

29

Workshop #5: PyRosetta Refinement

One of the most basic operations in protein structure and design algorithms is manipulation of

the protein conformation. In Rosetta, these manipulations are organized into movers. A Mover

object simply changes the conformation of a given pose. It can be simple, like a single φ or ψ

angle change, or complex, like an entire refinement protocol.

Suggested Reading

1. P. Bradley, K. M. S. Misura & D. Baker, “Toward high-resolution de novo structure

prediction for small proteins,” Science 309, 1868-1871 (2005), including

Supplementary Material.

2. Z. Li & H. A. Scheraga, “Monte Carlo-minimization approach to the multiple-minima

problem in protein folding,” Proc. Natl. Acad. Sci. USA 84, 6611-6615 (1987).

Introduction

In the last workshop, you encountered the ClassicFragmentMover, which inserts a short

sequence of backbone torsion angles, and the SwitchResidueTypeSetMover, which doesn’t

actually change the conformation of the pose but instead swaps out the residue types used.

In this workshop, we will introduce a variety of other movers, particularly those used in high-

resolution refinement (e.g., in Bradley’s 2005 paper).

Before you start, load a test protein and make a copy of the pose so we can compare later:

start = pose_from_pdb("test.pdb")

test = Pose()

test.assign(start)

For convenient viewing in PyMOL, set the names of both poses:

start.pdb_info().name("start")

test.pdb_info().name("test")

pmm = PyMOL_Mover()

pmm.apply(start)

pmm.apply(test)

We also want to activate the keep_history setting so that PyMOL will keep separate frames

for each conformation as we modify it (more on this shortly):

pmm.keep_history(True)

30 | Workshop #5: PyRosetta Refinement

Small and Shear Moves

The simplest move types are small moves, which perturb φ or ψ of a random residue by a

random small angle, and shear moves, which perturb φ of a random residue by a small angle

and ψ of the same residue by the same small angle of opposite sign.

For convenience, the small and shear movers can do multiple rounds of perturbation. They also

check that the new φ/ψ combinations are within an allowable region of the Ramachandran plot

by using a Metropolis acceptance criterion based on the rama score component change. (The

rama score is a statistical score from Simons et al. 1999, parametrized by bins of φ/ψ space.)

Because they use the Metropolis criterion, we must also supply kT. Finally, like most movers,

these require a MoveMap object to specify which degrees of freedom are fixed and which are

free to change. Thus, we can create our movers like this:

kT = 1.0

n_moves = 1

movemap = MoveMap()

movemap.set_bb(True)

small_mover = SmallMover(movemap, kT, n_moves)

shear_mover = ShearMover(movemap, kT, n_moves)

We can also adjust the maximum magnitude of the perturbations as follows:

small_mover.angle_max("H", 25)

small_mover.angle_max("E", 25)

small_mover.angle_max("L", 25)

Here, "H", "E", and "L" refer to helical, sheet, and loop residues — as they did in the

fragment library file — and the magnitude is in degrees. We will set all the maximum angles to

25° to make the changes easy to visualize. (The default values in Rosetta are 0°, 5°, and 6°,

respectively.)

1. Test your mover by applying it to your pose:

small_mover.apply(test)

Confirm that the change has occurred by comparing the start and test poses in

PyMOL. Second, try the PyMOL animation controls on the bottom right corner of the

Viewer window. There should be a play button (►) as well as frame-forward, rewind,

etc. Play the movie to watch PyMOL shuffle your pose move back and forth.

Can you identify which torsion angles changed? By how much? If it is hard to view on

the screen, it may help to use your old programs to compare torsion angles or

coordinates.

Workshop #5: PyRosetta Refinement | 31

2. Comparing small and shear movers. Reset the test pose by re-assigning it the

conformation from start, and create a second test pose (test2) in the same manner.

Reset the existing MoveMap object to only allow the backbone angles of residue 50 to

move. (Hint: Set all residues to False, then set just residues 50 and 51 to True using

movemap.set_bb(50, True) and movemap.set_bb(51, True).) Note that the

SmallMover contains a pointer to your MoveMap, and so it will automatically know

you have made these changes and use the modified MoveMap in future moves.

Make one small move on one of your test poses and one shear move on the other test

pose. Output both poses to PyMOL using the PyMOL_Mover. Be sure to set the name of

each pose so they are distinguishable in PyMOL. Show only backbone atoms and view

as lines or sticks. Identify the torsion angle changes that occurred. What was the

magnitude of the change in the sheared pose? How does the displacement of residue 60

compare between the small- and shear-perturbed poses?

