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Workshop	#7:	Docking	

Protein–protein docking is the prediction of a complex structure starting from its monomer 
components. The search space can be extremely large, so large amounts of computational 
resources are typically required. In this workshop, we will explore several of the techniques 
briefly; keep in mind that for real applications, many more decoys will need to be tested. 

Suggested Readings 

1. J. J. Gray et al., “Protein-protein docking with simultaneous optimization of rigid-body 
displacement and side-chain conformations,” J. Mol. Biol. 331, 281-299 (2003). 

2. S. Chaudhury & J. J. Gray, “Conformer selection and induced fit in flexible backbone 
protein-protein docking using computational and NMR ensembles,” J. Mol. Biol. 381, 
1068-1087 (2008). 

Fast Fourier Transform Based Docking via ZDOCK 

There are several servers available based on fast Fourier transforms (FFTs). These servers are 
able to quickly carry out a global, grid-based matching searches. 

1. Go to the ZDOCK server (http://zdock.bu.edu) and upload trypsin (2PTN) and its 
inhibitor (1BA7 chain B) for docking. If completing this workshop for a class, do this 
in groups in order to not overload the server. When the jobs have finished (typically 
under an hour), download the output file. You will have to also download a script for 
creating complexes from the output file. Use the script to generate the top five models. 
Are these models similar or diverse? _________ How so? 

 

2. Are any of the models similar to the crystal structure of the bound complex (1AVW)? 
_____ 

(Other servers include SmoothDock (http://structure.pitt.edu/servers/smoothdock), ClusPro 
(http://cluspro.bu.edu), Haddock (http://haddock.chem.uu.nl), and GRAMM-X 
(http://vakser.bioinformatics.ku.edu/resources/gramm/grammx). Any of these provide global 
docking services to create models that might be useful for refinement by RosettaDock.) 

Docking Moves in Rosetta 

For the following exercises, download and clean the complex of colicin D and ImmD (1V74). 
Store three poses — a full-atom starting pose and centroid and full-atom “working” poses. 
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The fundamental docking move is a rigid-body transformation consisting of a translation and 
rotation. Any rigid body move also needs to know which part moves and which part is fixed. In 
Rosetta, this division is known as a “jump” and the set of protein segments and jumps are 
stored in an object attached to a pose called a “fold tree.” 

print pose.fold_tree() 

In the fold tree printout, each three number sequence following the word EDGE is the beginning 
and ending residue number, then a code. The codes are -1 for stretches of protein and any 
positive integer for a jump, which represents the jump number. 

3. View the fold tree of your full-atom pose. How many jumps are there in your pose? ___ 

By default, there is a jump between the N-terminus of chain A and the N-terminus of chain B, 
but we can change this using the exposed method setup_foldtree(). 

from pyrosetta.teaching import * 
setup_foldtree(pose, "A_B", Vector1([1])) 
print pose.fold_tree() 

The argument "A_B" tells Rosetta to make chain A the “rigid” chain and allow chain B to 
move. If there were more chains in the pdb structure, supplying "AB_C" would hold chains A 
and B rigid together as a single unit and allow chain C to move. (The third argument 
Vector1([1]) is required. The function Vector1() creates a Rosetta vector object — 
indexed from 1 — from a Python list. In this case, we pass a list with one element that 
identifies the first jump in the fold tree for docking use.) 

4. Set up a new fold tree for docking using the command above and output the new fold 
tree. What has changed? 

 

You can see the type of information in the jump by printing it from the pose: 

jump_num = 1 
print pose.jump(jump_num).get_rotation() 
print pose.jump(jump_num).get_translation() 

5. Write out the rotation matrix and the translation vector defined by the jump. 

Y_________ _________ _________Y
[_________ _________ _________[
\_________ _________ _________\

 

(_________, _________, _________) 



Workshop #7: Docking | 47 

 

The two basic manipulations are translations and rotations. For translation, the change in x, y, 
and z coordinates are needed as well as the jump number. A rotation requires a center and an 
axis about which to rotate. The rigid-body displacement can be altered directly with the 
RigidBodyTransMover for translations or the RigidBodySpinMover for rotations. 

However, for structure prediction calculations, we have a mover that is preconfigured to make 
random movements varying around set magnitudes (in this case, a mean of 8° rotation and 3 Å 
translation) located in the rosetta.protocols.rigid namespace, (which we will rename 
with an alias rigid_moves for our convenience) : 

import rosetta.protocols.rigid as rigid_moves 
pert_mover = rigid_moves.RigidBodyPerturbMover(jump_num, 

8, 3) 

6. Apply the RigidBodyPerturbMover to a pose and use a PyMOLMover to confirm 
that the motions are what you expect. What are the new rotation matrix and translation 
vector in the jump? How many ångströms did the downstream protein move? 

