1. Pharmacokinetic model formulation
 a. Sketch a process flow diagram for a pharmacokinetic model which includes a one-compartment pancreas and a two-compartment brain, connected by the bloodstream.
 b. Formulate model equations for the concentrations of a molecule in the brain. Assume the flux between the two compartments is membrane-limited and passive, i.e., \(n = -h(C_1 - C_\text{II})/R \). Also, assume the molecule is degraded in the inner compartment with first-order rate constant \(k_d \).
 c. Identify input, output and state variables and parameters for the most general model (i.e. the whole system). Is your system under-, over-, or exactly determined?

2. Consider the following input function:
 \[
 u(t) = \begin{cases}
 0 & t < 0 \\
 3t & 0 \leq t < 3 \\
 9 & t \geq 3
 \end{cases}
 \]
 a. Sketch the function.
 b. Find \(u(s) \), its Laplace function.

3. [SEM04 #3.8] Find the \(x(t) \) which solves the following integro-differential equation.
 \[
 \ddot{x} + 3\dot{x} + 2x - 2 \int_{0}^{t} e^{-\tau} \, d\tau = 0
 \]

4. [SEM #3.6] Using partial fraction expansion where required, find \(x(t) \) for:
 a. \(X(s) = \frac{s(s + 1)}{(s + 2)(s + 3)(s + 4)} \)
 b. \(X(s) = \frac{s + 1}{(s + 2)(s + 3)(s^2 + 4)} \)
 c. \(X(s) = \frac{s + 4}{(s + 1)^2} \)
 d. \(X(s) = \frac{1}{s^2 + s + 1} \)

5. Bequette: Chap. 3 #7.
 Also, add part (v): Solve for \(y(t) \) numerically using Matlab.
 Plot your analytic and numerical solutions on the same axis.