Minimization Moves

The MinMover carries out a gradient-based minimization to find the nearest local minimum in

the energy function, such as that used in one step of the Monte-Carlo-plus-Minimization

algorithm of Li & Scheraga.

min_mover = MinMover()

3. The minimization mover needs at least a MoveMap and a ScoreFunction. You can

also specify different minimization algorithms and a tolerance. (See Appendix A). For

now, set up a new MoveMap that is flexible from residues 40 to 60, inclusive, using:

mm4060 = MoveMap()

mm4060.set_bb_true_range(40, 60)

Create a standard, full-atom ScoreFunction, and then attach these objects to the

default MinMover with the following methods:

min_mover.movemap(mm4060)

min_mover.score_function(scorefxn)

Finally, attach an “observer”. The observer is configured to execute a

PyMOL_Mover.apply() every time a change is observed in the pose coordinates. The

True is a flag to ensure that PyMOL keeps a history of the moves.

observer = PyMOL_Observer(test2, True)

32 | Workshop #5: PyRosetta Refinement

4. Apply the MinMover to your sheared pose. Observe the output in PyMOL. (This may

take a couple minutes — the Observer can slow down the minimization significantly.)

How much motion do you see, relative to the original shear move? How many

coordinate updates does the MinMover try? How does the magnitude of the motion

change as the minimization continues? At the end, how far has the Cα atom of residue

60 moved?

Monte Carlo Object

PyRosetta has several object classes for convenience for building more complex algorithms.

One example is the MonteCarlo object. This object performs all the bookkeeping you need

for creating a Monte Carlo search. That is, it can decide whether to accept or reject a trial

conformation, and it keeps track of the lowest-energy conformation and other statistics about

the search. Having the Monte Carlo operations packaged together is convenient, especially if

we want multiple Monte Carlo loops to nest within each other or to operate on different parts

of the protein. To create the object, you need an initial pose, a score function, and a

temperature factor:

mc = MonteCarlo(pose, scorefxn, kT)

After the pose is modified by a mover, we tell the MonteCarlo object to automatically accept

or reject the new conformation and update a set of internal counters by calling:

mc.boltzmann(pose)

5. Test out a MonteCarlo object. Before doing so, you may need to adjust your small and

shear moves to smaller maximum angles (3–5°) so they are more likely to be accepted.

Apply several small or shear moves, output the score using print scorefxn(test)

then call mc.boltzmann(test). A response of True indicates the move is accepted,

and False indicates that the move is rejected. If the move is rejected, the pose is

automatically reverted for you to its last accepted state. Manually iterate a few times

between moves and calls to mc.boltzmann(). Do enough cycles to observe at least

two True and two False outputs. Do the acceptances match what you expect given the

scores you obtain? _____ After doing a few cycles, use mc.show_scores() to find

the score of the last accepted state and the lowest energy state. What energies do you

find? Is the last accepted energy equal to the lowest energy?

Workshop #5: PyRosetta Refinement | 33

6. See what information is stored in the Monte Carlo object using:

mc.show_scores()

mc.show_counters()

mc.show_state()

What information do you get from each of these?

Trial Mover

A TrialMover combines a mover with a MonteCarlo object. Each time a TrialMover is

called, it performs a trial move and tests that move’s acceptance with the MonteCarlo object.

You can create a TrialMover from any other type of Mover. You might imagine that, as we

start nesting these together, we can build some complex algorithms!

trial_mover = TrialMover(small_mover, mc)

trial_mover.apply(pose)

7. Apply the TrialMover above ten times. Using trial_mover.num_accepts() and

trial_mover.acceptance_rate(), what do you find?

8. The TrialMover also communicates information to the MonteCarlo object about the

type of moves being tried. Create a second TrialMover using a ShearMover and the

same MonteCarlo object, and apply this second TrialMover ten times. Look at the

MonteCarlo object state (mc.show_state()). What are the acceptance rates of each

mover? Which mover is accepted most often, and which has the largest energy drop per

trial? What are the average energy drops?

34 | Workshop #5: PyRosetta Refinement

Sequence and Repeat Movers

A SequenceMover is another combination Mover and applies several movers in succession.