 

 

 

 

 

Global perturbations are useful for making completely randomized starting structures. The 
following mover will rotate a protein about its geometric center. The final orientation is equally 
distributed over the “globe”. 

randomize1 = rigid_moves.RigidBodyRandomizeMover(pose, 
jump_num, 
rigid_moves.partner_upstream) 

randomize2 = rigid_moves.RigidBodyRandomizeMover(pose, 
jump_num, 
rigid_moves.partner_downstream) 

(partner_upstream and partner_downstream are predefined terms within the 
rosetta.protocols.rigid namespace, which in our case refer to chains A and B, 
respectively.) 

7. Apply both movers to the starting structure, and view the structure in PyMOL. (You 
might view it along with the original pose.) Does the new conformation look like a 
candidate docked structure yet? _____ 

Since proteins are not spherical, sometimes the random orientation creates severe clashes 
between the docking partners, and other times it places the partners so they are no longer 
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touching. The FaDockingSlideIntoContact mover will translate the downstream protein 
along the line of protein centers until the proteins are in contact. 

from rosetta.protocols.docking import * 
slide = DockingSlideIntoContact(jump_num)  # for centroid 

mode 
slide = FaDockingSlideIntoContact(jump_num)  # for full-

atom mode 
slide.apply(pose) 

The MinMover, which we have previously used to change torsion angles to find the nearest 
minimum in the score function, can also operate on the jump translation and rotation. It 
suffices to set the jump variable as moveable in the MoveMap: 

movemap = MoveMap() 
movemap.set_jump(jump_num, True) 
 
min_mover = MinMover() 
min_mover.movemap(movemap) 
min_mover.score_function(scorefxn)  # use any scorefxn 
scorefxn(pose) 
min_mover.apply(pose) 

8. Apply the above MinMover. How much does the score change? _________ What are 
the new rotation matrix and translation vector in the jump? How many Ångstroms did 
the downstream protein move? 

 

 

 

 

 

Low-Resolution Docking via RosettaDock 

RosettaDock can also perform global docking runs, but it can require significant time. 
Typically, 105 to 106 decoys are needed in a global run. For this workshop, we will create a 
much smaller number and learn the tools needed to handle large runs. 

Docking is available as a mover that completely encompasses the protocol. To use the mover, 
you will need a starting pose with both chains and a jump defined. The structure must be in 
low-resolution (centroid) mode, and you will need the low-resolution docking score function: 

scorefxn_low = create_score_function("interchain_cen") 
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Randomize your centroid version of the complex. Then, create low-resolution docking 
structures as follows: 

dock_lowres = DockingLowRes(scorefxn_low, jump_num) 
dock_lowres.apply(pose) 

9. You can compare structures by calculating the root-mean-squared deviation of all the 
Cα atoms, using the function CA_rmsd(pose1, pose2). In docking, a more useful 
measure is the ligand RMSD, which is the deviation of the backbone Cα atoms of the 
ligand after superposition of the receptor protein backbones. You can calculate ligand 
RMSD with calc_Lrmsd(pose1, pose2, Vector1([1])). Using both measures, 
how far did your pose move from the low-resolution search? 

 

 

10. Examine the created decoy in PyMOL. Does it look like a reasonable structure for a 
protein-protein complex? _____ Explain. 

 

Job Distributor 

For exhaustive searches with Rosetta (docking, refinement, or folding), it is necessary to create 
a large number of candidate structures, termed “decoys”. This is often accomplished by 
spreading out the work over a large number of computers. Additionally, each decoy created 
needs to be individually labeled. The object that is responsible for managing the output is 
called a JobDistributor. Here, we will use a simple job distributor to create multiple 
structures. The following constructor sets the job distributor to create 10 decoys, with 
filenames like output_1.pdb, output_2.pdb, etc. The pdb files will also include scores 
according to the ScoreFunction provided. 

from pyrosetta.teaching import * 
jd = PyJobDistributor("output", 10, scorefxn_low) 

It is also useful to compare each decoy to the native structure (if it is known; otherwise any 
reference structure can be used). The job distributor will do the RMSD calculation and final 
scoring upon output. To set the native pose: 

native_pose = pose_from_pdb("your_favorite_protein.pdb") 
jd.native_pose = native_pose 
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11. Create a randomized starting pose, working pose, fold tree, score function, job 
distributor, and low-resolution docking mover. Now, run the low-resolution docking 
protocol to create a structure, and output a decoy: 

pose.assign(starting_pose) 
dock_lowres.apply(pose) 
jd.output_decoy(pose) 

Do this twice and confirm that you have two output files. 

