

23

Workshop #4: PyRosetta Folding

In this workshop you will write your own Monte Carlo protein folding algorithm from scratch,

and we will explore a couple of the tricks used by Simons et al. (1997, 1999) to speed up the

folding search.

Suggested Readings

1. K. T. Simons et al., “Assembly of Protein Structures from Fragments,” J. Mol. Biol.

268, 209-225 (1997).

2. K. T. Simons et al., “Improved recognition of protein structures,” Proteins 34, 82-95

(1999).

3. Chapter 4 (Monte Carlo methods) of M. P. Allen & D. J. Tildesley, Computer

Simulation of Liquids, Oxford University Press, 1989.

A Simple de Novo Folding Algorithm

1. First, we would like to create a simple folding algorithm. Begin with a new pose, and

then create an all-atom starting structure with 10 alanines using:

pose = pose_from_sequence('A'*10)

Use the PyMOL_Mover to echo this structure to PyMOL:

pmm = PyMOL_Mover()

pmm.apply(pose)

You should see ideal bond lengths and angles, although the set of φ and ψ angles will

not be useful.

Now, write a program that implements a Monte Carlo algorithm to optimize the protein

conformation. In the main program, create a loop with 100 iterations. Each iteration

should call a subroutine to make a random trial move, score the protein, and then accept

or reject the new conformation based on the Metropolis criterion, for which the

probability of accepting a move is ⁄ , when ΔE ≥ 0, and P = 1, when ΔE < 0.

Use kT = 1 Rosetta Energy Unit.

For the random trial move, write a subroutine to choose one residue at random using

random.randint() and then randomly perturb either the φ or ψ angles by a random

number chosen from a Gaussian distribution. Use the Python built-in function

random.gauss() from the random library with a mean of the current angle and a

standard deviation of 25°. After changing the torsion angle, use pmm.apply(pose) to

update the structure in PyMOL.

24 | Workshop #4: PyRosetta Folding

For the energy function, use the standard full-atom scoring approach with only the van

der Waals and hydrogen bonding terms. With this scoring function, what kind of

structures do you expect to be most stable?

At each iteration of the search, output the current pose energy and the lowest energy

ever observed. The final output of this program should be the lowest energy

conformation that is achieved at any point during the simulation. Be sure to use

low_pose.assign(pose) rather than low_pose = pose, since the latter will only

copy a pointer to the original pose.

Output the last pose and the lowest-scoring pose observed and view them in PyMOL.

Plot the energy and lowest-energy observed vs. cycle number. What are the energies of

the initial, last, and lowest-scoring pose? Is your program working? Has it converged to

a good solution?

2. Using the program you wrote for Workshop #2, force the A10 sequence into an α-helix.

Does this structure have a lower score than that produced by your algorithm? What

does this mean about your sampling or discrimination?

3. Since your program is a stochastic search algorithm, it may not produce an ideal

structure consistently, so try running the simulation multiple times or with a different

number of cycles (if necessary). Using a kT of 1, your program may need to make up to

500,000 iterations.

Low-Resolution (Centroid) Scoring

Following the treatment of Simons et al. (1999), Rosetta can score a protein conformation

using a low-resolution representation. This will make the energy calculation faster.

4. Load a protein with which you are familiar (e.g., Ras or cetuximab). Calculate the full-

atom energy and note the coordinates of residue 5 using print pose.residue(5).

E: _________ (_____, _____, _____)

Workshop #4: PyRosetta Folding | 25

5. Convert the pose to the centroid form by using a SwitchResidueTypeSetMover

object and the apply method:

switch = SwitchResidueTypeSetMover("centroid")

switch.apply(pose)

print pose.residue(5)

How many atoms are now in residue 5? _____ How is this different than before?

6. Score the new, centroid-based pose using the standard score function "score3". What

is the new total score? _______ What scoring terms are included in "score3"? Do

these match Simons?

7. Convert the pose back to all-atom form by using another switch mover

(SwitchResidueTypeSetMover("fa_standard")). Confirm that you have all the

atoms back. Are the atoms in the same position as before? _____

8. Adjust your folding algorithm to use centroid residue types. Use only vdw and

hbond_sr_bb energy score components. How much faster does your program run?