It is useful for building up complex routines and is constructed as follows.

seq_mover = SequenceMover()

seq_mover.add_mover(small_mover)

seq_mover.add_mover(shear_mover)

seq_mover.add_mover(min_mover)

The above example mover will apply first the small, then the shear, and finally the

minimization movers.

9. Create a TrialMover using the sequence mover above, and apply it five times to the

pose. How is the sequence mover shown by mc.show_state()?

A RepeatMover will apply its input Mover n times each time it is applied:

repeat_mover = RepeatMover(trial_mover, n)

10. Use these tools to build up your own ab initio protocol. Create trial movers for 9-mer

and 3-mer fragment insertions. First, create repeat movers for each and then create the

trial movers using the same MonteCarlo object for each. Create a SequenceMover to

do the 9-mer trials and then the 3-mer trials, and iterate the sequence 10 times. Write

out a flowchart of your algorithm here:

Workshop #5: PyRosetta Refinement | 35

11. Hierarchical search. Construct a TrialMover that tries to insert a 9-mer fragment and

then refines the protein with 100 alternating small and shear trials before the next 9-mer

fragment trial. The interesting part is this: you will use one MonteCarlo object for the

small and shear trials, inside the whole 9-mer combination mover. But use a separate

MonteCarlo object for the 9-mer trials. In this way, if a 9-mer fragment insertion is

evaluated after the optimization by small and shear moves and is rejected, the pose goes

all the way back to before the 9-mer fragment insertion.

Refinement Protocol

The entire standard Rosetta refinement protocol, similar to that presented in Bradley, Misura,

& Baker 2005, is available as a Mover. Note that the protocol can require ~40 minutes for a

100-residue protein.

relax = ClassicRelax()

relax.set_scorefxn(scorefxn)

relax.apply(pose)

Programming Exercises

1. Use the Mover constructs to create a complex folding algorithm. Create a simple

program to do the following:

a. Five small moves

b. Minimize

c. Five shear moves

d. Minimize

e. Monte Carlo Metropolis criterion

f. Repeat a–e 100 times

g. Repeat a–f five times, each time decreasing the magnitude of the small and

shear moves from 25° to 5° in 5° increments.

Sketch a flowchart, and submit both the flowchart and your code.

2. Ab initio folding algorithm. Based on the Monte Carlo energy optimization algorithm

from Workshop #4, write a complete program that will fold a protein. A suggested

algorithm involves preliminary low-resolution modifications by fragment insertion

(first 9-mers, then 3-mers), followed by high-resolution refinement using small, shear,

and minimization movers. Output both your low-resolution intermediate structure and

the final refined, high-resolution decoy.

Test your code by attempting to fold domain 2 of the RecA protein (the last 60 amino

acid residues of PDB ID 2REB). How do your results compare with the crystal

structure? (Consider both your low-resolution and high-resolution results.) If your

lowest-energy conformation is different than the native structure, explain why this is so

in terms of the limitations of the computational approach.

36 | Workshop #5: PyRosetta Refinement

Bonus: After using the PyMOL_Mover or PyMOL_Observer to record the trajectory,

export the frames and tie them together to create an animation. Search the Internet for

“PyMOL animation” for additional tools and tips. Animated GIF files are probably the

best quality; MPEG and QuickTime formats are also popular and widely compatible

and uploadable to YouTube.

3. AraC N-terminal arm. The AraC transcription factor is believed to be activated by the

conformational change that occurs in the N-terminus when arabinose binds. Let’s test

whether PyRosetta can capture this change. Specifically, we will start with the

arabinose-bound form and see if PyRosetta can refold it to the apo form.

Download the arabinose-bound form of the AraC transcription factor. Edit the PDB file

so that it contains only the arabinose-binding domain, and also remove any non-protein

atoms (especially the arabinose). Set up a move map to include only the 15 N-terminal

residues. Perform an ab initio search to find the lowest conformation state. How does it

compare to the apo crystal form?

Thought Questions

1. With kT = 1, what is the change in propensity of the rama score component that has a

50% chance of being accepted as a small move?

2. How would you test whether an algorithm is effective? That is, what kind of measures

can you use? What can you vary within an algorithm to make it more effective?

	Workshop #5: PyRosetta Refinement
	Suggested Reading
	Introduction
	Small and Shear Moves
	Minimization Moves
	Monte Carlo Object
	Trial Mover
	Sequence and Repeat Movers
	Refinement Protocol
	Programming Exercises
	Thought Questions