Whenever the output_decoy() method is called, the current_num variable of the 
JobDistributor is incremented, and it also outputs an updated score file: output.fasc. 
We can finish the set of 10 decoys by using the JobDistributor to set up a loop: 

while not jd.job_complete: 
pose.assign(starting_pose) 
dock_lowres.apply(pose) 
jd.output_decoy(pose) 

Note the jd.job_complete Boolean variable that indicates whether all 10 decoys have been 
created. 

12. Run the loop to create 10 structures. The score file, output.fasc summarizes the 
energies and RMSDs of all structures created. Examine that file. What is the lowest 
score? _________ What is the lowest energy? _________ 

13. Reset the JobDistributor to create 100 decoys (or more or less, as the speed of your 
processor allows) by reconstructing it. Rerun the loop above to make 100 decoys. Use 
your score file to plot score versus RMSD. (Two easy ways to do this are to import the 
score file into Excel or to use the Linux command gnuplot.) Do you see an energy 
funnel? _____ 

Error! Reference source not found. includes more helpful information about using the 
PyJobDistributor to distribute jobs over multiple computers. 

High-Resolution Docking High-Resolution Docking 

The high-resolution stage of RosettaDock is also available as a mover. This mover 
encompasses random rigid-body moves, side-chain packing, and gradient-based minimization 
in the rigid-body coordinates. High-resolution docking needs an all-atom score function. The 
optimized docking weights are available as a patch to the standard all-atom energy function. 

scorefxn_high = create_score_function_ws_patch( 
"talaris2013", "docking") 

dock_hires = DockMCMProtocol() 
dock_hires.set_scorefxn(scorefxn_high) 
dock_hires.set_partners("A_B") 
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Note that unlike for DockingLowRes, we must supply the docking partners with "A_B" 
instead of jump_num. 

A high-resolution decoy needs side chains. One way to place the side chains is to call the 
PackMover, which will generate a conformation from rotamers. A second way is to copy the 
side chains from the original monomer structures. This is often helpful for docking calculations 
since the monomer crystal structures have good side chain positions. 

recover_sidechains = ReturnSidechainMover(starting_pose) 
recover_sidechains.apply(pose) 

14. Load one of your low-resolution decoys, add the side chains from the starting pose, and 
refine the decoy using high-resolution docking. How far did the structure move during 
refinement? _______ How much did the score improve? _______ 

15. Starting from your lowest-scoring low-resolution decoy, create three high-resolution 
decoys. (You might use the JobDistributor.) Do the same starting from the native 
structure. 

a. How do the refined-native scores compare to the refined-decoy scores? 

 

b. What is the RMSD of the refined native? _______ Why is it not zero? 

 

c. How much variation do you see in the refined native scores? In the refined 
decoy scores? Is the difference between the refined natives and the refined 
decoys significant? 

 

 

Docking Funnel 

Using a job distributor and DockMCMProtocol, create 10 decoys starting with a 
RigidBodyRandomizeMover perturbation of partner_downstream, 10 decoys 
starting from different local random perturbations (8°, 3 Å), 10 decoys starting from 
low-resolution decoys, and 10 starting from the native structure. Plot all of these points 
on a funnel plot. How is the sampling from each method? Does the scoring function 
discriminate good complexes? 
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Programming Exercises 

1. Output a structure with a 10 Å translation and another with a 30° rotation (both starting 
from the same starting structure), and load them into PyMOL to confirm the motions 
are what you expect. 

2. Diffusion. Make a series of random rigid body perturbations and record the RMSD after 
each. Plot RMSD versus the number of moves. Does this process emulate diffusion? If 
it did, how would you know? (Hint: there is a way to plot these data to make them 
linear.) 

3. Starting from a low-resolution docking decoy, refine the structure in three separate 
ways: 

a. side-chain packing 
b. gradient-based minimization in the rigid-body coordinates 
c. gradient-based minimization in the torsional coordinates 
d. the docking high-resolution protocol 

For each, note the change in RMSD and the change in score. Which operations move 
the protein the most? Which make the most difference in the score? 

4. Using the MonteCarlo object, the RigidBodyMover, PackRotamers, and the 
MinMover, create your own high-resolution docking protocol. Bonus: Can you tune it 
to beat the standard protocol? “Beating” the standard protocol could mean achieving 
lower energies, running in faster time, and/or being able to better predict complexes. 