Not counting the PyMol_Mover, which is a special case, SwitchResidueTypeSetMover is

the first example we have seen of a Mover class in PyRosetta. Every Mover object in

PyRosetta has been designed to apply specific and complex changes (or “moves”) to a pose.

Every mover must be “constructed” and have any options set before being applied to a pose

with the apply() method. SwitchResidueTypeSetMover has a relatively simple

construction with only the single option "centroid". (Some movers, as we shall see, require

no options and are programmed to operate with default values.)

26 | Workshop #4: PyRosetta Folding

Protein Fragments

9. Create a 3-mer fragment file from the Robetta server

(http://robetta.bakerlab.org/fragmentsubmit.jsp) for a given test sequence of at least 26

residues of your choice. Before submitting your job, select Exclude homologs. When

your job is complete, download the file aatestA03_05.200_v1_3. This file contains

3-mer fragments for the test sequence we are trying to fold. You should see sets of

three-lines describing each fragment. For the first fragment, which PDB file does it

come from? ______ Is this fragment helical, sheet, in a loop, or a combination?

_____________ What are the φ, ψ, and ω angles of the middle residue of the first

fragment window?

φ: _______ ψ: _______ ω: _______

10. How many 3-residue windows are there in your 20-residue peptide? ____ How many

fragments does the data file have per window? _____

11. Create a new subroutine in your folding code for an alternate random move based upon

a “fragment insertion”. A fragment insertion is the replacement of the torsion angles for

a set of consecutive residues with new torsion angles pulled at random from a fragment

library file. Prior to calling the subroutine, load the set of fragments from the fragment

file:

fragset = ConstantLengthFragSet(3)

fragset.read_fragment_file("aatestA03_05.200_v1_3")

Next, we will construct another Mover object — this time a FragmentMover — using

the above fragment set and a MoveMap object as options. A move map specifies which

degrees of freedom are allowed to change in the pose when the mover is applied (in this

case, all backbone torsion angles):

movemap = MoveMap()

movemap.set_bb(True)

mover_3mer = ClassicFragmentMover(fragset, movemap)

(Note that when a MoveMap is constructed, all degrees of freedom are set to False

initially. If you still have a PyMOL_Mover instantiated, you can quickly visualize

which degrees of freedom will be allowed by sending your move map to PyMOL with

pmm.send_movemap(pose, movemap).)

Each time this mover is applied, it will select a random 3-mer window and insert only

the backbone torsion angles from a random matching fragment in the fragment set:

mover_3mer.apply(pose)

http://robetta.bakerlab.org/fragmentsubmit.jsp

Workshop #4: PyRosetta Folding | 27

When you change your random move to a fragment insertion, how much faster is your

folding code? Does it converge to a protein-like conformation more quickly?

Programming Exercises

1. Fold a 10-mer poly-alanine using 100 independent trajectories, using any variant of the

folding algorithm that you like. (A trajectory is a path through the conformation space

traveled during the calculation. The end result of each independent trajectory is called a

“decoy”. Given enough sampling, the lowest energy decoy may correspond to the

global minimum.) Create a Ramachandran plot using the lowest-scoring conformations

(decoys) from all 100 independent trajectories. Repeat this for a 10-mer poly-glycine.

How do the plots differ? Compare with the plots in Richardson’s article.

2. Test your folding program’s ability to predict a real fold from scratch. Choose a small

protein to keep the computation time down, such as Hox-B1 homeobox protein (1B72)

or RecA (2REB). How many iterations and how many independent trajectories do you

need to run to find a good structure?

3. Modify your folding program to include a simulated annealing temperature schedule,

decaying exponentially from kT = 100 to kT = 0.1 over the course of the search. Again,

fold a test protein. Does this approach work better?

4. Modify your folding program to remove the Metropolis criterion and instead accept

trial moves only when the energy decreases. Plot energy vs. iteration and examine the

final output structures from multiple runs. How is the convergence and performance

affected? Why?

Thought Questions

1. [Introductory] What are the limitations of these types of folding algorithms?

2. [Advanced] How might you design an intermediate-resolution representation of side

chains that has more detail than the centroid approach yet is faster than the full-atom

approach? Which types of residues would most benefit from this type of

representation?

	Workshop #4: PyRosetta Folding
	Suggested Readings
	A Simple de Novo Folding Algorithm
	Low-Resolution (Centroid) Scoring
	Protein Fragments
	Programming Exercises
	Thought Questions

