachandran plot. 

View your new file in PyMOL to check your work. How can you be sure your structure 
is a proper β-strand? List three distinct structural characteristics that you can check. 

4. Secondary structure propensities. Write a program to calculate the propensity of each 
residue type to appear in a helix. Loop through all residues in a protein, and count each 
alanine that is in a helix, sheet, or loop according to some φ/ψ-based criteria. The 

propensity can then be calculated as 𝑃1	234 =
67	89:
67	total

, 𝑃<	Ala =
6=	Ala
6=	total

, and 𝑃>	Ala =
6?	Ala
6?	total

, 

where Nα Ala, Nβ Ala, and NL Ala, are the counts of alanine residues in helices, sheets, and 
loops, respectively, and Nα total, Nβ total, and NL total, are the counts of all residues in 
helices, sheets, and loops, respectively. (Note that terminal residues have different 
names in Rosetta than internal ones; e.g., an N-terminal ALA has the name 
ALA_p:NtermProteinFull.) 
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Bonus level 1: Find propensities for all 20 amino acid types. This will be easier if you 
use a data structure (list, array, dictionary, map) to store the counts of the 20 types. Do 
the residues with the highest helical propensity match that given by Brandon & Tooze? 

Bonus level 2: To get better statistics, collect your data by looping over a set of 10 pdb 
files. Better yet, use a set of files such as the PDBSelect set of representative chains 
(http://bioinfo.tg.fh-giessen.de/pdbselect; this may require considerable download and 
compute time.) 

5. Idealize a protein. Write a program that sets all bond lengths and angles to their Engh 
& Huber ideal values. Test your program using a structure from the pdb. What happens 
to the resulting protein? Why? 

6. Cleaning pdb files. Coordinate files in the Protein Data Bank are quite diverse, and 
many pdb files have variations in their format to accommodate peculiarities such as 
post-translationally modified residues or disordered regions where coordinates could 
not be determined for certain atoms. In addition, some pdb files simply do not conform 
to the file standards. When the pdb file departs from the standards, it is necessary to 
clean-up the pdb file before loading it into Rosetta. (See Appendix C.) For this exercise, 
examine PDB ID 1D4I (HIV-1 protease in complex with an inhibitor).  

What non-standard amino acid is present, and what is this amino acid? (Hint: examine 
the pdb file header or the web page summary.) 

Write a script that converts the non-standard amino acid to its unmodified form. (Hint: 
use UNIX commands grep, awk, or sed along with pipes. Note: It is also possible to 
directly use a modified amino acid by creating a parameter file to define that residue, 
but that is a more advanced topic!) 

answer: The following UNIX shell command will change ABA to ALA and change the 
HETATM keys to ATOM (enter as a single-line command!): 

awk '{if ($1 == "HETATM" && $4 == "ABA") 
{gsub("HETATM","ATOM"); 
gsub("ABA","ALA")}; 
print}' 1D41.pdb | grep 
^ATOM > 1D41.clean.pdb 
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